undo/redo with sagas/redux (pt 2) - redux

Using Redux and Immutable, just incorporated Sagas into the API layer, but now trying to tackle undo/redo with server persistence
Constraints:
Assume a max undo/redo stack of 2
State tree is very large. Having copies of the state tree living in past/present is not desirable.
Assumption: After adding 1 item to the tree, I'm assuming that 100 items in present tree will now become 101 in present and 100 in past. I know that immutableJS does have structural sharing, but not sure if this is true
My approach thus far:
Three data structures: PENDING, CURRENT, FUTURE
Using Saga middleware, append "TRANSACTION START" to dispatched action
Wrap data reducer in undoable library (or similar), filter for all actions with "TRANSACTION_START", hold in PENDING stack. Saga has called POST in the meantime.
TRANSACTION_SUCCESS fires when POST completes, Sagas will retry 3x before throwing TRANSACTION_FAIL.
On TRANSACTION_FAIL, remove from PENDING stack (in reducer) and throw error. Since stack is small, I don't mind iterating through to throw it out.
Merge PENDING and CURRENT for the optimistic state tree
Once PENDING size > 2 (from more ADDs) && bottom item in stack marked COMPLETE, move bottom (think a dequeue) into CURRENT.
On dispatch of UNDO, pop from PENDING stack and store in FUTURE, cancel POST, re-render state.
References:
Saga Recipe
http://yelouafi.github.io/redux-saga/docs/recipes/index.html
This library for immutable structures + undo/redo
https://github.com/dairyisscary/redux-undo-immutable
(7 months since last update so using it as a guide)
I've seen the implementation of a commandSaga with RxJS, but that's not feasible given our current team.
https://github.com/salsita/redux-saga-rxjs/blob/master/examples/undo-redo-optimistic/src/sagas/commandSaga.js
Questions:
Am I on the right track?
This code uses a command class, but it does not address server-side updating. Is using Sagas unnecessary?
Sanity check?

Related

In SCORM 2004 (4th ed), why does a choice navigation to a cluster activity change the Current Activity?

The SCORM 2004 4th Edition pseudocode handles the case for a choice request (SB.2.9, steps 12 onward) like so:
If the target activity is a leaf activity Then
Exit Choice Sequencing Request Process (Delivery Request: the target activity; Exception: n/a)
End If
Apply the Flow Subprocess to the target activity in the Forward direction with consider children equal to True
// The identified activity is a cluster. Enter the cluster and attempt to find a descendent leaf to deliver.
If the Flow Subprocess returns False Then
// Nothing to deliver, but we succeeded in reaching the target activity - move the current activity.
Apply the Terminate Descendent Attempts Process to the common ancestor
Apply the End Attempt Process to the common ancestor
Set the Current Activity to the target activity
Exit Choice Sequencing Request Process (Delivery Request: n/a; Exception: SB.2.9-9)
// Nothing to deliver.
Else
Exit Choice Sequencing Request Process (Delivery Request: for the activity identified by the Flow Subprocess; Exception: n/a)
End If
It looks like this means that if the target activity resolves to a cluster activity but the Flow Subprocess can not find any available descendent leaf activity, the Current Activity is still modified and the sequencing request "succeeds" despite returning an exception.
What is the expected behavior for the LMS in this scenario? A cluster activity can't be delivered but this terminates the previous activity. Should the LMS simply deliver a blank page instead of an activity and hope the learner will be available to navigate away to another activity using the navigation controls?
The definition of the Overall Sequencing Process helpfully doesn't specify how an exception is supposed to be handled, but considering that this behavior sets the Current Activity and all successive requests will reference that one instead of the previously active activity, clearly something needs to happen or the LMS will be stuck in an inconsistent state.
Your reading of the pseudocode is correct. Choice is a bit special compared to the other flow events, but the steps of termination and showing the user a "please select an activity from the activity tree" screen could happen in several cases. The only somewhat unique part is the setting of the current activity, which makes it so other flow navigation events the user may select start from their last intentional choice, and not from whatever was previously loaded. It's not unusual for the Current Activity to be on a cluster, as stated on SN-4-18: "During termination behavior, Sequencing Exit Action rules are evaluated on all of the ancestors of the current activity – this is done in the Sequencing Exit Action Rule Subprocess. The result of this subprocess will be that either the “just terminated” leaf activity remains the Current Activity, or an ancestor of the leaf activity becomes the Current Activity".
You're also correct that OP.1 ("Overall Sequencing Process") is mute on the topic, going so far as to say "Behavior not specified." for a Not Valid sequencing request. I believe the most common choice is the aforementioned "please select an activity from the activity tree" style screen in place of where the visible SCO would have been.
The spec tries very hard to separate LMS display choices from how sequencing itself operates. SN-5-3 states: "SCORM imposes no requirements on the type or style of the user interface presented to a learner at run-time, including any user interface devices for navigation. The nature of the user interface and the mechanisms for capturing interactions between the learner and the LMS are intentionally unspecified. Issues such as look and feel, presentation style and placement of user interface devices or controls are outside the scope of SCORM."
But the specification otherwise says some instructive things. Page SN-3-6 states that "As depicted in Figure 3.2.1c, the target of the Choice navigation request (Activity B) has a Sequencing Control Flow defined to be False. In this case, no activity can be identified for delivery (clusters cannot be delivered). Because Activity B has Sequencing Control Choice defined to be True, an LMS shall provide some mechanism for the learner to select (trigger a navigation request for) one of Activity B’s children directly, but not Activity B."
While this doesn't explicitly state that there should be instructive text displayed to the learner in that SCO area or that the choice shouldn't be allowed, it does state that something should be done that should guide the learner into intentionally performing another step to launch something else. Again, this isn't exactly the same use case, but it's probably the closest it gets relative to choice.

Separating Axon commands and its effects

I'm maintaining an event-sourced application that went far off the road I'm afraid.
In one case a command is received by an aggregate root that publishes an event that is handled by an event handler that needs to do 2 things:
send a command (cmd1) to another aggregate root that will publish an event that will create a number of sagas each firing of some commands that are eventually handled by a number of aggregates
send a second command (cmd2) that will also lead to all sorts of command/event/command sequences.
In schematic form:
cmd0 -> AR0 -> evt0 -> evtHandler -> cmd1 -> AR1 -> evt1 -> saga stuff and more cmds and evts
|-> cmd2 -> AR2 -> evt2 -> more saga stuff, cmds and evts
Everything happens in the same thread and everything happens in 1 transaction started at the first command handling.
Now the goal: all events, saga's, aggregate calls originated from the first command (cmd1) should happen first and then all events, saga's and aggregate calls originated from the second command (cmd2) should happen.
Here's the observation: cmd1 calls AR1 that published evt1 but after that cmd2 calls AR2 publishing evt2. All other events and commands originating from cmd1 are mingled with those from cmd2.
First I thought I could get away with it using the UnitOfWork but even explicitly creating a separate unit of work for handling cmd1 didn't solve the problem. Looking at the implementation in AbstractEventBus I see that the events are simply merged in the parent unit of work and thus end up being merged with the ones originating from cmd2.
Here's the question: Is there a way to first call cmd1 and wait until all effects originating from that command are handled before calling cmd2 while still preserving the transactional atomicity that I currently have?
To be completely honest with you Jan, the best would be if the components within your application don't rely to much on that order.
It essentially means you have distinct message handling components, which in essence could be different micro service, but they are all tied together as the order is important.
Ideally, you'd set up your components to work on their own.
So, aggregates handle a command and publish the result, done.
Sagas react to events, regardless of where they come from, and react on them with actions (e.g. command dispatching).
Embracing the eventuality would help here, as it will drop the entire requirement of waiting for one process to complete.
From a theoretical stance, that would be my response.
From a more pragmatic corner looking at your question, I'd like to point out that it sounds like a rabbit hole you are going in to. You don't only want cmd1 handling to be done, you want event handling on all sagas to be resolved, including commands coming out of that too, correct? Who's here to tell what the number of Sagas is? Or what the number of commands those saga dispatch need to be taken into account? These criteria will likely change over time, adding more an more stuff which needs to happen "in a single transaction".
Well, yes there are way to wait for processing from some parts, to pull them all in a single transaction. But to be honest with you, I wouldn't recommend taking that route, as it will only make using such a message based system more and more complex.
The crux is what all effects are. From the point of dispatching that command, you should only care if that exact command handles successfully yes or no, and that's where the concerns should end.
I know this does not give you a simple programmatic solution, as you need to adjust the design. But I think decoupling is the only right way to go hear.
That's my two cents to the situation, hope this helps you further in any way Jan.
Message Anticipation explanation update
In essence, the messages you'd use in an Axon application form a boundary. A boundary after which the components essentially don't have a clue what is going to handle those messages. The behaviour per message differs a little, but might clarify what opens you have too:
Commands - Commands are consistently routed to a single handle, on a single instance. Furthermore, you can anticipate a response, in the form of an OK or NOK. OK's mean the handler is void or the identifier of a created entity (like the aggregate itself). NOK's typically are the exceptions you throw from your command handling methods, which signal something went wrong or the command simply couldn't be executed and it should be let know to the dispatching end.
Events - Events will be broadcast to any component which has subscribed itself to the EventBus as being capable to handle a given event. Note that event handling is segregated in time from the actual publication point of the event. This means there is no way there are results from event handling which could (or should) be returned to the dispatcher of an event.
Queries - Query messages can be routed in several forms. Either a single component is best suited to answer the query (called Point-to-Point queries). You can also dispatch a query to several handlers and aggregate the results (called Scatter-Gather queries). Lastly, you can subscribe to query models by doing a "Subscription query", which is essentially a combination of a point-to-point followed up by a Flux of updates. Clearly, query dispatching would mean you are receiving a result from some component. It's just that you have freedom in the type of query you do. If any assurance is required about the "up-to-date"-ness of a query response should be part of the implementation of the query being sent and how it is handled by a #QueryHandler annotated method.
Hope this provides some additional clarity at what each of the messages do in an Axon application!

Does returning VFW_S_CANT_CUE from IMediaFilter::GetState have any negative consequences

This MSDN page describes the need for some filters to return VFW_S_CANT_CUE from GetState() in the paused state if there's a possibility that the filter can't deliver while paused. That all seems clear enough. It seems if there's any doubt for a particular then it's probably better to return VFW_S_CANT_CUE to make sure that Pause() doesn't hang.
Delivering Samples
Are there any downsides to returning VFW_S_CANT_CUE though? Is resuming streaming from the paused state likely to perform poorly or lose sync if a mux or demux filter in the graph returns VFW_S_CANT_CUE?
I've inherited source code for several filters that sometimes return VFW_S_CANT_CUE for reasons that aren't clear to me (for example only returning VFW_S_CANT_CUE if no output samples have been delivered). I'm wondering if there any risks from always returning VFW_S_CANT_CUE.
Return of VFW_S_CANT_CUE disables synchronization with renderers during stopped/paused transition: Filter Graph Manager is not waiting for renderers to report that they are ready, which in case of video renderer means that it receives a banner frame and presents it (I suppose with sending EC_PAUSED notification). Disabled synchronization means that IMediaControl::Pause returns immediately and does not wait for banner frame, what live sources might prefer to do.
The only downside I can think of is that having Pause call completed you cannot be sure that video renderer presents valid frame and not blackness instead. I suppose the unclear reasoning behind VFW_S_CANT_CUE you are seeing is attempts of the developer to avoid deadlocks he stumbled on during debugging.
If filter returns VFW_S_CANT_CUE in GetState() method (i.e. LiveSource), Pause() method will not wait for samples to be queued. And because of this, stream time startd when filter graph is started.
Otherwise, filter graph will wait until several samples have been queued. And only after that stream time will be started (because after Pause(), Run() method called)

A MailboxProcessor that operates with a LIFO logic

I am learning about F# agents (MailboxProcessor).
I am dealing with a rather unconventional problem.
I have one agent (dataSource) which is a source of streaming data. The data has to be processed by an array of agents (dataProcessor). We can consider dataProcessor as some sort of tracking device.
Data may flow in faster than the speed with which the dataProcessor may be able to process its input.
It is OK to have some delay. However, I have to ensure that the agent stays on top of its work and does not get piled under obsolete observations
I am exploring ways to deal with this problem.
The first idea is to implement a stack (LIFO) in dataSource. dataSource would send over the latest observation available when dataProcessor becomes available to receive and process the data. This solution may work but it may get complicated as dataProcessor may need to be blocked and re-activated; and communicate its status to dataSource, leading to a two way communication problem. This problem may boil down to a blocking queue in the consumer-producer problem but I am not sure..
The second idea is to have dataProcessor taking care of message sorting. In this architecture, dataSource will simply post updates in dataProcessor's queue. dataProcessor will use Scanto fetch the latest data available in his queue. This may be the way to go. However, I am not sure if in the current design of MailboxProcessorit is possible to clear a queue of messages, deleting the older obsolete ones. Furthermore, here, it is written that:
Unfortunately, the TryScan function in the current version of F# is
broken in two ways. Firstly, the whole point is to specify a timeout
but the implementation does not actually honor it. Specifically,
irrelevant messages reset the timer. Secondly, as with the other Scan
function, the message queue is examined under a lock that prevents any
other threads from posting for the duration of the scan, which can be
an arbitrarily long time. Consequently, the TryScan function itself
tends to lock-up concurrent systems and can even introduce deadlocks
because the caller's code is evaluated inside the lock (e.g. posting
from the function argument to Scan or TryScan can deadlock the agent
when the code under the lock blocks waiting to acquire the lock it is
already under).
Having the latest observation bounced back may be a problem.
The author of this post, #Jon Harrop, suggests that
I managed to architect around it and the resulting architecture was actually better. In essence, I eagerly Receive all messages and filter using my own local queue.
This idea is surely worth exploring but, before starting to play around with code, I would welcome some inputs on how I could structure my solution.
Thank you.
Sounds like you might need a destructive scan version of the mailbox processor, I implemented this with TPL Dataflow in a blog series that you might be interested in.
My blog is currently down for maintenance but I can point you to the posts in markdown format.
Part1
Part2
Part3
You can also check out the code on github
I also wrote about the issues with scan in my lurking horror post
Hope that helps...
tl;dr I would try this: take Mailbox implementation from FSharp.Actor or Zach Bray's blog post, replace ConcurrentQueue by ConcurrentStack (plus add some bounded capacity logic) and use this changed agent as a dispatcher to pass messages from dataSource to an army of dataProcessors implemented as ordinary MBPs or Actors.
tl;dr2 If workers are a scarce and slow resource and we need to process a message that is the latest at the moment when a worker is ready, then it all boils down to an agent with a stack instead of a queue (with some bounded capacity logic) plus a BlockingQueue of workers. Dispatcher dequeues a ready worker, then pops a message from the stack and sends this message to the worker. After the job is done the worker enqueues itself to the queue when becomes ready (e.g. before let! msg = inbox.Receive()). Dispatcher consumer thread then blocks until any worker is ready, while producer thread keeps the bounded stack updated. (bounded stack could be done with an array + offset + size inside a lock, below is too complex one)
Details
MailBoxProcessor is designed to have only one consumer. This is even commented in the source code of MBP here (search for the word 'DRAGONS' :) )
If you post your data to MBP then only one thread could take it from internal queue or stack.
In you particular use case I would use ConcurrentStack directly or better wrapped into BlockingCollection:
It will allow many concurrent consumers
It is very fast and thread safe
BlockingCollection has BoundedCapacity property that allows you to limit the size of a collection. It throws on Add, but you could catch it or use TryAdd. If A is a main stack and B is a standby, then TryAdd to A, on false Add to B and swap the two with Interlocked.Exchange, then process needed messages in A, clear it, make a new standby - or use three stacks if processing A could be longer than B could become full again; in this way you do not block and do not lose any messages, but could discard unneeded ones is a controlled way.
BlockingCollection has methods like AddToAny/TakeFromAny, which work on an arrays of BlockingCollections. This could help, e.g.:
dataSource produces messages to a BlockingCollection with ConcurrentStack implementation (BCCS)
another thread consumes messages from BCCS and sends them to an array of processing BCCSs. You said that there is a lot of data. You may sacrifice one thread to be blocking and dispatching your messages indefinitely
each processing agent has its own BCCS or implemented as an Agent/Actor/MBP to which the dispatcher posts messages. In your case you need to send a message to only one processorAgent, so you may store processing agents in a circular buffer to always dispatch a message to least recently used processor.
Something like this:
(data stream produces 'T)
|
[dispatcher's BCSC]
|
(a dispatcher thread consumes 'T and pushes to processors, manages capacity of BCCS and LRU queue)
| |
[processor1's BCCS/Actor/MBP] ... [processorN's BCCS/Actor/MBP]
| |
(process) (process)
Instead of ConcurrentStack, you may want to read about heap data structure. If you need your latest messages by some property of messages, e.g. timestamp, rather than by the order in which they arrive to the stack (e.g. if there could be delays in transit and arrival order <> creation order), you can get the latest message by using heap.
If you still need Agents semantics/API, you could read several sources in addition to Dave's links, and somehow adopt implementation to multiple concurrent consumers:
An interesting article by Zach Bray on efficient Actors implementation. There you do need to replace (under the comment // Might want to schedule this call on another thread.) the line execute true by a line async { execute true } |> Async.Start or similar, because otherwise producing thread will be consuming thread - not good for a single fast producer. However, for a dispatcher like described above this is exactly what needed.
FSharp.Actor (aka Fakka) development branch and FSharp MPB source code (first link above) here could be very useful for implementation details. FSharp.Actors library has been in a freeze for several months but there is some activity in dev branch.
Should not miss discussion about Fakka in Google Groups in this context.
I have a somewhat similar use case and for the last two days I have researched everything I could find on the F# Agents/Actors. This answer is a kind of TODO for myself to try these ideas, of which half were born during writing it.
The simplest solution is to greedily eat all messages in the inbox when one arrives and discard all but the most recent. Easily done using TryReceive:
let rec readLatestLoop oldMsg =
async { let! newMsg = inbox.TryReceive 0
match newMsg with
| None -> oldMsg
| Some newMsg -> return! readLatestLoop newMsg }
let readLatest() =
async { let! msg = inbox.Receive()
return! readLatestLoop msg }
When faced with the same problem I architected a more sophisticated and efficient solution I called cancellable streaming and described in in an F# Journal article here. The idea is to start processing messages and then cancel that processing if they are superceded. This significantly improves concurrency if significant processing is being done.

Is Erlang's recursive functions not just a goto?

Just to get it straight in my head. Consider this example bit of Erlang code:
test() ->
receive
{From, whatever} ->
%% do something
test();
{From, somethingelse} ->
%% do something else
test();
end.
Isn't the test() call, just a goto?
I ask this because in C we learned, if you do a function call, the return location is always put on the stack. I can't imagine this must be the case in Erlang here since this would result in a stackoverflow.
We had 2 different ways of calling functions:
goto and gosub.
goto just steered the program flow somewhere else, and gosub remembered where you came from so you could return.
Given this way of thinking, I can look at Erlang's recursion easier, since if I just read: test() as a goto, then there is no problem at all.
hence my question: isn't :Erlang just using a goto instead of remembering the return address on a stack?
EDIT:
Just to clarify my point:
I know goto's can be used in some languages to jump all over the place. But just supose instead of doing someFunction() you can also do: goto someFunction()
in the first example the flow returns, in the second example the flow just continues in someFunction and never returns.
So we limit the normal GOTO behaviour by just being able to jump to method starting points.
If you see it like this, than the Erlang recursive function call looks like a goto.
(a goto in my opinion is a function call without the ability to return where you came from). Which is exactly what is happening in the Erlang example.
A tail recursive call is more of a "return and immediately call this other function" than a goto because of the housekeeping that's performed.
Addressing your newest points: recording the return point is just one bit of housekeeping that's performed when a function is called. The return point is stored in the stack frame, the rest of which must be allocated and initialized (in a normal call), including the local variables and parameters. With tail recursion, a new frame doesn't need to be allocated and the return point doesn't need to be stored (the previous value works fine), but the rest of the housekeeping needs to be performed.
There's also housekeeping that needs to be performed when a function returns, which includes discarding locals and parameters (as part of the stack frame) and returning to the call point. During tail recursive call, the locals for the current function are discarded before invoking the new function, but no return happens.
Rather like how threads allow for lighter-weight context switching than processes, tail calls allow for lighter-weight function invocation, since some of the housekeeping can be skipped.
The "goto &NAME" statement in Perl is closer to what you're thinking of, but not quite, as it discards locals. Parameters are kept around for the newly invoked function.
One more, simple difference: a tail call can only jump to a function entry point, while a goto can jump most anywhere (some languages restrict the target of a goto, such as C, where goto can't jump outside a function).
You are correct, the Erlang compiler will detect that it is a tail recursive call, and instead of moving on on the stack, it reuses the current function's stack space.
Furthermore it is also able to detect circular tail-recursion, e.g.
test() -> ..., test2().
test2() -> ..., test3().
test3() -> ..., test().
will also be optimized.
The "unfortunate" side-effect of this is that when you are tracing function calls, you will not be able to see each invocation of a tail recursive function, but the entry and exit point.
You've got two questions here.
First, no, you're not in any danger of overrunning the stack in this case because these calls to test() are both tail-recursive.
Second, no, function calls are not goto, they're function calls. :) The thing that makes goto problematic is that it bypasses any structure in your code. You can jump out of statements, jump into statements, bypass assignments...all kinds of screwiness. Function calls don't have this problem because they have an obvious flow of control.
I think the difference here is between a "real" goto and what can in some cases seem like a goto. In some special cases the compiler can detect that it is free to cleanup the stack of the current function before calling another function. This is when the call is the last call in a function. The difference is, of course, that as in any other call you can pass arguments to the new function.
As others have pointed out this optimisation is not restricted to recursive calls but to all last calls. This is used in the "classic" way of programming FSMs.
It's a goto in the same why that if is goto and while is goto. It is implemented using (the moral equivalent of) goto, but it does not expose the full shoot-self-in-foot potential of goto directly to the programmer.
In fact, these recursive functions are the ultimate GOTO according to Guy Steele.
Here's a more general answer, which supercedes my earlier answer based on call-stacks. Since the earlier answer has been accepted, I won't replace the text.
Prologue
Some architectures don't have things they call "functions" that are "called", but do have something analogous (messaging may call them "methods" or "message handlers"; event based architectures have "event handlers" or simply "handlers"). I'll be using the terms "code block" and "invocation" for the general case, though (strictly speaking) "code block" can include things that aren't quite functions. You can substitute the appropriately inflected form of "call" for "invocation" or "invoke", as I might in a few places. The features of an architecture that describe invocation are sometimes called "styles", as in "continuation passing style" (CPS), though this isn't previously an official term. To keep things from being too abstract, we'll examine call stack, continuation passing, messaging (à la OOP) and event handling invocation styles. I should specify the models I'm using for these styles, but I'm leaving them out in the interest of space.
Invocation Features
or, C Is For Continuation, Coordination and Context, That's Good Enough For Me
Hohpe identifies three nicely alliterative invocation features of the call-stack style: Continuation, Coordination, Context (all capitalized to distinguish them from other uses of the words).
Continuation decides where execution will continue when a code block finishes. The "Continuation" feature is related to "first-class continuations" (often simply called "continuations", including by me), in that continuations make the Continuation feature visible and manipulable at a programmatic level.
Coordination means code doesn't execute until the data it needs is ready. Within a single call stack, you get Coordination for free because the program counter won't return to a function until a called function finishes. Coordination becomes an issue in (e.g.) concurrent and event-driven programming, the former because a data producer may fall behind a data consumer and the latter because when a handler fires an event, the handler continues immediately without waiting for a response.
Context refers to the environment that is used to resolve names in a code block. It includes allocation and initialization of the local variables, parameters and return value(s). Parameter passing is also covered by the calling convention (keeping up the alliteration); for the general case, you could split Context into a feature that covers locals, one that covers parameters and another for return values. For CPS, return values are covered by parameter passing.
The three features aren't necessarily independent; invocation style determines their interrelationships. For instance, Coordination is tied to Continuation under the call-stack style. Continuation and Context are connected in general, since return values are involved in Continuation.
Hohpe's list isn't necessarily exhaustive, but it will suffice to distinguish tail-calls from gotos. Warning: I might go off on tangents, such as exploring invocation space based on Hohpe's features, but I'll try to contain myself.
Invocation Feature Tasks
Each invocation feature involves tasks to be completed when invoking a code block. For Continuation, invoked code blocks are naturally related by a chain of invoking code. When a code block is invoked, the current invocation chain (or "call chain") is extended by placing a reference (an "invocation reference") to the invoking code at the end of the chain (this process is described more concretely below). Taking into account invocation also involves binding names to code blocks and parameters, we see even non-bondage-and-discipline languages can have the same fun.
Tail Calls
or, The Answer
or, The Rest Is Basically Unnecessary
Tail calling is all about optimizing Continuation, and it's a matter of recognizing when the main Continuation task (recording an invocation reference) can be skipped. The other feature tasks stand on their own. A "goto" represents optimizing away tasks for Continuation and Context. That's pretty much why a tail call isn't a simple "goto". What follows will flesh out what tail calls look like in various invocation styles.
Tail Calls In Specific Invocation Styles
Different styles arrange invocation chains in different structures, which I'll call a "tangle", for lack of a better word. Isn't it nice that we've gotten away from spaghetti code?
With a call-stack, there's only one invocation chain in the tangle; extending the chain means pushing the program counter. A tail call means no program counter push.
Under CPS, the tangle consists of the extant continuations, which form a reverse arborescence (a directed tree where every edge points towards a central node), where each path back to the center is a invocation chain (note: if the program entry point is passed a "null" continuation, the tangle can be a whole forest of reverse arborescences). One particular chain is the default, which is where an invocation reference is added during invocation. Tail calls won't add an invocation reference to the default invocation chain. Note that "invocation chain" here is basically synonymous with "continuation", in the sense of "first class continuation".
Under message passing, the invocation chain is a chain of blocked methods, each waiting for a response from the method before it in the chain. A method that invokes another is a "client"; the invoked method is a "supplier" (I'm purposefully not using "service", though "supplier" isn't much better). A messaging tangle is a set of unconnected invocation chains. This tangle structure is rather like having multiple thread or process stacks. When the method merely echos another method's response as its own, the method can have its client wait on its supplier rather than itself. Note that this gives a slightly more general optimization, one that involves optimizing Coordination as well as Continuation. If the final portion of a method doesn't depend on a response (and the response doesn't depend on the data processed in the final portion), the method can continue once it's passed on its client's wait dependency to its supplier. This is analogous to launching a new thread, where the final portion of the method becomes the thread's main function, followed by a call-stack style tail call.
What About Event Handling Style?
With event handling, invocations don't have responses and handlers don't wait, so "invocation chains" (as used above) isn't a useful concept. Instead of a tangle, you have priority queues of events, which are owned by channels, and subscriptions, which are lists of listener-handler pairs. In some event driven architectures, channels are properties of listeners; every listener owns exactly one channel, so channels become synonymous with listeners. Invoking means firing an event on a channel, which invokes all subscribed listener-handlers; parameters are passed as properties of the event. Code that would depend on a response in another style becomes a separate handler under event handling, with an associated event. A tail call would be a handler that fires the event on another channel and does nothing else afterwards. Tail call optimization would involve re-subscribing listeners for the event from the second channel to the first, or possibly having the handler that fired the event on the first channel instead fire on the second channel (an optimization made by the programmer, not the compiler/interpreter). Here's what the former optimization looks like, starting with the un-optimized version.
Listener Alice subscribes to event "inauguration" on BBC News, using handler "party"
Alice fires event "election" on channel BBC News
Bob is listening for "election" on BBC News, so Bob's "openPolls" handler is invoked
Bob subscribes to event "inauguration" on channel CNN.
Bob fires event "voting" on channel CNN
Other events are fired & handled. Eventually, one of them ("win", for example) fires event "inauguration" on CNN.
Bob's barred handler fires "inauguration" on BBC News
Alice's inauguration handler is invoked.
And the optimized version:
Listener Alice subscribes to event "inauguration" on BBC News
Alice fires event "election" on channel BBC News
Bob is listening for "election" on BBC News, so Bob's "openPolls" handler is invoked
Bob subscribes anyone listening for "inauguration" on BBC News to the inauguration event on CNN*.
Bob fires event "voting" on channel CNN
Other events are fired & handled. Eventually, one of them fires event "inauguration" on CNN.
Alice's inauguration handler is invoked for the inauguration event on CNN.
Note tail calls are trickier (untenable?) under event handling because they have to take into account subscriptions. If Alice were later to unsubscribe from "inauguration" on BBC News, the subscription to inauguration on CNN would also need to be canceled. Additionally, the system must ensure it doesn't inappropriately invoke a handler multiple times for a listener. In the above optimized example, what if there's another handler for "inauguration" on CNN that fires "inauguration" on BBC News? Alice's "party" event will be fired twice, which may get her in trouble at work. One solution is to have *Bob unsubscribe all listeners from "inauguration" on BBC News in step 4, but then you introduce another bug wherein Alice will miss inauguration events that don't come via CNN. Maybe she wants to celebrate both the U.S. and British inaugurations. These problems arise because there are distinctions I'm not making in the model, possibly based on types of subscriptions. For instance, maybe there's a special kind of one-shot subscription (like System-V signal handlers) or some handlers unsubscribe themselves, and tail call optimization is only applied in these cases.
What's next?
You could go on to more fully specify invocation feature tasks. From there, you could figure out what optimizations are possible, and when they can be used. Perhaps other invocation features could be identified. You could also think of more examples of invocation styles. You could also explore the dependencies between invocation features. For instance, synchronous and asynchronous invocation involve explicitly coupling or uncoupling Continuation and Coordination. It never ends.
Get all that? I'm still trying to digest it myself.
References:
Hohpe, Gregor; "Event-Driven Architecture"
Sugalski, Dan; "CPS and tail calls--two great tastes that taste great together"
In this case it is possible to do tail-call optimization, since we don't need to do more work or make use of local variables. So the compiler will convert this into a loop.
(a goto in my opinion is a function call without the ability to return where you came from). Which is exactly what is happening in the erlang example.
That is not what's happening in Erlang, you CAN return to where you came from.
The calls are tail-recursive, which means that it is "sort of" a goto. Make sure you understand what tail-recursion is before you attempt to understand or write any code. Reading Joe Armstrong's book probably isn't a bad idea if you are new to Erlang.
Conceptually, in the case where you call yourself using test() then a call is made to the start of the function using whatever parameters you pass (none in this example) but nothing more is added to the stack. So all your variables are thrown away and the function starts fresh, but you didn't push a new return pointer onto the stack. So it's like a hybrid between a goto and a traditional imperative language style function call like you'd have in C or Java. But there IS still one entry on the stack from the very first call from the calling function. So when you eventually exit by returning a value rather the doing another test() then that return location is popped from the stack and execution resumes in your calling function.

Resources