Julia - Iterating over combinations of keys in a dictionary - dictionary

Is there a nifty way to iterate over combinations of keys in a dictionary?
my dictionary has values like:
[1] => [1,2], [2,3] => [15], [3] => [6,7,8], [4,9,11] => [3], ...
what I need to do is fetch all combinations of keys that are of length 1:n where n might be fx 3
So as in the example above, I would want to iterate over
[[1], [3], [2,3], [[1],[1,2]], [[3],[2,3]], [4,9,11]]
I know I could just collect the keys, but my dictionary is rather large and I am in the middle of redesigning the entire algorithm because it starts swapping insanely when n > 3, reducing efficiency terribly
tl;dr is there a way to create a combinatoric iterator from a dictionary without collect-ing the dictionary?

The following is a straight forward implementation, which tries to minimize a bit on going through the dictionary. Additionally it uses OrderedDict so holding key indices makes sense (since Dicts don't promise consistent key iteration each time and thus meaningful key indexing).
using Iterators
using DataStructures
od = OrderedDict([1] => [1,2], [2,3] => [15], [3] => [6,7,8], [4,9,11] => [3])
sv = map(length,keys(od)) # store length of keys for quicker calculations
maxmaxlen = sum(sv) # maximum total elements in good key
for maxlen=1:maxmaxlen # replace maxmaxlen with lower value if too slow
#show maxlen
gsets = Vector{Vector{Int}}() # hold good sets of key _indices_
for curlen=1:maxlen
foreach(x->push!(gsets,x),
(x for x in subsets(collect(1:n),curlen) if sum(sv[x])==maxlen))
end
# indmatrix is necessary to run through keys once in next loop
indmatrix = zeros(Bool,length(od),length(gsets))
for i=1:length(gsets) for e in gsets[i]
indmatrix[e,i] = true
end
end
# gkeys is the vector of vecotrs of keys i.e. what we wanted to calculate
gkeys = [Vector{Vector{Int}}() for i=1:length(gsets)]
for (i,k) in enumerate(keys(od))
for j=1:length(gsets)
if indmatrix[i,j]
push!(gkeys[j],k)
end
end
end
# do something with each set of good keys
foreach(x->println(x),gkeys)
end
Is this more efficient that what you currently have? It would also be better to put the code in a function or turn it into a Julia task which produces the next keys set each iteration.
--- UPDATE ---
Using the answer about iterators from tasks in https://stackoverflow.com/a/41074729/3580870
An improved iterator-ified version is:
function keysubsets(n,d)
Task() do
od = OrderedDict(d)
sv = map(length,keys(od)) # store length of keys for quicker calculations
maxmaxlen = sum(sv) # maximum total elements in good key
for maxlen=1:min(n,maxmaxlen) # replace maxmaxlen with lower value if too slow
gsets = Vector{Vector{Int}}() # hold good sets of key _indices_
for curlen=1:maxlen
foreach(x->push!(gsets,x),(x for x in subsets(collect(1:n),curlen) if sum(sv[x])==maxlen))
end
# indmatrix is necessary to run through keys once in next loop
indmatrix = zeros(Bool,length(od),length(gsets))
for i=1:length(gsets) for e in gsets[i]
indmatrix[e,i] = true
end
end
# gkeys is the vector of vecotrs of keys i.e. what we wanted to calculate
gkeys = [Vector{Vector{Int}}() for i=1:length(gsets)]
for (i,k) in enumerate(keys(od))
for j=1:length(gsets)
if indmatrix[i,j]
push!(gkeys[j],k)
end
end
end
# do something with each set of good keys
foreach(x->produce(x),gkeys)
end
end
end
Which now enables iterating over all keysubsets up to combined size 4 in this way (after running the code from the other StackOverflow answer):
julia> nt2 = NewTask(keysubsets(4,od))
julia> collect(nt2)
10-element Array{Array{Array{Int64,1},1},1}:
Array{Int64,1}[[1]]
Array{Int64,1}[[3]]
Array{Int64,1}[[2,3]]
Array{Int64,1}[[1],[3]]
Array{Int64,1}[[4,9,11]]
Array{Int64,1}[[1],[2,3]]
Array{Int64,1}[[2,3],[3]]
Array{Int64,1}[[1],[4,9,11]]
Array{Int64,1}[[3],[4,9,11]]
Array{Int64,1}[[1],[2,3],[3]]
(the definition of NewTask from the linked StackOverflow answer is necessary).

Related

Get a number from an array of digits

To split a number into digits in a given base, Julia has the digits() function:
julia> digits(36, base = 4)
3-element Array{Int64,1}:
0
1
2
What's the reverse operation? If you have an array of digits and the base, is there a built-in way to convert that to a number? I could print the array to a string and use parse(), but that sounds inefficient, and also wouldn't work for bases > 10.
The previous answers are correct, but there is also the matter of efficiency:
sum([x[k]*base^(k-1) for k=1:length(x)])
collects the numbers into an array before summing, which causes unnecessary allocations. Skip the brackets to get better performance:
sum(x[k]*base^(k-1) for k in 1:length(x))
This also allocates an array before summing: sum(d.*4 .^(0:(length(d)-1)))
If you really want good performance, though, write a loop and avoid repeated exponentiation:
function undigit(d; base=10)
s = zero(eltype(d))
mult = one(eltype(d))
for val in d
s += val * mult
mult *= base
end
return s
end
This has one extra unnecessary multiplication, you could try to figure out some way of skipping that. But the performance is 10-15x better than the other approaches in my tests, and has zero allocations.
Edit: There's actually a slight risk to the type handling above. If the input vector and base have different integer types, you can get a type instability. This code should behave better:
function undigits(d; base=10)
(s, b) = promote(zero(eltype(d)), base)
mult = one(s)
for val in d
s += val * mult
mult *= b
end
return s
end
The answer seems to be written directly within the documentation of digits:
help?> digits
search: digits digits! ndigits isdigit isxdigit disable_sigint
digits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1)
Return an array with element type T (default Int) of the digits of n in the given base,
optionally padded with zeros to a specified size. More significant digits are at higher
indices, such that n == sum([digits[k]*base^(k-1) for k=1:length(digits)]).
So for your case this will work:
julia> d = digits(36, base = 4);
julia> sum([d[k]*4^(k-1) for k=1:length(d)])
36
And the above code can be shortened with the dot operator:
julia> sum(d.*4 .^(0:(length(d)-1)))
36
Using foldr and muladd for maximum conciseness and efficiency
undigits(d; base = 10) = foldr((a, b) -> muladd(base, b, a), d, init=0)

Identify which rows (or columns) have values in sparse Matrix

I need to identify the rows (/columns) that have defined values in a large sparse Boolean Matrix. I want to use this to 1. slice (actually view) the Matrix by those rows/columns; and 2. slice (/view) vectors and matrices that have the same dimensions as the margins of a Matrix. I.e. the result should probably be a Vector of indices / Bools or (preferably) an iterator.
I've tried the obvious:
a = sprand(10000, 10000, 0.01)
cols = unique(a.colptr)
rows = unique(a.rowvals)
but each of these take like 20ms on my machine, probably because they allocate about 1MB (at least they allocate cols and rows). This is inside a performance-critical function, so I'd like the code to be optimized. The Base code seems to have an nzrange iterator for sparse matrices, but it is not easy for me to see how to apply that to my case.
Is there a suggested way of doing this?
Second question: I'd need to also perform this operation on views of my sparse Matrix - would that be something like x = view(a,:,:); cols = unique(x.parent.colptr[x.indices[:,2]]) or is there specialized functionality for this? Views of sparse matrices appear to be tricky (cf https://discourse.julialang.org/t/slow-arithmetic-on-views-of-sparse-matrices/3644 – not a cross-post)
Thanks a lot!
Regarding getting the non-zero rows and columns of a sparse matrix, the following functions should be pretty efficient:
nzcols(a::SparseMatrixCSC) = collect(i
for i in 1:a.n if a.colptr[i]<a.colptr[i+1])
function nzrows(a::SparseMatrixCSC)
active = falses(a.m)
for r in a.rowval
active[r] = true
end
return find(active)
end
For a 10_000x10_000 matrix with 0.1 density it takes 0.2ms and 2.9ms for cols and rows, respectively. It should also be quicker than method in question (apart from the correctness issue as well).
Regarding views of sparse matrices, a quick solution would be to turn view into a sparse matrix (e.g. using b = sparse(view(a,100:199,100:199))) and use functions above. In code:
nzcols(b::SubArray{T,2,P}) where {T,P<:AbstractSparseArray} = nzcols(sparse(b))
nzrows(b::SubArray{T,2,P}) where {T,P<:AbstractSparseArray} = nzrows(sparse(b))
A better solution would be to customize the functions according to view. For example, when the view uses UnitRanges for both rows and columns:
# utility predicate returning true if element of sorted v in range r
inrange(v,r) = searchsortedlast(v,last(r))>=searchsortedfirst(v,first(r))
function nzcols(b::SubArray{T,2,P,Tuple{UnitRange{Int64},UnitRange{Int64}}}
) where {T,P<:SparseMatrixCSC}
return collect(i+1-start(b.indexes[2])
for i in b.indexes[2]
if b.parent.colptr[i]<b.parent.colptr[i+1] &&
inrange(b.parent.rowval[nzrange(b.parent,i)],b.indexes[1]))
end
function nzrows(b::SubArray{T,2,P,Tuple{UnitRange{Int64},UnitRange{Int64}}}
) where {T,P<:SparseMatrixCSC}
active = falses(length(b.indexes[1]))
for c in b.indexes[2]
for r in nzrange(b.parent,c)
if b.parent.rowval[r] in b.indexes[1]
active[b.parent.rowval[r]+1-start(b.indexes[1])] = true
end
end
end
return find(active)
end
which work faster than the versions for the full matrices (for 100x100 submatrix of above 10,000x10,000 matrix cols and rows take 16μs and 12μs, respectively on my machine, but these are unstable results).
A proper benchmark would use fixed matrices (or at least fix the random seed). I'll edit this line with such a benchmark if I do it.
In case the indices are not ranges, the fallback to converting to a sparse matrix works, but here are versions for indices which are Vectors. If the indices are mixed, yet another set of versions needs to be made. Quite repetitive, but this is the strength of Julia, when the versions are done, the code will choose optimized methods correctly using the types in the caller without too much effort.
function sortedintersecting(v1, v2)
i,j = start(v1), start(v2)
while i <= length(v1) && j <= length(v2)
if v1[i] == v2[j] return true
elseif v1[i] > v2[j] j += 1
else i += 1
end
end
return false
end
function nzcols(b::SubArray{T,2,P,Tuple{Vector{Int64},Vector{Int64}}}
) where {T,P<:SparseMatrixCSC}
brows = sort(unique(b.indexes[1]))
return [k
for (k,i) in enumerate(b.indexes[2])
if b.parent.colptr[i]<b.parent.colptr[i+1] &&
sortedintersecting(brows,b.parent.rowval[nzrange(b.parent,i)])]
end
function nzrows(b::SubArray{T,2,P,Tuple{Vector{Int64},Vector{Int64}}}
) where {T,P<:SparseMatrixCSC}
active = falses(length(b.indexes[1]))
for c in b.indexes[2]
active[findin(b.indexes[1],b.parent.rowval[nzrange(b.parent,c)])] = true
end
return find(active)
end
-- ADDENDUM --
Since it was noted nzrows for Vector{Int} indices is a bit slow, this is an attempt to improve its speed by replacing findin with a version exploiting sortedness:
function findin2(inds,v,w)
i,j = start(v),start(w)
res = Vector{Int}()
while i<=length(v) && j<=length(w)
if v[i]==w[j]
push!(res,inds[i])
i += 1
elseif (v[i]<w[j]) i += 1
else j += 1
end
end
return res
end
function nzrows(b::SubArray{T,2,P,Tuple{Vector{Int64},Vector{Int64}}}
) where {T,P<:SparseMatrixCSC}
active = falses(length(b.indexes[1]))
inds = sortperm(b.indexes[1])
brows = (b.indexes[1])[inds]
for c in b.indexes[2]
active[findin2(inds,brows,b.parent.rowval[nzrange(b.parent,c)])] = true
end
return find(active)
end

Convert Dict to DataFrame in Julia

Suppose I have a Dict defined as follows:
x = Dict{AbstractString,Array{Integer,1}}("A" => [1,2,3], "B" => [4,5,6])
I want to convert this to a DataFrame object (from the DataFrames module). Constructing a DataFrame has a similar syntax to constructing a dictionary. For example, the above dictionary could be manually constructed as a data frame as follows:
DataFrame(A = [1,2,3], B = [4,5,6])
I haven't found a direct way to get from a dictionary to a data frame but I figured one could exploit the syntactic similarity and write a macro to do this. The following doesn't work at all but it illustrates the approach I had in mind:
macro dict_to_df(x)
typeof(eval(x)) <: Dict || throw(ArgumentError("Expected Dict"))
return quote
DataFrame(
for k in keys(eval(x))
#eval ($k) = $(eval(x)[$k])
end
)
end
end
I also tried writing this as a function, which does work when all dictionary values have the same length:
function dict_to_df(x::Dict)
s = "DataFrame("
for k in keys(x)
v = x[k]
if typeof(v) <: AbstractString
v = string('"', v, '"')
end
s *= "$(k) = $(v),"
end
s = chop(s) * ")"
return eval(parse(s))
end
Is there a better, faster, or more idiomatic approach to this?
Another method could be
DataFrame(Any[values(x)...],Symbol[map(symbol,keys(x))...])
It was a bit tricky to get the types in order to access the right constructor. To get a list of the constructors for DataFrames I used methods(DataFrame).
The DataFrame(a=[1,2,3]) way of creating a DataFrame uses keyword arguments. To use splatting (...) for keyword arguments the keys need to be symbols. In the example x has strings, but these can be converted to symbols. In code, this is:
DataFrame(;[Symbol(k)=>v for (k,v) in x]...)
Finally, things would be cleaner if x had originally been with symbols. Then the code would go:
x = Dict{Symbol,Array{Integer,1}}(:A => [1,2,3], :B => [4,5,6])
df = DataFrame(;x...)

julia - How to find the key for the min/max value of a Dict?

I want to find the key corresponding to the min or max value of a dictionary in julia. In Python I would to the following:
my_dict = {1:20, 2:10}
min(my_dict, my_dict.get)
Which would return the key 2.
How can I do the same in julia ?
my_dict = Dict(1=>20, 2=>10)
minimum(my_dict)
The latter returns 1=>20 instead of 2=>10 or 2.
You could use reduce like this, which will return the key of the first smallest value in d:
reduce((x, y) -> d[x] ≤ d[y] ? x : y, keys(d))
This only works for non-empty Dicts, though. (But the notion of the “key of the minimal value of no values” does not really make sense, so that case should usually be handled seperately anyway.)
Edit regarding efficiency.
Consider these definitions (none of which handle empty collections)...
m1(d) = reduce((x, y) -> d[x] ≤ d[y] ? x : y, keys(d))
m2(d) = collect(keys(d))[indmin(collect(values(d)))]
function m3(d)
minindex(x, y) = d[x] ≤ d[y] ? x : y
reduce(minindex, keys(d))
end
function m4(d)
minkey, minvalue = next(d, start(d))[1]
for (key, value) in d
if value < minvalue
minkey = key
minvalue = value
end
end
minkey
end
...along with this code:
function benchmark(n)
d = Dict{Int, Int}(1 => 1)
m1(d); m2(d); m3(d); m4(d); m5(d)
while length(d) < n
setindex!(d, rand(-n:n), rand(-n:n))
end
#time m1(d)
#time m2(d)
#time m3(d)
#time m4(d)
end
Calling benchmark(10000000) will print something like this:
1.455388 seconds (30.00 M allocations: 457.748 MB, 4.30% gc time)
0.380472 seconds (6 allocations: 152.588 MB, 0.21% gc time)
0.982006 seconds (10.00 M allocations: 152.581 MB, 0.49% gc time)
0.204604 seconds
From this we can see that m2 (from user3580870's answer) is indeed faster than my original solution m1 by a factor of around 3 to 4, and also uses less memory. This is appearently due to the function call overhead, but also the fact that the λ expression in m1 is not optimized very well. We can alleviate the second problem by defining a helper function like in m3, which is better than m1, but not as good as m2.
However, m2 still allocates O(n) memory, which can be avoided: If you really need the efficiency, you should use an explicit loop like in m4, which allocates almost no memory and is also faster.
another option is:
collect(keys(d))[indmin(collect(values(d)))]
it depends on properties of keys and values iterators which are not guaranteed, but in fact work for Dicts (and are guaranteed for OrderedDicts). like the reduce answer, d must be non-empty.
why mention this, when the reduce, pretty much nails it? it is 3 to 4 times faster (at least on my computer) !
Here is another way to find Min with Key and Value
my_dict = Dict(1 => 20, 2 =>10)
findmin(my_dict) gives the output as below
(10, 2)
to get only key use
findmin(my_dict)[2]
to get only value use
findmin(my_dict)[1]
Hope this helps.
If you only need the minimum value, you can use
minimum(values(my_dict))
If you need the key as well, I don't know a built-in function to do so, but you can easily write it yourself for numeric keys and values:
function find_min_key{K,V}(d::Dict{K,V})
minkey = typemax(K)
minval = typemax(V)
for key in keys(d)
if d[key] < minval
minkey = key
minval = d[key]
end
end
minkey => minval
end
my_dict = Dict(1=>20, 2=>10)
find_min_key(my_dict)
findmax(dict)[2]
findmin(dict)[2]
Should also return the key corresponding to the max and min value(s). Here [2] is the index of the key in the returned tuple.

Lua Table Comparisons Within Tables

So I have a table that holds references to other tables like:
local a = newObject()
a.collection = {}
for i = 1, 100 do
local b = newObject()
a[#a + 1] = b
end
Now if I want to see if a particular object is within "a" I have to use pairs like so:
local z = a.collection[ 99 ]
for i,j in pairs( a.collection ) do
if j == z then
return true
end
end
The z object is in the 99th spot and I would have to wait for pairs to iterate all the way throughout the other 98 objects. This set up is making my program crawl. Is there a way to make some sort of key that isn't a string or a table to table comparison that is a one liner? Like:
if a.collection[{z}] then return true end
Thanks in advance!
Why are you storing the object in the value slot and not the key slot of the table?
local a = newObject()
a.collection = {}
for i = 1, 100 do
local b = newObject()
a.collection[b] = i
end
to see if a particular object is within "a"
return a.collection[b]
If you need integer indexed access to the collection, store it both ways:
local a = newObject()
a.collection = {}
for i = 1, 100 do
local b = newObject()
a.collection[i] = b
a.collection[b] = i
end
Finding:
local z = a.collection[99]
if a.collection[z] then return true end
Don't know if it's faster or not, but maybe this helps:
Filling:
local a = {}
a.collection = {}
for i = 1, 100 do
local b = {}
a.collection[b] = true -- Table / Object as index
end
Finding:
local z = a.collection[99]
if a.collection[z] then return true end
If that's not what you wanted to do you can break your whole array into smaller buckets and use a hash to keep track which object belongs to which bucket.
you might want to consider switching from using pairs() to using a regular for loop and indexing the table, pairs() seems to be slower on larger collections of tables.
for i=1, #a.collection do
if a.collection[i] == z then
return true
end
end
i compared the speed of iterating through a collection of 1 million tables using both pairs() and table indexing, and the indexing was a little bit faster every time. try it yourself using os.clock() to profile your code.
i can't really think of a faster way of your solution other than using some kind of hashing function to set unique indexes into the a.collection table. however, doing this would make getting a specific table out a non-trivial task (you wouldn't just be able to do a.collection[99], you'd have to iterate through until you found one you wanted. but then you could easily test if the table was in a.collection by doing something like a.collection[hashFunc(z)] ~= nil...)

Resources