Introduction
Hi to everyone,
for a little project, I try to get a function to compare values of a Data Frame 1 with values from a Data Frame 2. Thereafter, data frames 3 and 4 are supposed to get printed with the information of the comparison.
Data Frame 1:
ID
x1i
x2i
x3i
a
1
2
4
b
1
4
1
Data Frame 2:
Data_Frame_2 <- c(1:4)
Read x1a and compare with Data Frame 2. The value 1 is in Data Frame 2. Print value 1 and the name of the variable (x1a) in Data Frame 3 and cross out the value 1 from Data Frame 2.
Read x1b and compare with Data Frame 2. The value 1 is (not anymore) in Data Frame 2. Read x2b. The value 4 is in Data Frame 2. Print value 4 and the name of the variable (x2b) in Data Frame 3 and cross out the value 4 from Data Frame 2.
The Data Frame 3 is supposed to be something like this:
Data Frame 3:
ID
Value
Variable
a
1
x1i
b
4
x2i
Data Frame 4 (the remaining numbers of Data Frame 2):
Remaining numbers
2
3
Example in R to solve this theoretical problem
Until now, I worked out this code which does the job:
b <- as.data.frame(c(1:4)) # data frame 2
colnames(b, do.NULL = FALSE)
colnames(b) <- c("b")
View(b)
a <- as.data.frame(cbind(c("a","b"), c(3,3), c(2,1), c(1,2))) # data frame 1
colnames(a, do.NULL = FALSE)
colnames(a) <- c("ID","x1i","x2i","x3i")
View(a)
`%notin%` <- Negate(`%in%`) #got this one from <https://www.marsja.se/how-to-use-in-in-r/>
Read_Info <- function(a,b)
{
if (a[1,2] %in% b[1:4,1]) {c_1<-c(a[1,1:2],names(a)[2]); b1<-subset(b,b %notin% a[1,2])}
if (a[2,2] %in% b1[1:3,1]) {c_2<-c(a[2,1:2],names(a)[2]); b2<-subset(b,b %notin% c(a[1,2],a[2,2]))}
else if (a[2,3] %in% b1[1:3,1]) {c_2<-c(a[2,1],a[2,3],names(a)[3]); b2<-subset(b,b %notin% c(a[1,2],a[2,3]))}
if (a[3,2] %in% b2[1:2,1]) {c_3<-c(a[3,1],a[3,2],names(a)[2]); b3<-subset(b,b %notin% c(a[1,2],a[2,3],a[3,2]))}
else if (a[3,2] %notin% b2[1:2,1]) {c_3<-c(NA,NA,NA); b3<-b2}
c<-rbind(c_1,c_2,c_3)
colnames(c, do.NULL = FALSE)
colnames(c) <- c("ID","Value","Variable")
bx<-b3
colnames(bx, do.NULL = FALSE)
colnames(bx) <- c("Remaining numbers")
print(c)
print(bx)
}
Read_Info(a,b)
# In this example, c is data frame 3 and bx is data frame 4
Actual Task at hand - If, else if Loop Function in R
I do face the following obstacle: the actual data which I have is a little bit larger than the above example. Nevertheless, it follows the same structure:
b <- as.data.frame(c(1:20)) # this would be Data Frame 2 in the theoretical considerations
colnames(l, do.NULL = FALSE)
colnames(l) <- c("b")
View(l)
# This would be data frame 1 in the theoretical considerations
# Note: between "ID" and "x1i", there are now two additional variables which were not in the example above
# Although these two variables are part of the data, they are not of interest right know
a2 <- cbind(c("a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t"),c(0),c(1))
a1 <- data.frame(replicate(16,sample(1:20,rep=T)))
a <- cbind(a2, a1)
colnames(a, do.NULL = FALSE)
colnames(a) <- c("ID","variable1","variable2","x1i","x2i","x3i","x4i","x5i","x6i","x7i","x8i","x9i","x10i","x11i","x12i","x13i","x14i")
View(a)
I try to create an “if”, “else if” loop function utilizing "for" which is supposed to do this reading task by itself. Until now, I wrote down the following code which does not work yet.
`%notin%` <- Negate(`%in%`) # got this one from <https://www.marsja.se/how-to-use-in-in-r/>
Read_Info_Loop <- function(a,b)
{for (i in 1:20)
{ if (a[i,4] %in% b[1:(21-i),1]) {x[i]<-c(a[i,1],a[i,4],names(a)[4]); b[i]<-subset(b,b %notin% a[i,4])}
if (a[i,5] %in% b[i-1][1:(21-i),1]) {x[i]<-c(a[i,1],a[i,5],names(a)[5]); b[i]<-subset(b,b %notin% c(a[1,4],a[i,5]))
} else if (a[i,6] %in% b[i-1][1:(21-i),1]) {x[i]<-c(a[i,1],a[i,6],names(a)[6]); b[i]<-subset(b,b %notin% c(a[1,4],a[i,6]))
} else if (a[i,7] %in% b[i-1][1:(21-i),1]) {x[i]<-c(a[i,1],a[i,7],names(a)[7]); b[i]<-subset(b,b %notin% c(a[1,4],a[i,7]))
} else if (a[i,8] %in% b[i-1][1:(21-i),1]) {x[i]<-c(a[i,1],a[i,8],names(a)[8]); b[i]<-subset(b,b %notin% c(a[1,4],a[i,8]))
} else if (a[i,9] %in% b[i-1][1:(21-i),1]) {x[i]<-c(a[i,1],a[i,9],names(a)[9]); b[i]<-subset(b,b %notin% c(a[1,4],a[i,9]))
} else if (a[i,10] %in% b[i-1][1:(21-i),1]) {x[i]<-c(a[i,1],a[i,10],names(a)[10]); b[i]<-subset(b,b %notin% c(a[1,4],a[i,10]))
} else if (a[i,11] %in% b[i-1][1:(21-i),1]) {x[i]<-c(a[i,1],a[i,11],names(a)[11]); b[i]<-subset(b,b %notin% c(a[1,4],a[i,11]))
} else if (a[i,12] %in% b[i-1][1:(21-i),1]) {x[i]<-c(a[i,1],a[i,12],names(a)[12]); b[i]<-subset(b,b %notin% c(a[1,4],a[i,12]))
} else if (a[i,13] %in% b[i-1][1:(21-i),1]) {x[i]<-c(a[i,1],a[i,13],names(a)[13]); b[i]<-subset(b,b %notin% c(a[1,4],a[i,13]))
} else if (a[i,14] %in% b[i-1][1:(21-i),1]) {x[i]<-c(a[i,1],a[i,14],names(a)[14]); b[i]<-subset(b,b %notin% c(a[1,4],a[i,14]))
} else if (a[i,15] %in% b[i-1][1:(21-i),1]) {x[i]<-c(a[i,1],a[i,15],names(a)[15]); b[i]<-subset(b,b %notin% c(a[1,4],a[i,15]))
} else if (a[i,16] %in% b[i-1][1:(21-i),1]) {x[i]<-c(a[i,1],a[i,16],names(a)[16]); b[i]<-subset(b,b %notin% c(a[1,4],a[i,16]))
} else if (a[i,17] %in% b[i-1][1:(21-i),1]) {x[i]<-c(a[i,1],a[i,17],names(a)[17]); b[i]<-subset(b,b %notin% c(a[1,4],a[i,17]))
} else if (a[i,17] %notin% b[1:(21-i),1]) {x[i]<-c(NA,NA,NA); b[i]<-c(b[i-1])}
y<-rbind(x[i[1:20]])
colnames(y, do.NULL = FALSE)
colnames(y) <- c("ID","Value","Variable")
u<-rbind(b[i=20])
colnames(u, do.NULL = FALSE)
colnames(u) <- c("Remaining numbers")
print(y)
print(u)
}
}
# y is supposed to be data frame 3 and u is supposed to be data frame 4
# in the above theoretical considerations
Errors
I now get the following errors:
Error in `[<-.data.frame`(`*tmp*`, i, value = c("a", "1", "x3i")) :
replacement has 3 rows, data has 4
Error in Read_Info_Loop(test, l) : object 'x' not found
...nevertheless, the first error, I got yesterday. Today, after restarting R, the second error occurred which seems to address internal structural problems of the function code. Additionally, I am pretty sure, that there might be further errors which are right now "hidden" behind the other errors and which will occur as soon as the two above mentioned errors are dealt with.
However, I do not want you to just solve any problems. I rather would like to ask, if you have ideas how I can solve these two specific errors, and maybe a hint to just get the function a little bit closer to work properly. So, for me the focus is clearly on learning a thing or two in general.
A few disclaimers: I have little experience in programming, so the code or my descriptions are probably rather messy. Therefore, if you have any questions for clarification, please feel free to ask. I try to respond as quickly as possible. English is not my first language, so please excuse me for any language mistakes.
I am looking forward to learning and hear your ideas about the code itself, ideas regarding the theoretical considerations or the approach to the loop function.
Kind Regards
Paul
Edits / Progression
Edit: I just realized, that the code can already be simplified with another "for". Nevertheless, I read that one should rather avoid nested "for" loops (for...for...)
`%notin%` <- Negate(`%in%`) #got this one from <https://www.marsja.se/how-to-use-in-in-r/>
Read_Info_Loop2 <- function(a,b)
{for (i in 1:20) for (k in 5:17) {
{ if (a[i,4] %in% b[1:(21-i),1]) {x[i]<-c(a[i,1],a[i,4],names(a)[4]); b[i]<-subset(b,b %notin% a[i,4])
} else if (a[i,k] %in% b[i-1][1:(21-i),1]) {x[i]<-c(a[i,1],a[i,k],names(a)[k]); b[i]<-subset(b,b %notin% c(a[1,4],a[i,k]))
} else if (a[i,k] %notin% b[1:(21-i),1]) {x[i]<-c(NA,NA,NA); b[i]<-c(b[i-1])}
}
y<-rbind(x[i[1:20]])
colnames(y, do.NULL = FALSE)
colnames(y) <- c("ID","Value","Variable")
u<-rbind(b[i=20])
colnames(u, do.NULL = FALSE)
colnames(u) <- c("Remaining numbers")
print(y)
print(u)
}
}
The same error was shown:
Error in Read_Info_Loop2(test, l) : object 'x' not found
I try to use this resource, going forward: https://cran.r-project.org/doc/manuals/r-release/R-intro.html#Repetitive-execution
I am going to give further updates.
This is a tricky one. I was able to find a solution for the underlying problem but unfortunately I wasn't able to fix OP's code as it was requested.
However, here is my solution:
library(data.table)
long <- melt(setDT(a), "ID", patterns("^x"))
df3 <- long[, {
if (any(.SD$value %in% b)) {
result <- first(.SD[value %in% b])
b <- setdiff(b, result$value)
} else {
result <- data.table(variable = NA_integer_, value = NA_integer_)
}
result
}, by = ID]
df3
ID variable value
1: a x1i 1
2: b x2i 4
# remaining values
df4 <- data.table(Remaining.numbers = setdiff(b, df3$value))
df4
Remaining.numbers
1: 2
2: 3
Explanation
In a first step, the dataset a is reshaped into long format
long
ID variable value
1: a x1i 1
2: b x1i 1
3: a x2i 2
4: b x2i 4
5: a x3i 4
6: b x3i 1
Now, variable contains the column names as data items which simplifies subsequent steps. Note that melt() has maintained the original order of rows and columns which is important for picking the correct values later on.
Now, we kind of loop through long by unique values of ID. This is achieved by grouping. As a speciality of data.table, we can use an arbitrary expression (enclosed in curly brackets) for aggregation.
For each ID, we check if there is at least one value still available in the vector of remaining values. If so, the first appearance is taken as resulting row. The corresponding value is removed from b which is then used in the next "iteration", i.e., the next group level.
Please note that b inside the expression (in curly brackets) is a local variable. The modified value of b is not available outside of the environment of the expression.
While testing with arbitrary datasets I have noticed that there might be situations where all numbers which belong to an ID already have been removed from remaining. To indicate this, a dummy result with NA values is returned.
So, for each ID group one row is returned which are then combined into one data.table object and assigned to df3.
df4 contains the Remaining.numbers and is created from building the set difference between b and the vector of picked values df3$value.
Note that I have tried to rewrite the code as a loop for demonstration purposes but I have given up because I found that the bookkeeping overhead wasn't worth it.
Data
For the first use case in OP's question:
a <- fread("ID x1i x2i x3i
a 1 2 4
b 1 4 1")
b <- 1:4
Other use cases with varying numbers of rows, columns, and lengths of b can be created using the code below. Please note that set.seed() is important because the created dataset a and the results df3 and df4 depend on it. For example, with set.seed(123) we can reproduce the situation where the list of remaining numbers for the last ID is exhausted.
# number of rows and columns to create
n_rows <- 18
n_cols <- 16
# create vector b
b <- 1:20
# create data.frame a
a2 <- data.frame(ID = letters[seq(n_rows)], variable1 = 0, variable2 = 1)
set.seed(123) # to ensure reproducible results
a1 <- as.data.frame(replicate(n_cols, sample(b, n_rows, replace = TRUE)))
colnames(a1) <- sprintf("x%ii", seq(n_cols))
a <- cbind(a2, a1)
Uwe’s Solution
Thank you very much, Uwe, for your solution and comprehensive explanation! It did not even occur to me, to combine the values into one list and to let the function run over that list. So, your solution opened a new perspective on the data. I am going to try out your solution in detail to learn as much as possible and report back here as soon as possible!
Solution regarding the original code
I was able to get to a solution for the original code which took quite some time.
test2 <- cbind(c("a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t"),c(0),c(1),c(1,1,1,sample(1:15),1,1),c(2,3,3,sample(1:15),2,3))
test1 <- data.frame(replicate(12,sample(1:20,rep=T)))
data.frame1 <- cbind(test2, test1)
colnames(data.frame1) <- c("ID","variable1","variable2","x1i","x2i","x3i","x4i","x5i","x6i","x7i","x8i","x9i","x10i","x11i","x12i","x13i","x14i")
data.frame2 <- as.data.frame(c(1:20))
x <- as.data.frame(matrix(NA,nrow = 3,ncol = 20))
rownames(x) <- c("ID","value","variable")
colnames(x) <- c()
View(x)
`%notin%` <- Negate(`%in%`) #got this one from <https://www.marsja.se/how-to-use-in-in-r/>
Read_Info_Loop2 <- function(a,b) {for (k in 1:20) {for (i in 4:17)
{if (a[k,i] %in% b[,1]) {x[k]<-c(a[k,1],(a[k,i]),names(a[i])); b<-subset(b,b %notin% a[k,i]);break}}
}
c<-rbind(x)
bx<-b
colnames(bx) <- c("numbers remaining")
print(c)
print(bx)
}
Read_Info_Loop2(data.frame1, data.frame2)
The only downfall with this solution is the output. It is rather in a weird form. But I don’t mind really. So now we already have two solutions which use different approaches. Very exciting. Regarding the output (see picture below of the output of some of the actual data) of data.frames 3 and 4: The last 7 columns are NAs because this data.frame1_original has just 13 rows (k=13). So for the last 7 iterations (k=14 to k=20), there is no output.
Here is the output of the random data.frame1 as described above. Here, the solution looks rather weird, since for "r" and "t" all entries are already deleted from data.frame2 which returns NAs for these rows. The two numbers, which remain are 18 and 20.
I'm quite new to R, and I trying to use it to organize and extract info from some tables into different, but similar tables, and instead of repeating the commands but changing the names of the table:
#DvE, DvS, and EvS are dataframes
Sum.DvE <- data.frame(DvE$genes, DvE$FDR, DvE$logFC)
names(Sum.DvE) <- c("gene","FDR","log2FC")
Sum.DvS <- data.frame(DvS$genes, DvS$FDR, DvS$logFC)
names(Sum.DvS) <- c("gene","FDR","log2FC")
Sum.EvS <- data.frame(EvS$genes, EvS$FDR, EvS$logFC)
names(Sum.EvS) <- c("gene","FDR","log2FC")
I thought it would be easier to create a vector of the table names, and feed it into a for loop:
Sum.Comp <- c("DvE","DvS","EvS")
for(i in 1:3){
Sum.Comp[i] <- data.frame(i$genes, i$FDR, i$logFC)
names(Sum.Comp[i]) <- c("gene","FDR","log2FC")
}
But I get
>Error in i$genes : $ operator is invalid for atomic vectors
which I kind of expected because I was just trying it out, but can someone tell me if what I want to do can be done some other way, or if you have some suggestions for me, that would be much appreciated!
Clarification: Basically I'm trying to ask if there's a way to feed a dataframe name into a for loop through a vector, because I think I get the error because R doesn't realize "i" in the for loop stands for a dataframe name. This is a more simplified example:
DF1 <- data.frame(A=1:5, B=1:5, C=1:5, D=1:5)
DF2 <- data.frame(A=10:15, B=10:15, C=10:15, D=10:15)
DF3 <- data.frame(A=20:25, B=20:25, D=20:25, D=20:25)
DFs <- ("DF1", "DF2", "DF3")
for (i in 1:3){
New.i <- dataframe(i$A, i$D)
}
And I'd like it to make 3 new dataframes called "New.DF1", "New.DF2", "New.DF3" with example outputs like:
New.DF1
A D
1 1
2 2
3 3
4 4
5 5
New.DF2
A D
10 10
11 11
12 12
13 13
14 14
15 15
Thank you!
Not entirely sure I understand your problem, but the code below may do what you're asking. I've created simple values for the input data frames for testing.
DvE <- data.frame(genes=1:2, FDR=2:3, logFC=3:4)
DvS <- data.frame(genes=4, FDR=5, logFC=6)
EvS <- data.frame(genes=7, FDR=8, logFC=9)
df_names <- c("DvE","DvS", "EvS")
sum_df <- function(x) data.frame(gene=x$genes, FDR=x$FDR, log2FC=x$logFC)
for(df in df_names) {
assign(paste("Sum.",df,sep=""), do.call("sum_df", list(as.name(df)) ) )
}
Instead of operating on the names of variables, it would be easier to store the data frames you want to process in a list and then process them with lapply:
to.process <- list(DvE, DvS, EvS)
processed <- lapply(to.process, function(x) {
data.frame(gene=x$genes, FDR=x$FDR, log2FC=x$logFC)
})
Now you can access the new data frames with processed[[1]], processed[[2]], and processed[[3]].