I cannot find unique function from data.table package [duplicate] - r

help(unique) shows that unique function is present in two packages - base and data.table. I would like to use this function from data.table package. I thought that the following syntax - data <- data.table::unique(data) indicates the package to be used. But I get the following error -
'unique' is not an exported object from 'namespace:data.table'
But data <- unique(data) works well.
What is wrong here?

The function in question is really unique.data.table, an S3 method defined in the data.table package. That method is not really intended to be called directly, so it isn't exported. This is typically the case with S3 methods. Instead, the package registers the method as an S3 method, which then allows the S3 generic, base::unique in this case, to dispatch on it. So the right way to call the function is:
library(data.table)
irisDT <- data.table(iris)
unique(irisDT)
We use base::unique, which is exported, and it dispatches data.table:::unique.data.table, which is not exported. The function data.table:::unique does not actually exist (or does it need to).
As eddi points out, base::unique dispatches based on the class of the object called. So base::unique will call data.table:::unique.data.table only if the object is a data.table. You can force a call to that method directly with something like data.table:::unique.data.table(iris), but internally that will mostly likely result in the next method getting called unless your object is actually a data.table.

There are actually two infix operators in R that pull functions from particular package namespaces. You used :: but there is also a ::: that retrieves "unexported" functions. The unique-function is actually a family of functions and its behavior will depend on both the class of its argument and the particular packages that have been loaded. The R term of this is "generic". Try:
data <- data.table:::unique(data) # assuming 'data' is a data.table
The other tool that lets you peek behind the curtain that the lack of "exportation" is creating is the getAnywhere-function. It lets you see the code at the console:
> unique.data.table
Error: object 'unique.data.table' not found
> getAnywhere(unique.data.table)
A single object matching ‘unique.data.table’ was found
It was found in the following places
registered S3 method for unique from namespace data.table
namespace:data.table
with value
function (x, incomparables = FALSE, fromLast = FALSE, by = key(x),
...)
{
if (!cedta())
return(NextMethod("unique"))
dups <- duplicated.data.table(x, incomparables, fromLast,
by, ...)
.Call(CsubsetDT, x, which_(dups, FALSE), seq_len(ncol(x)))
}
<bytecode: 0x2ff645950>
<environment: namespace:data.table>

Related

How to define an S3 generic with the same name as a primitive function?

I have a class myclass in an R package for which I would like to define a method as.raw, so of the same name as the primitive function as.raw(). If constructor, generic and method are defined as follows...
new_obj <- function(n) structure(n, class = "myclass") # constructor
as.raw <- function(obj) UseMethod("as.raw") # generic
as.raw.myclass <- function(obj) obj + 1 # method (dummy example here)
... then R CMD check leads to:
Warning: declared S3 method 'as.raw.myclass' not found
See section ‘Generic functions and methods’ in the ‘Writing R
Extensions’ manual.
If the generic is as_raw instead of as.raw, then there's no problem, so I assume this comes from the fact that the primitive function as.raw already exists. Is it possible to 'overload' as.raw by defining it as a generic (or would one necessarily need to use a different name?)?
Update: NAMESPACE contains
export("as.raw") # export the generic
S3method("as.raw", "myclass") # export the method
This seems somewhat related, but dimnames there is a generic and so there is a solution (just don't define your own generic), whereas above it is unclear (to me) what the solution is.
The problem here appears to be that as.raw is a primitive function (is.primitive(as.raw)). From the ?setGeneric help page, it says
A number of the basic R functions are specially implemented as primitive functions, to be evaluated directly in the underlying C code rather than by evaluating an R language definition. Most have implicit generics (see implicitGeneric), and become generic as soon as methods (including group methods) are defined on them.
And according to the ?InternalMethods help page, as.raw is one of these primitive generics. So in this case, you just need to export the S3method. And you want to make sure your function signature matches the signature of the existing primitive function.
So if I have the following R code
new_obj <- function(n) structure(n, class = "myclass")
as.raw.myclass <- function(x) x + 1
and a NAMESPACE file of
S3method(as.raw,myclass)
export(new_obj)
Then this passes the package checks for me (on R 4.0.2). And I can run the code with
as.raw(new_obj(4))
# [1] 5
# attr(,"class")
# [1] "myclass"
So in this particular case, you need to leave the as.raw <- function(obj) UseMethod("as.raw") part out.

How to declare S3 method to default to loaded environment?

In a package, I would like to call an S3 method "compact" for object foobar.
There would therefore be a compact.foobar function in my package, along with the compact function itself:
compact = function(x, ...){
UseMethod("compact", x)
}
However, this latter would be conflicting with purrr::compact.
I could default the method to use purrr (compact.default = purrr::compact, or maybe
compact.list = purrr::compact), but that would make little sense if the user does not have purrr loaded.
How can I default my method to the loaded version of compact, in the user environment? (so that it uses purrr::compact, any other declared compact function, or fails of missing function)
Unfortunately S3 does not deal with this situation well. You have to search for suitable functions manually. The following works, more or less:
get_defined_function = function (name) {
matches = getAnywhere(name)
# Filter out invisible objects and duplicates
objs = matches$objs[matches$visible & ! matches$dups]
# Filter out non-function objects
funs = objs[vapply(objs, is.function, logical(1L))]
# Filter out function defined in own package.
envs = lapply(funs, environment)
funs = funs[! vapply(envs, identical, logical(1L), topenv())]
funs[1L][[1L]] # Return `NULL` if no function exists.
}
compact.default = function (...) {
# Maybe add error handling for functions not found.
get_defined_function('compact')(...)
}
This uses getAnywhere to find all objects named compact that R knows about. It then filters out those that are not visible because they’re not inside attached packages, and those that are duplicate (this is probably redundant, but we do it anyway).
Next, it filters out anything that’s not a function. And finally it filters out the compact S3 generic that our own package defines. To do this, it compares each function’s environment to the package environment (given by topenv()).
This should work, but it has no rule for which function to prefer if there are multiple functions with the same name defined in different locations (it just picks an arbitrary one first), and it also doesn’t check whether the function signature matches (doing this is hard in R, since function calling and parameter matching is very flexible).

How to overload S4 slot selector `#` to be a generic function

I am trying to turn the # operator in R into a generic function for the S3 system.
Based on the chapter in Writing R extensions: adding new generic I tried implementing the generic for # like so:
`#` <- function(object, name) UseMethod("#")
`#.default` <- function(object, name) base::`#`(object, name)
However this doesn't seem to work as it breaks the # for the S4 methods. I am using Matrix package as an example of S4 instance:
Matrix::Matrix(1:4, nrow=2, ncol=2)#Dim
Error in #.default(Matrix::Matrix(1:4, nrow = 2, ncol = 2), Dim) :
no slot of name "name" for this object of class "dgeMatrix"
How to implement a generic # so it correctly dispatches in the case of S4 classes?
EDIT
Also interested in opinions about why it might not be a good idea?
R's documentation is somewhat confusing as to whether # is already a generic or not: the help page for # says it is, but it isn't listed on the internalGenerics page.
The # operator has specific behaviour as well as (perhaps) being a generic. From the help page for #: "It is checked that object is an S4 object (see isS4), and it is an error to attempt to use # on any other object." That would appear to rule out writing methods for S3 classes, though the documentation is unclear if this check happens before method dispatch (if there is any) or after (whence it could be skipped if you supplied a specific method for some S3 class).
You can implement what you want by completely redefining what # is, along the line of the suggestion in comments:
`#.default` <- function(e1,e2) slot(e1,substitute(e2))
but there are two reasons not to do this:
1) As soon as someone loads your package, it supersedes the normal # function, so if people call it with other S4 objects, they are getting your version rather than the R base version.
2) This version is considerably less efficient than the internal one, and because of (1) you have just forced your users to use it (unless they use the cumbersome construction base::"#"(e1,e2)). Efficiency may not matter to your use case, but it may matter to your users' other code that uses S4.
Practically, a reasonable compromise might be to define your own binary operator %#%, and have the default method call #. That is,
`%#%` <- function(e1,e2) slot(e1,substitute(e2))
setGeneric("%#%")
This is called in practice as follows:
> setClass("testClass",slots=c(a="character")) -> testClass
> x <- testClass(a="cheese")
> x %#% a
[1] "cheese"

Dispatch of `rbind` and `cbind` for a `data.frame`

Background
The dispatch mechanism of the R functions rbind() and cbind() is non-standard. I explored some possibilities of writing rbind.myclass() or cbind.myclass() functions when one of the arguments is a data.frame, but so far I do not have a satisfactory approach. This post concentrates on rbind, but the same holds for cbind.
Problem
Let us create an rbind.myclass() function that simply echoes when it has been called.
rbind.myclass <- function(...) "hello from rbind.myclass"
We create an object of class myclass, and the following calls to rbind all
properly dispatch to rbind.myclass()
a <- "abc"
class(a) <- "myclass"
rbind(a, a)
rbind(a, "d")
rbind(a, 1)
rbind(a, list())
rbind(a, matrix())
However, when one of the arguments (this need not be the first one), rbind() will call base::rbind.data.frame() instead:
rbind(a, data.frame())
This behavior is a little surprising, but it is actually documented in the
dispatch section of rbind(). The advice given there is:
If you want to combine other objects with data frames,
it may be necessary to coerce them to data frames first.
In practice, this advice may be difficult to implement. Conversion to a data frame may remove essential class information. Moreover, the user who might be unware of the advice may be stuck with an error or an unexpected result after issuing the command rbind(a, x).
Approaches
Warn the user
A first possibility is to warn the user that the call to rbind(a, x) should not be made when x is a data frame. Instead, the user of package mypackage should make an explicit call to a hidden function:
mypackage:::rbind.myclass(a, x)
This can be done, but the user has to remember to make the explicit call when needed. Calling the hidden function is something of a last resort, and should not be regular policy.
Intercept rbind
Alternatively, I tried to shield the user by intercepting dispatch. My first try was to provide a local definition of base::rbind.data.frame():
rbind.data.frame <- function(...) "hello from my rbind.data.frame"
rbind(a, data.frame())
rm(rbind.data.frame)
This fails as rbind() is not fooled in calling rbind.data.frame from the .GlobalEnv, and calls the base version as usual.
Another strategy is to override rbind() by a local function, which was suggested in S3 dispatching of `rbind` and `cbind`.
rbind <- function (...) {
if (attr(list(...)[[1]], "class") == "myclass") return(rbind.myclass(...))
else return(base::rbind(...))
}
This works perfectly for dispatching to rbind.myclass(), so the user can now type rbind(a, x) for any type of object x.
rbind(a, data.frame())
The downside is that after library(mypackage) we get the message The following objects are masked from ‘package:base’: rbind .
While technically everything works as expected, there should be better ways than a base function override.
Conclusion
None of the above alternatives is satisfactory. I have read about alternatives using S4 dispatch, but so far I have not located any implementations of the idea. Any help or pointers?
As you mention yourself, using S4 would be one good solution that works nicely. I have not investigated recently, with data frames as I am much more interested in other generalized matrices, in both of my long time CRAN packages 'Matrix' (="recommended", i.e. part of every R distribution) and in 'Rmpfr'.
Actually even two different ways:
1) Rmpfr uses the new way to define methods for the '...' in rbind()/cbind().
this is well documented in ?dotsMethods (mnemonic: '...' = dots) and implemented in Rmpfr/R/array.R line 511 ff (e.g. https://r-forge.r-project.org/scm/viewvc.php/pkg/R/array.R?view=annotate&root=rmpfr)
2) Matrix uses the older approach by defining (S4) methods for rbind2() and cbind2(): If you read ?rbind it does mention that and when rbind2/cbind2 are used. The idea there: "2" means you define S4 methods with a signature for two ("2") matrix-like objects and rbind/cbind uses them for two of its potentially many arguments recursively.
The dotsMethod approach was suggested by Martin Maechler and implemented in the Rmpfr package. We need to define a new generic, class and a method using S4.
setGeneric("rbind", signature = "...")
mychar <- setClass("myclass", slots = c(x = "character"))
b <- mychar(x = "b")
rbind.myclass <- function(...) "hello from rbind.myclass"
setMethod("rbind", "myclass",
function(..., deparse.level = 1) {
args <- list(...)
if(all(vapply(args, is.atomic, NA)))
return( base::cbind(..., deparse.level = deparse.level) )
else
return( rbind.myclass(..., deparse.level = deparse.level))
})
# these work as expected
rbind(b, "d")
rbind(b, b)
rbind(b, matrix())
# this fails in R 3.4.3
rbind(b, data.frame())
Error in rbind2(..1, r) :
no method for coercing this S4 class to a vector
I haven't been able to resolve the error. See
R: Shouldn't generic methods work internally within a package without it being attached?
for a related problem.
As this approach overrides rbind(), we get the warning The following objects are masked from 'package:base': rbind.
I don't think you're going to be able to come up with something completely satisfying. The best you can do is export rbind.myclass so that users can call it directly without doing mypackage:::rbind.myclass. You can call it something else if you want (dplyr calls its version bind_rows), but if you choose to do so, I'd use a name that evokes rbind, like rbind_myclass.
Even if you can get r-core to agree to change the dispatch behavior, so that rbind dispatches on its first argument, there are still going to be cases when users will want to rbind multiple objects together with a myclass object somewhere other than the first. How else can users dispatch to rbind.myclass(df, df, myclass)?
The data.table solution seems dangerous; I would not be surprised if the CRAN maintainers put in a check and disallow this at some point.

`data.table::unique` errors: is not an exported object from namespace

help(unique) shows that unique function is present in two packages - base and data.table. I would like to use this function from data.table package. I thought that the following syntax - data <- data.table::unique(data) indicates the package to be used. But I get the following error -
'unique' is not an exported object from 'namespace:data.table'
But data <- unique(data) works well.
What is wrong here?
The function in question is really unique.data.table, an S3 method defined in the data.table package. That method is not really intended to be called directly, so it isn't exported. This is typically the case with S3 methods. Instead, the package registers the method as an S3 method, which then allows the S3 generic, base::unique in this case, to dispatch on it. So the right way to call the function is:
library(data.table)
irisDT <- data.table(iris)
unique(irisDT)
We use base::unique, which is exported, and it dispatches data.table:::unique.data.table, which is not exported. The function data.table:::unique does not actually exist (or does it need to).
As eddi points out, base::unique dispatches based on the class of the object called. So base::unique will call data.table:::unique.data.table only if the object is a data.table. You can force a call to that method directly with something like data.table:::unique.data.table(iris), but internally that will mostly likely result in the next method getting called unless your object is actually a data.table.
There are actually two infix operators in R that pull functions from particular package namespaces. You used :: but there is also a ::: that retrieves "unexported" functions. The unique-function is actually a family of functions and its behavior will depend on both the class of its argument and the particular packages that have been loaded. The R term of this is "generic". Try:
data <- data.table:::unique(data) # assuming 'data' is a data.table
The other tool that lets you peek behind the curtain that the lack of "exportation" is creating is the getAnywhere-function. It lets you see the code at the console:
> unique.data.table
Error: object 'unique.data.table' not found
> getAnywhere(unique.data.table)
A single object matching ‘unique.data.table’ was found
It was found in the following places
registered S3 method for unique from namespace data.table
namespace:data.table
with value
function (x, incomparables = FALSE, fromLast = FALSE, by = key(x),
...)
{
if (!cedta())
return(NextMethod("unique"))
dups <- duplicated.data.table(x, incomparables, fromLast,
by, ...)
.Call(CsubsetDT, x, which_(dups, FALSE), seq_len(ncol(x)))
}
<bytecode: 0x2ff645950>
<environment: namespace:data.table>

Resources