Shiny error : data not being read when connected with a database - r

An overview of the project: To connect with a postgres DB that contains id,scores and date, so that a shiny dashboard user can enter the id and next I want to compute an upper and lower ranges for the mean(scores) for that id, so that finally I can display all that in a graph.
Issue: Looks like no data is being read from the DB, error: scores not found
Below is the script:
library(ALL relevant libraries)
drv <- dbDriver("PostgreSQL")
con<-dbConnect(drv,dbname = "", host = "", port = "", user = "", password= "")
# correct credentials placed above
dates <- seq(as.Date(as.character(Sys.Date() - 10)), as.Date(as.character(Sys.Date() - 5)), by = 1)
# dates vector should have 5 days
r <<- length(dates)
ui <- fluidPage(
titlePanel("Score"),
sidebarPanel(numericInput(inputId = "id",label = "user", value = 0000 ,
min = 100, max = 1000000)),
mainPanel(plotOutput("Coolplot"))
)
server <- function(input, output, session) {
browser()
generate <- function(r) {
listofdfs <- list() # Create a list in which you intend to save your df's.
for (i in 1:length(dates)) {
data <- dbGetQuery(con, sprintf("select score, CAST (date AS date), id from My_Table
where id = ",input$id," and
date<=date('%s') and date>=date('%s')- INTERVAL '7 day'",dates[i],dates[i]))
# changed the date<='%s' to date<=date('%s') now at least can read the data.
data$score_mean <- mean(data[,1])
data$upper_threshold <- data$score_mean * 1.2
data$lower_threshold <- data$score_mean * 0.8
listofdfs[[i]] <- data # save your dataframes into the list
}
return(listofdfs) #Return the list of dataframes.
}
df <- as.data.frame(do.call("rbind", generate(r)))
df<-reactive({df[!duplicated(df$date)]}) #since data needed some subsetting
output$Coolplot <- renderPlot({
browser()
ggplot(df(), aes(date)) +
geom_line(aes(y = score, colour = "score"))+
geom_line(aes(y = upper_threshold, colour = "upper_threshold")) +
geom_line(aes(y = lower_threshold, colour = "lower_threshold"))
})
}
shinyApp(ui = ui, server = server)
Thank you all for your help.
Cheers!

I don't think you should set an initial value under the min
sidebarPanel(numericInput(inputId = "id",label = "user", value = 0000 , min = 100, max = 1000000)),
=>
sidebarPanel(numericInput(inputId = "id",label = "user", value = 100 , min = 100, max = 1000000)),
Keep generate as a regular function returning something based on provided parameters
generate <- function(r) {
=>
generate <- function(user_id) {
don't mix up sprintf with paste and prevent SQL injection
sprintf("select score, CAST (date AS date), id from My_Table where id = ",input$id," and date<=date('%s') and date>=date('%s')- INTERVAL '7 day'",dates[i],dates[i]))
=>
sprintf("select score, CAST (date AS date), id from My_Table where id = %d and date<=date('%s') and date>=(date('%s')- INTERVAL '7 day')", as.numeric(user_id), as.date(dates[i]), as.date(dates[i])))
Add all your data manipuation within the reactive that references input parameters
df <- as.data.frame(do.call("rbind", generate(r)))
df<-reactive({df[!duplicated(df$date)]})
=>
df<-reactive({
data <- as.data.frame(do.call("rbind", generate(input$id)))
data[!duplicated(data$date)]
})

Related

Using reactive input within reactiveValue() function

I am new to shiny and trying to figure out some reactive stuff.
Currently this works for a static csv.
## function to return random row from twitter csv
tweetData <- read.csv('twitterData1.csv')
## stores reactive values
appVals <- reactiveValues(
tweet = tweetData[sample(nrow(tweetData), 1), ],
ratings = data.frame(tweet = character(), screen_name = character(), rating = character())
)
I need the same block of reactive values to be funciton but using a selected csv using input$file.
appVals <- reactiveValues(
csvName <- paste0('../path/', input$file),
tweetData <- read.csv(csvName),
tweet = tweetData[sample(nrow(tweetData), 1), ],
ratings = data.frame(tweet = character(), screen_name = character(), rating = character())
)
I get the error:
Warning: Error in : Can't access reactive value 'file' outside of reactive consumer.
I've tried moving things around but I keep getting stuck, help appreciated!
The error is telling that you should update the values inside a reactive expression.
First initialize the reactive values:
tweetData <- read.csv('twitterData1.csv')
appVals <- reactiveValues()
appVals$tweet <- tweetData[sample(nrow(tweetData), 1), ]
appVals$ratings <- data.frame(tweet = character(), screen_name = character())
Then update them with a reactive:
observeEvent(input$file,{
csvName <- paste0('../path/', input$file)
if (file.exists(csvName) {
tweetData <- read.csv(csvName)
appVals$tweet = tweetData[sample(nrow(tweetData), 1), ]
appVals$ratings = data.frame(tweet = character(), screen_name = character(), rating = character())
}
})

SelectInput and dateRangeinput functions

I really need your help. I am new in R shiny and I have to use 2 reactives functions. I have a table of a DataBase which columns (id_cli, val_cli, date_cli) example (1, 12, 2020-02-01); (1,30,2020-02-02); (2, 80,2020-02-03), etc the id_cli is foreign key, so it isnt unique in this table. I want to select the id_cli using the function selectInput and from there select a date range using the dateRangeInput function
This is my code :
DB <- dbConnect(MySQL(),
user='xx',
host='xxx.xxx.x.xx')
req22 = dbGetQuery(DB, "select id_cli, val_cli, date_cli from t_client;")
agg22 = setNames(aggregate(req22[,1:2], list(req22$date_cli), mean), c("date_cli", "id_cli","val_cli"))
agg22$date_cli = as.Date(agg22$date_cli)
dates22 <- seq(from = min(agg22$date_cli),
to = max(agg22$date_cli),
by="days")
tweets22 <- data.frame(dateW = dates22, agg22$val_cli, agg22$id_cli)
selectInput(inputId = "id_cli2", label = h3("List of clients"), choices = tweets22$agg22.id_cli)
dateRangeInput(inputId="dateW", label ="Selectionne a Date",
start = min(tweets22$agg22.date_cli),
end = max(tweets22$agg22.date_cli),
min = min(tweets22$agg22.date_cli),
max= max(tweets22$agg22.date_cli))
query <- reactive({
tweets22 %>%
select(agg22.id_cli, dateW, agg22.val_cli) %>%
filter(agg22.id_cli == input$id_cli2)
})
newtweets22 <-reactive({
query()
filter(tweets22, between(dateW, input$dateW[1], input$dateW[2]))
})
renderPlot({
ggplot(newtweets22(), aes(x=dateW, y=agg22.val_cli))+ geom_line(size=1) + xlab ("Date") + ylab("Values")
})
The code takes all the date range of data but does not select by id_cli which is input$cli Someone can help me please ?
Edit: I added filter(id_cli == input$id_cli2) to respond to your update.
Do you want something like this?
library(tidyverse)
library(lubridate)
library(shiny)
ui <- fluidPage(
uiOutput("select_ui"),
uiOutput("date_ui"),
plotOutput("plot")
)
server <- function(input, output, session){
req22 <- reactive({
# Replace this with your database query:
tibble(id_cli = c(1,1,1,2,2,2),
val_cli = c(12,30,80,70,50,20),
date_cli = c(ymd("2020-02-01"), ymd("2020-02-02"), ymd("2020-02-03"),
ymd("2020-02-04"), ymd("2020-02-05"), ymd("2020-02-06")))
})
output$select_ui <- renderUI({
req(req22())
clients <- req22() %>% distinct(id_cli) %>% pull %>% sort
selectInput("id_cli2", "List of clients", choices = clients)
})
output$date_ui <- renderUI({
req(req22())
dates <- req22() %>%
filter(id_cli == input$id_cli2) %>%
summarize(mindate = min(date_cli),
maxdate = max(date_cli))
dateRangeInput("dateW", "Select a date",
start = dates$mindate,
min = dates$mindate,
max = dates$maxdate,
end = dates$maxdate)
})
output$plot <- renderPlot({
req(req22(), input$dateW, input$id_cli2)
req22() %>%
filter(date_cli >= input$dateW[[1]],
date_cli <= input$dateW[[2]],
id_cli == input$id_cli2) %>%
ggplot(aes(x=date_cli, y = val_cli)) +
geom_point() +
geom_line()
})
}
shinyApp(ui = ui, server = server)
I assume that each time the user changes the client ID, you want the dates to default to the widest range relevant to that client. If you want to remember the user's previous date selections, then you should store them in a reactiveVal using observeEvent and then also use this in the filtering.
Thanks a lot for your answer. Yes I want like this but there is something doesnt Ok.
If I consider your code with this new data :
req22 <- reactive({
# Replace this with your database query:
tibble(id_cli = c(1,1,1,2,2,2),
val_cli = c(12,30,80,70,50,20),
date_cli = c(ymd("2020-02-01"), ymd("2020-02-02"), ymd("2020-02-03"),
c(ymd("2020-02-04"), c(ymd("2020-02-05"), c(ymd("2020-02-06")))
})
In the user interface when I select 1 of List of cients, in the select date range I want to have automaticaly 2020-02-01 to 2020-02-03 and when I select 2 of List of clients I want to see in the Select a date automatcaly the date between 2020-02-04 to 2020-02-06
The plot is OK, but there is the prolem only in the DateRangeInput.
Thanks in advance for your help :)

Invoke function within RShiny server call and render result as print output

I have written a script which makes use of 2 functions in order to calculate the duration required for a test to run, eg power analysis.
Inputs and code as follows;
## RUN POWER CALCULATION
average_daily_traffic <- 3515/30
control <- 0.47
uplift <- 0.02
num_vars <- 2
sample_size_calculator <- function(control, uplift){
variant <- (uplift + 1) * control
baseline <- ES.h(control, variant)
sample_size_output <- pwr.p.test(h = baseline,
n = ,
sig.level = 0.05,
power = 0.8)
if(variant >= 0)
{return(sample_size_output)}
else
{paste("N/A")}
}
## RUN DAYS CALCULATOR FUNCTION
days_calculator <- function(sample_size_output, average_daily_traffic){
days_required <- c((sample_size_output)*num_vars)/(average_daily_traffic)
if(days_required >= 0)
{paste0("It will take ", round(days_required, digits = 0)*num_vars, " days for this test to reach significance, with a daily average of " , round(average_daily_traffic, digits = 0), " visitors to this page over a 30 day period.")}
else
{paste("N/A")}
}
## RUN FUNCTIONS AND OUTPUT ANSWER
sample_size_calculator <- sample_size_calculator(control, uplift)
sample_size_output <- sample_size_calculator$n
answer <- days_calculator(sample_size_output, average_daily_traffic)
answer
This code is performant and is fit for my purpose in a standalone R script.
However, I need to make these functions executable from within a Shiny app. My attempt is as follows;
library(shiny)
ui <- fluidPage(
actionButton("exe", "Run",
style="color: #fff; background-color: #337ab7; border-color: #2e6da4"),
mainPanel(
textOutput("answer")
))
server <- function(input, output, session) {
sample_size_calculator <- eventReactive(input$exe,{
average_daily_traffic <- 3515/30
control <- 0.47
uplift <- 0.02
num_vars <- 2
variant <- (uplift + 1) * control
baseline <- ES.h(control, variant)
sample_size_output <- pwr.p.test(h = baseline,
n = ,
sig.level = 0.05,
power = 0.8)
if(variant >= 0)
{return(sample_size_output)}
else
{paste("N/A")}
})
days_calculator <- eventReactive (input$exe,{
days_required <- c((sample_size_output)*num_vars)/(average_daily_traffic)
if(days_required >= 0)
{paste0("It will take approximately ", round(days_required, digits = 0)*num_vars, " days or ", round((round(days_required, digits = 0)*num_vars)/365, digits = 1) ," years for this test to reach significance, based on a daily average of " , round(average_daily_traffic, digits = 0), " users to this page in the last 30 days.")}
else
{paste("N/A")}
})
outputs_ <- eventReactive( input$exe, {
req(sample_size_calculator())
req(days_calculator())
sample_size_calculator <- sample_size_calculator(control, uplift)
sample_size_output <- sample_size_calculator$n
answer <- days_calculator(sample_size_output, average_daily_traffic)
output$answer <- renderText(outputs_$answer)
})
}
shinyApp(ui = ui, server = server)
When I run this code, I see the execute button but no output is displayed.
This is very likely due to a limitation in my understanding of how Shiny invokes functions so if there is a better way I would be very grateful to hear it.
Thanks in advance.
* EDITING TO INCLUDE FULL FUNCTIONALITY CODE *
The objective of the code is to use Mark Edmonson's googleAnalyticsR and googleAuthR to enable retrieval of web visit data to a particular URL/page from the Google Analytics account for last 30days and show a trend of this data. This works fine, once the user enters the URL and hits 'Run'.
There is an additional GA call which retrieves additional data for a particular conversion action (see other_data). This is required in order to derive the conversion rate that is used later in the power calculation.
The calculation is cvr <- aeng$users/totalusers
#options(shiny.port = 1221)
## REQUIRED LIBS
library(shiny)
library(googleAnalyticsR)
library(plotly)
library(googleAuthR)
library(markdown)
library(pwr)
gar_set_client(scopes = c("https://www.googleapis.com/auth/analytics.readonly"))
daterange <- function(x) {
as.Date(format(x, "%Y-%m-01"))
}
## DATE PARAMETERS
date_start <- as.Date(Sys.Date(),format='%d-%B-%Y')-31
date_end <- as.Date(Sys.Date(),format='%d-%B-%Y')-1
date_range <- c(date_start, date_end)
## UI SECTION
ui <- fluidPage(
googleAuth_jsUI("auth"),
tags$head(
tags$link(rel = "stylesheet", type = "text/css", href = "dur_calc.css")
),
tags$br(),
sidebarLayout(
sidebarPanel(
code("To begin, select from 'Accounts' and enter URL of page to be tested:"),
tags$p(),
column(width = 12, authDropdownUI("auth_dropdown",
inColumns = FALSE)),
textInput("url", label = h5(strong("Page to be tested")), value = "Enter full page URL..."),
hr(),
fluidRow(column(3, verbatimTextOutput("value")
)
),
actionButton("exe", "Run Calculator",
style="color: #fff; background-color: #337ab7; border-color: #2e6da4"),
),
mainPanel(
plotlyOutput("trend_plot"),
textOutput("page"),
textOutput("answer")
)
)
)
## SERVER SECTION
server <- function(input, output, session) {
auth <- callModule(googleAuth_js, "auth")
## GET GA ACCOUNTS
ga_accounts <- reactive({
req(auth()
)
with_shiny(
ga_account_list,
shiny_access_token = auth()
)
})
view_id <- callModule(authDropdown, "auth_dropdown",
ga.table = ga_accounts)
ga_data <- eventReactive( input$exe, {
x <- input$url
#reactive expression
output$page <- renderText({
paste("You have selected the page:", input$url) })
filterPageurl <- dim_filter("dimension97" , "REGEX", x ,not = FALSE)
filts <- filter_clause_ga4(list( filterPageurl))
req(view_id())
req(date_range)
with_shiny(
google_analytics,
view_id(),
date_range = date_range,
dimensions = "date",
metrics = "users",
dim_filters = filts,
max = -1,
shiny_access_token = auth()
)
})
other_data <- eventReactive( input$exe, {
x <- input$url
filterPageurl <- dim_filter("dimension97" , "REGEX", x ,not = FALSE)
filts <- filter_clause_ga4(list( filterPageurl))
seg_id <- "gaid::uzKGvjpFS_Oa2IRh6m3ACg" #AEUs
seg_obj <- segment_ga4("AEUs", segment_id = seg_id)
req(view_id())
req(date_range)
#req(filts)
with_shiny(
google_analytics,
view_id(),
date_range = date_range,
dimensions = "date",
metrics = "users",
dim_filters = filts,
segments = seg_obj,
max = -1,
shiny_access_token = auth()
)
})
outputly <- eventReactive( input$exe, {
req(other_data())
req(ga_data())
aeng <- other_data()
ga_data <- ga_data()
totalusers <<- sum(ga_data$users)
cvr <- aeng$users/totalusers
average_daily_traffic <- totalusers/30
control <- cvr
uplift <- 0.02
num_vars <- 2
})
sample_size_calculator <- eventReactive(input$exe,{
variant <- (uplift + 1) * control
baseline <- ES.h(control, variant)
sample_size_output <- pwr.p.test(h = baseline,
n = ,
sig.level = 0.05,
power = 0.8)
if(variant >= 0)
{return(sample_size_output)}
else
{paste("N/A")}
})
days_calculator <- eventReactive (input$exe,{
days_required <- c((sample_size_output)*num_vars)/(average_daily_traffic)
if(days_required >= 0)
{paste0("It will take approximately ", round(days_required, digits = 0)*num_vars, " days or ", round((round(days_required, digits = 0)*num_vars)/365, digits = 1) ," years for this test to reach significance, based on a daily average of " , round(average_daily_traffic, digits = 0), " users to this page in the last 30 days.")}
else
{paste("N/A")}
})
output$trend_plot <- renderPlotly({
req(ga_data())
ga_data <- ga_data()
plot_ly(
x = ga_data$date,
y = ga_data$users,
type = 'scatter',
mode = 'lines') %>%
layout(title = "Page Visitors by Day (last 30 days)",
xaxis=list(title="Date", tickformat='%Y-%m-%d', showgrid=FALSE, showline=TRUE),
yaxis=list(title = "Users", showgrid=FALSE, showline=TRUE)
)
})
calc_answer <- eventReactive(input$exe, {
req(outputly)
outputly <- outputly()
sample_size_calculator <- sample_size_calculator()
sample_size_output <- sample_size_calculator$n
days_calculator(sample_size_output, average_daily_traffic)
})
output$answer <- renderText(calc_answer())
}
shinyApp(ui = ui, server = server)
A few suggestions that may help.
Would start with a simplified shiny app before adding all of the calculations, may be easier to work with for now
Would avoid putting output statements inside of eventReactive. See below for example.
Consider having only one observeEvent or eventReactive for the button press instead of multiple, especially since some function results depend on others.
Right now there are no inputs, so don't need additional reactive expressions. When you add inputs, though, you probably will.
If you haven't already, review the R Studio Shiny tutorial on Action Buttons and Reactivity.
Hope this is helpful in moving forward.
library(shiny)
library(pwr)
ui <- fluidPage(
actionButton("exe", "Run", style="color: #fff; background-color: #337ab7; border-color: #2e6da4"),
mainPanel(
textOutput("answer")
)
)
server <- function(input, output, session) {
average_daily_traffic <- 3515/30
control <- 0.47
uplift <- 0.02
num_vars <- 2
sample_size_calculator <- function() {
variant <- (uplift + 1) * control
baseline <- ES.h(control, variant)
sample_size_output <- pwr.p.test(h = baseline,
n = ,
sig.level = 0.05,
power = 0.8)
if(variant >= 0)
{return(sample_size_output)}
else
{return(NA)}
}
days_calculator <- function (sample_size_output, average_daily_traffic) {
days_required <- c((sample_size_output)*num_vars)/(average_daily_traffic)
if(days_required >= 0)
{paste0("It will take approximately ", round(days_required, digits = 0)*num_vars, " days or ", round((round(days_required, digits = 0)*num_vars)/365, digits = 1) ," years for this test to reach significance, based on a daily average of " , round(average_daily_traffic, digits = 0), " users to this page in the last 30 days.")}
else
{paste("N/A")}
}
calc_answer <- eventReactive(input$exe, {
sample_size_calculator <- sample_size_calculator()
sample_size_output <- sample_size_calculator$n
days_calculator(sample_size_output, average_daily_traffic)
})
output$answer <- renderText(calc_answer())
}
shinyApp(ui = ui, server = server)

Importing a dataframe from a function to Shiny server

I need to get the dataframe from a function in rShiny server. But that function returns a Plot and the return value cannot be changed as the plots are used in the future use.
have not pasted the whole code as its like 200 lines each for the function and also for the rshiny server.
Hist_Read_data4 <- full_join(Hist_Read_data1,Hist_Read_data_opst, by = c("timestamp"))%>%
arrange(timestamp)%>%
subset(timestamp >= as.POSIXct(start_timestamp, origin = "1970-01-01") & timestamp <= as.POSIXct(end_timestamp, origin = "1970-01-01"))%>%
mutate(value.y = na.locf(value.y, na.rm = FALSE))%>%
mutate(value.y = fct_explicit_na(value.y, na_level = "None"))%>%
mutate(value.x = na.locf(value.x, na.rm=FALSE))%>%
mutate(new_value = abs(value.x - lag(value.x)))%>%
mutate(new_value = replace_na(new_value, 0))%>%
mutate(new_value = cumsum(new_value))
plot <- ggplot() +
geom_path(data = Hist_Read_data4, mapping = aes(x = timestamp, y=value.x, color = value.y), na.rm = TRUE, linejoin = 'round' , size=1.5, group = 1)
//Hist_Read_data4 is the dataframe which i need to return//
//plot is the return value of the function//
output$HoverText <- renderText({
coordinfo <- input$PlotHover
nearpts <- nearPoints(Hist_Read_data4, coordinfo, xvar= "timestamp", yvar = "value.y", threshold = 20)
})
need Hist_Read_data4 in inside nearpoints. But it cannot be accessed as its inside a function named chooseDevice() in a separate script file named data_funcs.R
I do not want to change the return value of the chooseDevice function from plot to returning this dataframe as it will complicate the whole code and 2 months work will be wasted.

R Shiny update datatable from DT package

I made a shiny dashboard that connects to a postegreDB and get a value from a table, then subset it, and then transform it to a wide format using reshape2. I want to update the value directly from the dashboard, and then push them into the database.
I used this link for inspiration: https://github.com/MangoTheCat/dtdbshiny
This is the code I made:
server <- function(input, output, session) {
# Generate reactive values
rvs <- reactiveValues(
data = NA,
dataWide = NA,
dataSub = NA,
cdfilTmp = NA,
cdfilTmp2 = NA,
dataWideTmp = NA,
dbdata = NA,
dataSame = TRUE,
req = NA,
tabId = NA,
listeSeuil = NA,
dataMod = NA
)
# Generate source via reactive expression
mysource <- reactive({
dbGetQuery(pool, "SELECT * from bilanmasse.v_export_r_scen_seuil")
})
# Observe the source, update reactive values accordingly
observeEvent(mysource(), {
# Lightly format data by arranging id
# Not sure why disordered after sending UPDATE query in db
data <- mysource() %>% arrange(idscenar)
data <- dbGetQuery(pool, "SELECT * from bilanmasse.v_export_r_scen_seuil")
rvs$cdfilTmp <- paste(data$ordreseuil, data$nomfiliere, sep="-")
data$cdfiliere <- rvs$cdfilTmp
data <- data[c("idscenar", "nomscenar", "codeparam", "cdusage", "cdlithoprof", "cdfiliere", "valseuil")]
rvs$data <- data
rvs$dbdata <- data
rvs$listeSeuil <- unique(rvs$data[,1])
rvs$tabId <- dbGetQuery(pool, "SELECT * from bilanmasse.scenar_testr")
updateSelectInput(session, "listScen",
label = "Choix du scenario",
choices = isolate(rvs$listeSeuil)
)
})
rvs$dataSub <- reactive({ subset(rvs$data, rvs$data[,1] == input$listScen) })
rvs$dataWide <- reactive({ dcast(rvs$dataSub(), idscenar+nomscenar+codeparam+cdusage+cdlithoprof~cdfiliere, value.var="valseuil") })
rvs$dataWideTmp <- reactive({ rvs$dataWide() })
ScenBase <- reactive({ subset(rvs$data, rvs$data[,1] == 2) })
listeParam <- reactive({ unique(ScenBase()[,3]) })
listeUsage <- reactive({ unique(ScenBase()[,4]) })
listeLithoProf <- reactive({ unique(ScenBase()[,5]) })
listeTraitement <- reactive({ unique(ScenBase()[,6]) })
#
# render the table
output$tabScSeuil <- renderDataTable(
rvs$dataWide(), rownames = FALSE, editable = TRUE, selection = 'none', filter= "top", options = list(
columnDefs = list(list(className = 'dt-center', targets = "_all")))
)
proxy3 = dataTableProxy('tabScSeuil')
observeEvent(input$tabScSeuil_cell_edit, {
info = input$tabScSeuil_cell_edit
i = info$row
j = info$col = info$col + 1 # column index offset by 1
v = as.numeric(info$value)
rvs$dataWideTmp[i,j] <- v
output$test <- renderPrint(rvs$dataWideTmp[i,j])
})
}
Everything work perfectly expect when I want to update the new value into the table: I got this error:
Error in [: object of type 'closure' is not subsettable
So I tried to use an SQL request instead of a subset:
observeEvent(input$listScen, {
val <- as.character(input$listScen)
req <- paste0("SELECT * from bilanmasse.v_export_r_scen_seuil WHERE idscenar = ", val)
observeEvent(input$listScen, { dataSub <- dbGetQuery(pool, req) })
#cdfilTmp2 <- paste(dataSub[,6], dataSub[,7], sep="-")
#dataSub[,9] <- cdfilTmp2
#dataSub <- dataSub[c("idscenar", "nomscenar", "codeparam", "cdusage", "cdlithoprof", "V9", "valseuil")]
#colnames(dataSub) <- c("idscenar", "nomscenar", "codeparam", "cdusage", "cdlithoprof", "cdfiliere", "valseuil")
#dataWide <- dcast(dataSub, idscenar+nomscenar+codeparam+cdusage+cdlithoprof~cdfiliere, value.var="valseuil")
#dataWideTmp <-dataWide
output$test <- renderPrint(req)
})
But I got a weird error, when I print req, the request is OK:
[1] "SELECT * from bilanmasse.v_export_r_scen_seuil WHERE idscenar =
2"
But in the R console, I got an error:
Warning in postgresqlQuickSQL(conn, statement, ...) : Could not
create execute: SELECT * from bilanmasse.v_export_r_scen_seuil WHERE
idscenar =
Does someone know a solution to make this?

Resources