I am making an R package with Rcpp. It works fine on my machine which has Rtools installed. But recently, I tried to install my package locally on a different machine (Windows) and got a compiling error. The reason was that on that machine there was no g++ compiler (for Windows, g++ is provided with Rtools). After installing Rtools, it worked just fine.
So the question is, if I upload it to CRAN, does it still requires users to install Rtools by hand? Or does the function install.package() detect and install Rtools for them?
Also, if you guys know some packages written with Rcpp, please let me know. I'd like to take a look how it works.
So the question is, if I upload it to CRAN, does it still requires users to install Rtools by hand?
No.
Or does the function install.package() detect and install Rtools for them?
No.
What happens is that CRAN builds pre-compiled binary files that can be installed by Windows and MacOS users without the need for compilers and related tools.
Also, if you guys know some packages written with Rcpp, please let me know. I'd like to take a look how it works.
rr <- devtools::revdep("Rcpp")
length(rr) ## 907
or see the Rcpp page on CRAN.
Users, e.g. people who download it via install.package(), are actually downloading a "compiled" version of the packaged called a binary that is maintained by CRAN. They will only ever need a copy of R.
On the other hand, Developers, e.g. people who are creating it, require development tools that are system specific. For those on the Windows platform, they must have a local install of Rtools on their machine. For developers on macOS, they must have their own copies of gfortran binaries and xcode developer line tools.
Lastly, there are many such Rcpp packages available to look to for inspiration...
See the Rcpp CRAN page
Pick a package and then look up the source at http://github.com/cran/packagename
View an annotated list by Dirk here.
Related
We have a ubuntu linux server in our office which is a air-gapped environment. There is no internet access to external network.
However I would like to install few R packages like ggplot2, Database Connector, dplyr, Tidyverse etc. I have more than 10-15 packages to download
While I cannot write the usual command install.packages("DatabaseConnector"), I have to download the zipped folders from CRAN as shown here.
I am new to R. So, can you help me with my questions given below?
a) Why is there are no files for linux systems? I only see windows binaries and macOS binaries. Which one should I download?
b) Should I download binaries or package source? which one is easy to install?
c) When I download packages like above as zipped file from CRAN like shown here, will the dependencies be automatically downloaded as well? Or should I look at error messages and keep downloading them one by one?
d) Since I work in a Air-gapped environment, what would be the best way to do this process efficiently.
Under linux packages are always installed from source. There are no official binary packages for linux. However, your distro might offer some of them in the official repositories. Ubuntu does. However these tend to be quite old versions and usually limited to a handfull of the most important packages. So, for linux you have to download the source packages. The zip files are for windows and will not work.
You will also need to download all of the dependencies of the packages. For something like tidyverse this will be a huge number. Tracking those by hand is a lot of work. Easiest is probably to use a package like miniCRAN outside of your airgapped system to build a selective copy of CRAN. You can specify the packages you want and the package will download all dependencies. You can then copy the downloaded directories to your server, point install.packages in the right direction and install as usually using install.packages. For details see https://andrie.github.io/miniCRAN/articles/miniCRAN-introduction.html.
You might also run into the problem that your system does not have all of the depencies needed to build all of the packages. Under ubuntu you need for example to install libxml2-dev to be able to install the xml package. For that you need to use the package manager of ubuntu. How to do that on an airgapped system is another issue
I am creating my first package, which shall be installed through Github. I thought that Rtools was needed only for the person creating it. However, people that tried to install it using Github were asked to update Rtools. Is this really necessary?
Doing some research, I found this: https://community.rstudio.com/t/missing-rtools-should-i-be-worried/27817
One of the answers says the following:
"This means that if you are going to install packages that need
compilation, you also have to install Rtools in your system. "
This is the repo with the package: https://github.com/datazoompuc/PNAD_Covid/tree/master/R/datazoom_pnad_covid
What does this actually mean? How do I know that my package needs compilation?
I thought that Rtools was needed only for the person creating it.
Yes, if and only if you distribute it as a binary. Then the creator uses Rtools to compile and link, and the user just installs, and enjoys.
That is how CRAN works as CRAN compiles for Windows users.
GitHub, however, is foremost a source repository so the installation from GitHub is using a source mode ... and every user will need to compile, and hence have Rtools. (Unless the package and all its depedencies are R-code only.)
You can also have a package repository on GitHub using e.g. the drat package to create it, but that is getting us a little further from the original question.
Your package "needs compilation" — i.e. needs Rtools to install from source (on Windows) — if it contains C or Fortran components, i.e. if you have anything in the src/ directory of your package ...
If you, the package author, don't know if you have C or Fortran code as part of your package, then you almost certainly don't.
It's quite possible that devtools is being overzealous, i.e. detecting that users have a not-most-current Rtools and suggesting (requiring??) that they update it, even though it's not needed for this installation.
This question already has answers here:
R: apt-get install r-cran-foo vs. install.packages("foo")
(2 answers)
Closed 7 years ago.
In Debian, there are some compiled R packages in the official repositories. But one could also install a R package from source.
I am interested to know why would a user prefer one method of installation to another.
It's sometimes preferable to 'compile' the sources on your server rather than just using an existing executable file.
This is because the compiler makes the exe file specifically for your machine so may run faster and work much better, for instance the compiler knows the processor you have so can optimise for this.
I already provided a somewhat detailed answer in response to this SO question.
As an update, these days you even have lots of packages prebuilt thanks to updated cran2deb initiaives:
On Ubuntu you now have almost all CRAN packages prebuilt via Michael Rutter's 'cran2deb for ubuntu' ppa on Launchpad.
For Debian, Don Armstrong now provides a similar service (also covering BioConductor and OmegaHat) at debian-r.debian.net.
The idea of pre-compiled R packages for Debian/Ubuntu is borrowing from Windows and MacOS. Those OSes have pre-compiled packages since they typically don't have the standard tools in standard locations for building packages from source (c and fortran compilers, latex, perl, etc.).
If there is a new release of a package on CRAN, is the pre-compiled package on Debian repos automatically updated? I believe that you better sync with CRAN. Check out the package ctv to help you manage large collections of R packages ("CRAN views"), both for installing and updating.
You need root privileges to install a pre-compiled package from the OS repos, while any regular user may install any packages using install.packages() in R (but I recommend to run sudo R, if you are the sysadmin, for installing CRAN views, so as to make them available system-wide, instead of inflating your ~/).
One inconvenient to source packages is that if you fetch many, the compiling will take extra time to install (depending on your machine). You might gain in performance from compiling, but it is not guaranteed to be noticeable.
I am running R 3.6.1 on a Mac Mini running Sierra and a MacBook Pro running El Capitan. I normally get all the R packages that I need from CRAN or github and use them without issues, but I am trying to install and use an R package (NicheMapR) that requires a fortran compiler and this is giving me issues. Even after installing gfortran, the R package still does not work (the fortran code seems to be compiled but the package installation fails). The package developer suggested that installing R via homebrew might solve the problem. On the contrary, my hunch is that it would lead to a world of pain, to quote Walter from the Big Lebowski. My questions are:
What is the advantage of a homebrew version of R for MacOSX over the "regular" version installed from CRAN?
Can the two versions coexist?
Is the homebrew version going to affect the regular one?
Finally: is homebrew going to help or will it simply open a whole
new can of worms?
Many thanks in advance.
Yes, installing from homebrew is a recipe for pain. It's specifically recommended against by the official CRAN binary maintainer see his remarks from March 2016 on r-sig-mac.
Regarding your questions, this can be summarized as:
What is the advantage of a homebrew version of R for MacOSX over the "regular" version installed from CRAN?
Positives: Select your own BLAS and easily work with geospatial tools.
Downsides: Always needing to compile each R package.
Can the two versions coexist?
Yes. The homebrew version installs into a different directory. But, watch out for library collision (see next question). However, you will have to deal with symbolic linking regarding what version of R is accessible from the console and you will also need to look into using RSwitch to switch between R versions.
Is the homebrew version going to affect the regular one?
Yes, if the library paths overlap. There will be problems regarding package installation and loading. Make sure to setup different library paths. To do so, please look at the .libPaths() documentation.
Finally: is homebrew going to help or will it simply open a whole new can of worms?
Yes and no. Unless you know what you're doing, opt for the CRAN version of R and its assorted goodies.
I was trying to run code that required the R packages ‘pkgDepTools’ and ‘Rgraphviz’. I received error messages saying that neither package is available for R version 2.15.0.
A Google search turned up the following webpage RPM Pbone that seems to have the packages:
http://rpm.pbone.net/index.php3/stat/4/idpl/17802118/dir/mandrake_other/com/R-pkgDepTools-1.20.0-1-mdv2012.0.i586.rpm.html
and
http://rpm.pbone.net/index.php3/stat/4/idpl/17802080/dir/mandrake_other/com/R-Rgraphviz-1.32.0-2-mdv2012.0.i586.rpm.html
However, the files have an *.rpm extension rather than the *.tar.gz or *.zip extensions I am used to.
I am using Windows 7 and R version 2.15.0. Can I install an R package from an *.rpm file?
From Wikipedia *.rpm seems like maybe it is more for Linux:
http://en.wikipedia.org/wiki/RPM_Package_Manager
Regarding other possible solutions, I have found several earlier posts here with similar questions about installing R packages that are not available for the most recent version of R:
Bivariate Poisson Regression in R?
Package ‘GeneR’ is not available
R Venn Diagram package Venerable unavailable - alternative package?
I have installed the latest version of Rtools and the package 'devtools'. Although I know nothing about them.
There is an archived version of 'Rgraphviz' here:
http://cran.r-project.org/src/contrib/Archive/Rgraphviz/
but I cannot locate an archived version of 'pkgDepTools'.
If I can install the packages on a Windows machine using the above *.rpm files could someone please provide instructions?
If I must use Rtools to build them I might ask more questions because the instructions at the link below are challenging for me:
http://cran.r-project.org/doc/manuals/R-admin.html#Building-from-source
To be completely transparent I am hoping someone might build them for me, if that is possible. Although I recognize the experience and knowledge gained from doing it myself would probably pay off in the long run.
Thank you for any advice.
pkgDepTools and Rgraphviz are BioConductor R packages not ones hosted on CRAN. Unless you configure your R to download packages from those repos, R will report that they are not available; it can only install from repos it has been configured to install from.
To install those BioConductor packages a lite installation method is provided:
source("http://bioconductor.org/biocLite.R")
biocLite(c("pkgDepTools", "Rgraphviz"))
Further details are provided on the Install page of the BioConductor website
In general you can't use rpm packages on Windows; rpm's are the equivalent of a binary package for Linux. Any C/C++/Fortran/etc code will have been compiled for Linux not Windows. If a package really isn't available for your version of R then check if there is a reason stated on CRAN (usually Windows binaries take a few days longer to produce or there may be requirements for software not available on the CRAN Windows build machines). You can try the WinBuilder service run by Uwe Ligges to build Windows Binaries of packages for you, but if the package was on CRAN and now isn't that suggests it no longer works with current R and can not be built.
In general try a wider search for packages; the first hit in my Google search results under the search string "pkgDepTools" is the Bioconductor page for the package which includes a link to the Windows binary and instructions on how to install the package from within R.
I think this merits an answer rather than a comment.
A gentleman at Bioconductor helped me get Rgraphviz installed. The primary problem was that the version of Rgraphviz I had downloaded only seems to work with the 32-bit version of R and I was running a 64-bit version of R. I was able to install Rgraphviz in the 32-bit version of R.
I had also made an error or two in the PATH statement during some of my attempts to install Rgraphviz. However, the post above in my second comment provides the instructions for installation.
You just, it seems, cannot install the normal download version of Rgraphviz in the 64-bit version of R.
I think many of our emails back and forth are now posted on the Bioconductor forum.
I might edit this answer with more detailed instructions in the next 24-hours.