Functional requirement - requirements-management

I have a application about diagnosis and should determine the functional and nonfunctional requirement
So can anyone help me with this question please:
Is language considered as a functional requirement?

A functional requirement defines what the software is supposed to do. A non-functional requirement defines further expectations independent from the actual features.
Ex:
functional requirement = "software should square the input value"
non-functional requirement = "software should use at max 1MB memory"
Note: This does not have anything to do with "Functional Programming"

Functional requirements define what the software will do.
Non-functional requirements are any requirements that don't describe the system's input/output behaviour.
Having "language" as a requirement: When you refer to the language of the input/output, it is a functional requirement. In the case you mean the programming language, it is a non-functional requirement.
Hope this helps maybe somebody else.

Related

SOLID for functional programming

Coming from an OOP language, I am familiar with the SOLID principles of object oriented design. It seems like some of these would fit into a functional programming model, while other parts make no sense in a world lacking state. Is there a similar set of principles for refactoring functional code?
As far as I know (I'm no expert), SOLID principles do not tell anything about state. They should be applicable as well in a functional programming languages. They're more advice about how to achieve modularity.
Some of them are rather obvious or at least well-known. Single-responsibility is the UNIX principle "do one thing and do it well", which is even more popular in functional languages where "composition" is widely used, similarly. The Interface Segregation Principle is very natural as well (have your interfaces modular and keep orthogonal concepts separated). Finally, Dependency Inversion is just a name for "abstraction" and is omnipresent in functional programming.
The "OL" principles, Open/Closed and LSP, are more oriented towards languages based upon inheritance as a core software engineering concept. Functional languages values/modules do not have open recursion by default, so "implementation inheritance" is only used in very specific cases. Composition is preferred. I'm not sure how you should interpret the Open/Closed principle in that setting. You may consider it is about encapsulation, which functional programs also use a lot, using abstract types and such.
Finally, the Liskov Substitution Principle may seem to be about inheritance. Functional languages do not always use subtyping, but when they do it is indeed assumed that "derived types" should preserve the specification of "base types". Functional programmers are of course careful to specify and respect the interface and properties of their programs, modules etc., and may use algebraic reasoning (this is equivalent to this so I can substitute...) based on those specifications when programming, refactoring, etc. However, once you get rid of the "inheritance by default" idea, you have much less problems of interface violations, so LSP is not emphasized as a vital safeguard as it is in OOP.
This video presents the SOLID principles, and how to apply them in Clojure.
It shows how these principles hold in the Functional world as much as in OOP, because we still need to solve the same underlying problems. And overall, it made me think Functional Programming is better suited for SOLID design.
Actually, SOLID Could be a good idea to have a better principle for Functional Programming:
SRP: Only do one thing was taken from imperative programming in the first place. Having small, focused functions is good.
OCP: Allowing you to change behaviors without modifying code is good. Functional Programming uses higher-order functions more than inheritance, but the principle holds.
LSP: Abiding by some interface contract is just as good in functional programming as in object-oriented. If a sort function takes a comparator, then you would expect the '0 is equals, less than provides negative results, greater than positive results' behavior.
ISP: Most functional languages still have structs. Specifying the smallest set of data required by a function is still good practice. Requiring the least specific interface to the data (why use Lists of ints when Enumerations of T work just as well?) is still good practice.
DIP: Specifying parameters to a function (or a higher-order function to retrieve them) rather than hard coding the function to go get some value is just as good in functional programming as in object-oriented.
And even when doing object-oriented programming, many of these principles apply to the design of methods in the objects too.
"Richard Warburton, a member of the London JCP Committee, in his presentation describes the SOLID principles as one example of well-established object oriented programming design principles, identified by Robert C. Martin in the early 2000s, and looks at each of the five principles trying to find a functional equivalent or at least something related on the function side.
Richards experience is that although many developers don’t know how to use their existing design skills in functional design, functional programming can often help in implementing the SOLID principles and also that a functional mindset can actually help in achieving one important aspect of object-orientation, encapsulation."
Further information:
Object Oriented Design Principles and Functional Programming - https://www.infoq.com/news/2014/03/oo-functional-programming/
Equivalent of SOLID principles for functional programming -
https://softwareengineering.stackexchange.com/questions/165356/equivalent-of-solid-principles-for-functional-programming

Is there a software-engineering methodology for functional programming? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 6 years ago.
Improve this question
Software Engineering as it is taught today is entirely focused on object-oriented programming and the 'natural' object-oriented view of the world. There is a detailed methodology that describes how to transform a domain model into a class model with several steps and a lot of (UML) artifacts like use-case-diagrams or class-diagrams. Many programmers have internalized this approach and have a good idea about how to design an object-oriented application from scratch.
The new hype is functional programming, which is taught in many books and tutorials. But what about functional software engineering?
While reading about Lisp and Clojure, I came about two interesting statements:
Functional programs are often developed bottom up instead of top down ('On Lisp', Paul Graham)
Functional Programmers use Maps where OO-Programmers use objects/classes ('Clojure for Java Programmers', talk by Rich Hickley).
So what is the methodology for a systematic (model-based ?) design of a functional application, i.e. in Lisp or Clojure? What are the common steps, what artifacts do I use, how do I map them from the problem space to the solution space?
Thank God that the software-engineering people have not yet discovered functional programming. Here are some parallels:
Many OO "design patterns" are captured as higher-order functions. For example, the Visitor pattern is known in the functional world as a "fold" (or if you are a pointy-headed theorist, a "catamorphism"). In functional languages, data types are mostly trees or tuples, and every tree type has a natural catamorphism associated with it.
These higher-order functions often come with certain laws of programming, aka "free theorems".
Functional programmers use diagrams much less heavily than OO programmers. Much of what is expressed in OO diagrams is instead expressed in types, or in "signatures", which you should think of as "module types". Haskell also has "type classes", which is a bit like an interface type.
Those functional programmers who use types generally think that "once you get the types right; the code practically writes itself."
Not all functional languages use explicit types, but the How To Design Programs book, an excellent book for learning Scheme/Lisp/Clojure, relies heavily on "data descriptions", which are closely related to types.
So what is the methodology for a systematic (model-based ?) design of a functional application, i.e. in Lisp or Clojure?
Any design method based on data abstraction works well. I happen to think that this is easier when the language has explicit types, but it works even without. A good book about design methods for abstract data types, which is easily adapted to functional programming, is Abstraction and Specification in Program Development by Barbara Liskov and John Guttag, the first edition. Liskov won the Turing award in part for that work.
Another design methodology that is unique to Lisp is to decide what language extensions would be useful in the problem domain in which you are working, and then use hygienic macros to add these constructs to your language. A good place to read about this kind of design is Matthew Flatt's article Creating Languages in Racket. The article may be behind a paywall. You can also find more general material on this kind of design by searching for the term "domain-specific embedded language"; for particular advice and examples beyond what Matthew Flatt covers, I would probably start with Graham's On Lisp or perhaps ANSI Common Lisp.
What are the common steps, what artifacts do I use?
Common steps:
Identify the data in your program and the operations on it, and define an abstract data type representing this data.
Identify common actions or patterns of computation, and express them as higher-order functions or macros. Expect to take this step as part of refactoring.
If you're using a typed functional language, use the type checker early and often. If you're using Lisp or Clojure, the best practice is to write function contracts first including unit tests—it's test-driven development to the max. And you will want to use whatever version of QuickCheck has been ported to your platform, which in your case looks like it's called ClojureCheck. It's an extremely powerful library for constructing random tests of code that uses higher-order functions.
For Clojure, I recommend going back to good old relational modeling. Out of the Tarpit is an inspirational read.
Personally I find that all the usual good practices from OO development apply in functional programming as well - just with a few minor tweaks to take account of the functional worldview. From a methodology perspective, you don't really need to do anything fundamentally different.
My experience comes from having moved from Java to Clojure in recent years.
Some examples:
Understand your business domain / data model - equally important whether you are going to design an object model or create a functional data structure with nested maps. In some ways, FP can be easier because it encourages you to think about data model separately from functions / processes but you still have to do both.
Service orientation in design - actually works very well from a FP perspective, since a typical service is really just a function with some side effects. I think that the "bottom up" view of software development sometimes espoused in the Lisp world is actually just good service-oriented API design principles in another guise.
Test Driven Development - works well in FP languages, in fact sometimes even better because pure functions lend themselves extremely well to writing clear, repeatable tests without any need for setting up a stateful environment. You might also want to build separate tests to check data integrity (e.g. does this map have all the keys in it that I expect, to balance the fact that in an OO language the class definition would enforce this for you at compile time).
Prototying / iteration - works just as well with FP. You might even be able to prototype live with users if you get very extremely good at building tools / DSL and using them at the REPL.
OO programming tightly couples data with behavior. Functional programming separates the two. So you don't have class diagrams, but you do have data structures, and you particularly have algebraic data types. Those types can be written to very tightly match your domain, including eliminating impossible values by construction.
So there aren't books and books on it, but there is a well established approach to, as the saying goes, make impossible values unrepresentable.
In so doing, you can make a range of choices about representing certain types of data as functions instead, and conversely, representing certain functions as a union of data types instead so that you can get, e.g., serialization, tighter specification, optimization, etc.
Then, given that, you write functions over your adts such that you establish some sort of algebra -- i.e. there are fixed laws which hold for these functions. Some are maybe idempotent -- the same after multiple applications. Some are associative. Some are transitive, etc.
Now you have a domain over which you have functions which compose according to well behaved laws. A simple embedded DSL!
Oh, and given properties, you can of course write automated randomized tests of them (ala QuickCheck).. and that's just the beginning.
Object Oriented design isn't the same thing as software engineering. Software engineering has to do with the entire process of how we go from requirements to a working system, on time and with a low defect rate. Functional programming may be different from OO, but it does not do away with requirements, high level and detailed designs, verification and testing, software metrics, estimation, and all that other "software engineering stuff".
Furthermore, functional programs do exhibit modularity and other structure. Your detailed designs have to be expressed in terms of the concepts in that structure.
One approach is to create an internal DSL within the functional programming language of choice. The "model" then is a set of business rules expressed in the DSL.
See my answer to another post:
How does Clojure aproach Separation of Concerns?
I agree more needs to be written on the subject on how to structure large applications that use an FP approach (Plus more needs to be done to document FP-driven UIs)
While this might be considered naive and simplistic, I think "design recipes" (a systematic approach to problem solving applied to programming as advocated by Felleisen et al. in their book HtDP) would be close to what you seem to be looking for.
Here, a few links:
http://www.northeastern.edu/magazine/0301/programming.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.8371
I've recently found this book:
Functional and Reactive Domain Modeling
I think is perfectly in line with your question.
From the book description:
Functional and Reactive Domain Modeling teaches you how to think of the domain model in terms of pure functions and how to compose them to build larger abstractions. You will start with the basics of functional programming and gradually progress to the advanced concepts and patterns that you need to know to implement complex domain models. The book demonstrates how advanced FP patterns like algebraic data types, typeclass based design, and isolation of side-effects can make your model compose for readability and verifiability.
There is the "program calculation" / "design by calculation" style associated with Prof. Richard Bird and the Algebra of Programming group at Oxford University (UK), I don't think its too far-fetched to consider this a methodology.
Personally while I like the work produced by the AoP group, I don't have the discipline to practice design in this way myself. However that's my shortcoming, and not one of program calculation.
I've found Behavior Driven Development to be a natural fit for rapidly developing code in both Clojure and SBCL. The real upside of leveraging BDD with a functional language is that I tend to write much finer grain unit tests than I usually do when using procedural languages because I do a much better job of decomposing the problem into smaller chunks of functionality.
Honestly if you want design recipes for functional programs, take a look at the standard function libraries such as Haskell's Prelude. In FP, patterns are usually captured by higher order procedures (functions that operate on functions) themselves. So if a pattern is seen, often a higher order function is simply created to capture that pattern.
A good example is fmap. This function takes a function as an argument and applies it to all the "elements" of the second argument. Since it is part of the Functor type class, any instance of a Functor (such as a list, graph, etc...) may be passed as a second argument to this function. It captures the general behavior of applying a function to every element of its second argument.
Well,
Generally many Functional Programming Languages are used at universities for a long time for "small toy problems".
They are getting more popular now since OOP has difficulties with "paralel programming" because of "state".And sometime functional style is better for problem at hand like Google MapReduce.
I am sure that, when functioanl guys hit the wall [ try to implement systems bigger than 1.000.000 lines of code], some of them will come with new software-engineering methodologies with buzz words :-). They should answer the old question: How to divide system into pieces so that we can "bite" each pieces one at a time? [ work iterative, inceremental en evolutionary way] using Functional Style.
It is sure that Functional Style will effect our Object Oriented
Style.We "still" many concepts from Functional Systems and adapted to
our OOP languages.
But will functional programs will be used for such a big systems?Will they become main stream? That is the question.
And Nobody can come with realistic methodology without implementing such a big systems, making his-her hands dirty.
First you should make your hands dirty then suggest solution. Solutions-Suggestions without "real pains and dirt" will be "fantasy".

Functional languages: Real-life Examples

Do functional languages bring anything in the resolution of everyday business problems?
Are there any successful projects that have been implemented using a functional language (ideally with a published test case)?
There are quite a few listed on Functional Programming in the Real World. From the site:
The main criterion for being real-world is that the program was written primarily to perform some task, not primarily to experiment with functional programming.
The Xen hypervisor is at base, implemented in OCAML; and Erlang is deployed in ultra-high reliability telephony systems (the ones that have zero down-time over periods of years).
One implementation of Perl 6, Pugs, is written in Haskell, but it has largely given way to the standard Rakudo Perl implementation.
Friends of mine use Haskell every day to implement financial algorithms.
There was a talk at the Lang.NET conference about how they'd used F# to improve the performance of an insurance application, which is about as everyday as you can get. Silverlight video, WMV video. That said, most of the focus of that talk is on F#'s concurrency support, less on the idiomatically functional aspects of the language.
Xmonad is a dynamically tiling X11 window manager that is written and configured in Haskell.
Facebook's chat feature makes heavy use of Erlang. http://www.facebook.com/note.php?note_id=14218138919&id=9445547199&index=0
Have you heard of Lisp machines before? The emacs editor also makes extensive use of Lisp.
I would argue that the Lotus Notes formula language is an example of a widely used real world functional programming language.

Is functional programming the next step towards natural-language programming? [closed]

Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 11 years ago.
Improve this question
This is my very first question so I am a bit nervous about it because I am not sure whether I get the meaning across well enough. Anyhow, here we go....
Whenever new milestones in programming have been reached it seems they always have had one goal in common: to make it easier for programmers, well, to program.
Machine language, opcodes/mnemonics, procedures/functions, structs, classes (OOP) etc. always helped, in their time, to plan, structure and code programs in a more natural, understandable and better maintainable way.
Of course functional programming is by no means a novelty but it seems that it has experienced a sort of renaissance in recent years. I also believe that FP will get an enormous boost when Microsoft will add F# to their mainstream programming languages.
Returning to my original question, I believe that ultimately programming will be done in a natural language (English) with very few restrictions or rules. The compiler will be part of an AI/NLP system that extracts information from the code or should I say text and transforms it into an intermediate language which the compiler can compile.
So, does FP take programming closer to natural-language programming or is it rather an obstacle and mainstream OOP will lead us faster to natural-language programming?
This question should not be used to discuss the useability or feasability of natural-language programming because only the future will tell.
Sorry, I don't agree at all. Code is ultimately a blueprint for making things (objects), so it has to be very precise and rule-governed in order to function reliably. Natural language won't take over programming any sooner than sketching ideas on napkins will take over mechanical engineering.
I personally have come to the conclusion natural language programming is somewhat crack.
English is not exactly suited to be used fully as a programming language, too many abstract words that have no-correlation in programming, such as emotive terms and other abstract notions that have no place in programming, so to say programming could ever be "natural language" would follow, that "natural language" could be programming, but it isn't.
Now while I get what you're saying here, the problem is the english language has too many scrap terms and repeated names for the same things, so we'd be using something that isn't even specific to the domain of programming, for the task of programming.
I think its more suited that people understand that programming is in fact a highly specialized language, and use their brains and learn to code in a language, which is simple, declarative, and has a consistent definition, unlike English, where definition is highly subjective.
Once you learn the ins and outs of a language, and learn its schematics and behaviors, you can combine them to do new things.
Take Perl, everyone lambasts it for being line noise, but when you know many programming languages, once you get past the initial hurdles of "OMG LINE NOISE", there is a degree of intuitiveness about it where you can make stuff up you never read about and then see it magically works just as you expected.
And IMHO, domain specific languages trump spoken ones for targeted problem solving.
"So, does FP take programming closer to natural-language programming or is it rather an obstacle and mainstream OOP will lead us faster to natural-language programming?"
Neither. Both operate on the same principle that you have to be specific about what you want the computer to do. There must be no room for uncertainty, and neither paradigm has anything to do with natural languages. They tackle an entirely different problem: That of managing and structuring complex code and large codebases.
The big obstacle in natural languages is the parsing. It is impossible to unambiguously parse natural language. Even humans can't do it without a lot of context information (facial expressions, tone of voice), and even then, we still get it wrong quite often.
OOP and FP are only about what happens after parsing. Which meaning is assigned to each semantic element, once it's been identified and parsed.
Perhaps we'll one day be able to program in natural language. I doubt it'll happen within the next couple of decades, but it may happen one day. But today's programming paradigms will neither speed up this process or delay it. They simply have nothing to do with it, and won't help solving the parsing problem.
I don't think that functional programming is any closer to natural language programming than OO programming. Functional programming has a very verb-oriented syntax. When you program in Lisp or Scheme, you spend a lot of time thinking about functions and what actions you want to take on your data. In OO programming, you spend most of your time thinking about objects, hence it seems very noun-oriented. However, in Smalltalk, C++, and Java, you also have methods, which allow you to apply verbs to all of your nouns (so to speak).
I don't think that OO programming will necessarily lead us to natural language programming, but from my point of view it's a little bit closer than functional programming. Functional programming, to me, seems a little bit closer to math than to natural language. That's not such a bad thing, since maybe math is the language we should be thinking in when we program anyway.
Just FYI, Inform 7 is probably the closest anyone has gotten to natural-language programming. It is a language for a very specific domain: writing interactive fiction, the kind of software that began with "adventure games".
The current spurt of interest in Functional Programming result primarily of C# 3.0's cool new features is basically to enable parallelism and denotes a shift towards multi-core computing. IMHO, I don't think we can consider this a next step towards 'natural language programming'
If you are looking for the next evolution in programming languages, I would look to DSLs. DSL allows for highly customized languages that enable sophisticated biz users to configure a system without having to worry about coding details such as datatypes, threads and UI widgets.
Functional languages will have their place in "highly parallel processing" space.
Do you think subjective questions will get this here order for "Windows Internals the 5th Element" added to the database and shipped to my address? If so, natural language programming will be very close to functional programming, since I asked my question in a somewhat functional manner. If not, then natural language programming won't get my order shipped, will it? Functional programming can work because it still has nothing to do with natural languages.
No. Functional programming will take us closer to proving compilers. That is compilers that prove more assertions about your code. The more compilers can prove for us, the closer software development comes to be engineering rather than art.
A NLP programming language is probably more of a "do what I mean not what I say" style language. That is probably the opposite of the direction functional languages go.
"All programming languages are converging towards LISP."

What are the main issues in designing an interpreter for a functional language?

Suppose I want to implement an interpreter for a functional language. I would like to understand the issues involved in doing so and suitable literature that is available. This is a new language that is in early design stages, that is why the question is broad in scope.
For the purpose of this discussion we can assume that the purpose of the language is not important and that its functional features can be changed (even drastically) if it makes a significant difference in the ease of writing an interpreter.
The MIT website has an online copy of Structure and Interpretation of Computer Programs as well as videos of the MIT 6.001 lectures using Scheme, recorded at HP in 1986. These form a great introduction to language design.
I would highly recommend Structure and Interpretation of Computer Programs (SICP) as a starting point. This book will introduce the idea of what it means to write an interpreter (and a compiler), and is generally a must-read for anybody designing languages.
Implementing an interpreter for a functional language isn't likely to be too much different from implementing an interpreter for any other general purpose language. There's lexical analysis, parsing, AST construction, semantic analysis, plus execution (for a pure interpreter) or code generation and optimisation (for a compiler, even compiling to bytecode like Java/Perl/Python). SICP will introduce the difference between "applicative order" and "normal order" evaluation, which may be important for you in a pure functional context.
For just about any language interpreter or compiler, the main issues are the same, I think.
You need to decide certain basic characteristics of the language (semantics, not syntax), and the bulk of the design of the thing follows from that.
For example, does your language have
a type system? If so, what sorts of
types does it have? Is it going to be
statically typed, dynamically typed,
duck-typed?
What sort of expressions are you
planning to support? Do you need to
define an order of operations? Will
you even have operators?
What will you use as the run-time
representation of the program? Will
you convert the text to a byte-code
representation, or an AST, or a
tokenized form of the source text?
There are toolkits available to help take some of the tedium out of the actual parsing of text (ANTLR and Bison, to name two), but I don't know of anything that helps with the actual interpretation part of the task. I'm sure somebody will suggest something.
The main issue is having a semantics for the language you're implementing -- with that, the implementation becomes straightforward. Otherwise, this question is incredibly broad and hard to answer.
I'd recommend Essentials of Programming Languages as a good complement to SICP, particularly if you're interested in interpreters: Official EOPL site. You may want to check out the third edition-- the site hasn't been updated for it yet.
Edit: spam prevention is making me choose between links, so the official page is now unheated. It's easily Google-able, though.

Resources