R Programming- Permutation regarding repetition and order - r

I have attempted to search and attempt solutions to no avail with the combn and gtools library.
I want to take a vector of the following:
x<-c(TRUE,FALSE)
and have it look like the following output:
Permutations with repetition (n=2, r=5)
Using Items: t,f
List has 32 entries.
{t,t,t,t,t} {t,t,t,t,f} {t,t,t,f,t} {t,t,t,f,f} {t,t,f,t,t} {t,t,f,t,f} {t,t,f,f,t} {t,t,f,f,f} {t,f,t,t,t} {t,f,t,t,f} {t,f,t,f,t} {t,f,t,f,f} {t,f,f,t,t} {t,f,f,t,f} {t,f,f,f,t} {t,f,f,f,f} {f,t,t,t,t} {f,t,t,t,f} {f,t,t,f,t} {f,t,t,f,f} {f,t,f,t,t} {f,t,f,t,f} {f,t,f,f,t} {f,t,f,f,f} {f,f,t,t,t} {f,f,t,t,f} {f,f,t,f,t} {f,f,t,f,f} {f,f,f,t,t} {f,f,f,t,f} {f,f,f,f,t} {f,f,f,f,f}
Any suggestions? I am quite a newbie at this, so any help is appreciated. I used the following online calculator to give me the solution below. https://www.mathsisfun.com/combinatorics/combinations-permutations-calculator.html
Thanks!

Using the gtools library, I believe this is:
library(gtools)
permutations(2,5,v=c(TRUE,FALSE),repeats.allowed=TRUE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] FALSE FALSE FALSE FALSE FALSE
## [2,] FALSE FALSE FALSE FALSE TRUE
## [3,] FALSE FALSE FALSE TRUE FALSE
## [4,] FALSE FALSE FALSE TRUE TRUE
## [5,] FALSE FALSE TRUE FALSE FALSE
## [6,] FALSE FALSE TRUE FALSE TRUE
## [7,] FALSE FALSE TRUE TRUE FALSE
## [8,] FALSE FALSE TRUE TRUE TRUE
## [9,] FALSE TRUE FALSE FALSE FALSE
##[10,] FALSE TRUE FALSE FALSE TRUE
##[11,] FALSE TRUE FALSE TRUE FALSE
##[12,] FALSE TRUE FALSE TRUE TRUE
##[13,] FALSE TRUE TRUE FALSE FALSE
##[14,] FALSE TRUE TRUE FALSE TRUE
##[15,] FALSE TRUE TRUE TRUE FALSE
##[16,] FALSE TRUE TRUE TRUE TRUE
##[17,] TRUE FALSE FALSE FALSE FALSE
##[18,] TRUE FALSE FALSE FALSE TRUE
##[19,] TRUE FALSE FALSE TRUE FALSE
##[20,] TRUE FALSE FALSE TRUE TRUE
##[21,] TRUE FALSE TRUE FALSE FALSE
##[22,] TRUE FALSE TRUE FALSE TRUE
##[23,] TRUE FALSE TRUE TRUE FALSE
##[24,] TRUE FALSE TRUE TRUE TRUE
##[25,] TRUE TRUE FALSE FALSE FALSE
##[26,] TRUE TRUE FALSE FALSE TRUE
##[27,] TRUE TRUE FALSE TRUE FALSE
##[28,] TRUE TRUE FALSE TRUE TRUE
##[29,] TRUE TRUE TRUE FALSE FALSE
##[30,] TRUE TRUE TRUE FALSE TRUE
##[31,] TRUE TRUE TRUE TRUE FALSE
##[32,] TRUE TRUE TRUE TRUE TRUE

Related

subsetting by index in R

I have an vector with indexes:
indexes
[1] 25 2 16 23
and another vector with logical:
logical
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[19] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
i want to keep all logical items that, except those with indexes stored in indexes.
i thought this would have an easy solution, but mine doesn't work:
for(index in indexes){
logical[index] = NULL
}
You could just use minus (-) indexing :
indexes <- c(25, 2, 16, 23)
logicals <- sample(c(T,F),25,replace=T)
logicals
#> [1] FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE
#> [13] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE
#> [25] FALSE
logicals[-indexes]
#> [1] FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE
#> [13] FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE

Logical vector to see wether an element of a df is contained within a df inside a List

I tried:
mdf$CLAVE.EMISORA %in% BMV[[9]]$`CLAVE EMISORA`
But it only returns:
logical(0)
For some reason the reveres seems to work:
BMV[[9]]$`CLAVE EMISORA` %in% mdf$CLAVE.EMISORA
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[20] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[39] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[58] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[77] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
My data (mdf): I have it but I don't know how to embed
My list (BMV): .... I don't know how to copy a list to clipboard sorry...
logical(0) is a vector of base type logical with 0 length.
You're getting this because your trying to check if any element in a vector of length 0 is present in BMV[[9]]$'CLAVE EMISORA'
if you run
length(mdf$CLAVE.EMISORA)
You'll get 0 as output
Reverse works because you're checking if any element from a vector of a non-zero length is present in a vector of 0 length.

Search for vector of motifs in vector of sequences with dataframe output

I have a set of nucleotide sequences in a vector of strings called x.
I want to check whether some (say 10) motifs are present in x. I want to produce a data frame or table where the rows are the sequences in X and the columns are the patterns/motifs are in the vector sdseqs.
sdframe <- data.frame
sdseqs = c("AGGAG.+ATG",
"AGAAG.+ATG","AAAGG.+ATG","GGAGG.+ATG","GAAGA.+ATG",
"GGAGA.+ATG","AAGGT.+ATG","AGGAA.+ATG","AAGGA.+ATG","GTGGA.+ATG")
for (i in 1:10) {
sdframe <- cbind(sdframe,(grepl(sdseqs[i], x)))
}
This code works just fine but the first column of the data frame will be empty, with question marks. The other columns are populated with true and false - that's what i want.
I tried to define an empty data frame outside the loop at the beginning. I am new to R and I am coming from Perl. This what I usually did in Perl: you define variables to be used within a loop outside. How can I do this in R?
Also, a viable option would be to delete the first column from my data frame, but that does not seem so straightforward to me.
Any help is appreciated.
The output i Get with my code now:
sdframe
[1,] ? TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
[2,] ? FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[3,] ? FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
[4,] ? TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[5,] ? FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[6,] ? FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE
[7,] ? FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[8,] ? FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
[9,] ? FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[10,] ? FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[11,] ? FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
I want the same but without the first column of ?. Note my x has 11 sequences, the motifs i checked for are the column (10 columns, 11 counting the first with ?)
A common R solution would use a function from the apply family to apply a function over a a vector.
sdseqs = c(
"AGGAG.+ATG",
"AGAAG.+ATG",
"AAAGG.+ATG",
"GGAGG.+ATG",
"GAAGA.+ATG",
"GGAGA.+ATG",
"AAGGT.+ATG",
"AGGAA.+ATG",
"AAGGA.+ATG",
"GTGGA.+ATG"
)
sdframe <- sapply(sdseqs, function(one.motif) {
grepl(one.motif, x = x)
})
sdframe
AGGAG.+ATG AGAAG.+ATG AAAGG.+ATG GGAGG.+ATG GAAGA.+ATG GGAGA.+ATG AAGGT.+ATG AGGAA.+ATG AAGGA.+ATG GTGGA.+ATG
[1,] FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
[2,] FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
[3,] FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
sdframe.t <- t(sdframe)
sdframe.t
[,1] [,2] [,3]
AGGAG.+ATG FALSE FALSE FALSE
AGAAG.+ATG TRUE TRUE TRUE
AAAGG.+ATG FALSE FALSE FALSE
GGAGG.+ATG FALSE FALSE FALSE
GAAGA.+ATG TRUE TRUE TRUE
GGAGA.+ATG TRUE TRUE TRUE
AAGGT.+ATG TRUE TRUE TRUE
AGGAA.+ATG FALSE FALSE FALSE
AAGGA.+ATG TRUE TRUE TRUE
GTGGA.+ATG FALSE FALSE FALSE
In first line in fact you do not create a data.frame. So your output is a list.
Instead of cbind you need rbind to add rows:
sdframe <- data.frame()
sdseqs = c("AGGAG.+ATG",
"AGAAG.+ATG","AAAGG.+ATG","GGAGG.+ATG","GAAGA.+ATG",
"GGAGA.+ATG","AAGGT.+ATG","AGGAA.+ATG","AAGGA.+ATG","GTGGA.+ATG")
for (i in 1:10) {
sdframe <- rbind(sdframe,(grepl(sdseqs[i], x)))
}

Response from generalized linear model is opposite what is expected?

I'm attempting to use n-fold cross-validation to estimate the mcr of a logistic regression classifier, however, the results I am getting are opposite what I'm expecting, and I'm not sure why?
Here is my complete R code:
library(ALL); data(ALL); library(caret)
IsB <- ALL$BT
levels(IsB) <- c(rep(TRUE, 5), rep(FALSE, 5))
ALL.names <- ALL[c('39317_at', '38018_g_at'),]
expr.data <- t(exprs(ALL.names))
data.lgr <- data.frame(IsB, expr.data)
n <- dim(data.lgr)[1]
index <- 1:n
K <- n
flds <- createFolds(index, k = K)
mcr.cv.raw <- rep(NA, K)
for (i in 1:K) {
testID <- flds[[i]]
data.tr <- data.lgr[-testID,]
data.test <- data.lgr[testID,]
reg.lgr <- glm(IsB ~ ., data = data.tr, family = binomial(link = 'logit'))
pred.prob <- predict(reg.lgr, newdata = data.test, type="response")
pred.B <- (pred.prob > 0.5)
mcr.cv.raw[i] <- sum(pred.B != data.test$IsB) / length(pred.B)
}
mcr.cv <- mean(mcr.cv.raw)
mcr.cv
Running this code will output 0.90625, however, this is almost the exact opposite of what I would expect. I think that the problem is coming from the values of pred.prob generated in the for loop. Logically, I am assuming that the probabilities produced are the probability that the sample in data.test would be classified as true, but when looking at all of the values generated for pred.b vs all of the value in IsB, you can see that they are all opposite what one would expect:
pred.b:
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[11] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[21] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[31] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[41] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[51] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[71] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[81] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[91] FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[101] TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE
[111] FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[121] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
IsB:
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[11] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[21] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[41] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[51] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[71] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[81] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[91] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[101] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[111] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
Any help with where my logic or code is failing is appreciated!

How to check a data.frame for any non-finite

I'd like to check if a data.frame has any non-finite elements.
This seems to evaluate each column, returning FALSE for each (I'm guessing its evaluating the data.frame as a list):
any( !is.finite( x ) )
I don't understand why this behaves differently from the above, but it works fine if just checking for NAs:
any( !is.na( x ) )
I'd like the solution to be as efficient as possible. I realize I can just do...
any( !is.finite( as.matrix( x ) ) )
If you type methods(is.na) you'll see that it has a data.frame method, which probably explains why it works the way you expect, where is.finite does not. The usual solution would be to write one yourself, since it's only one line. Something like this maybe,
is.finite.data.frame <- function(obj){
sapply(obj,FUN = function(x) all(is.finite(x)))
}
I'm assuming the error you are getting is the following:
> any( is.infinite( z ) )
Error in is.infinite(z) : default method not implemented for type 'list'
This error is because the is.infinite() and the is.finite() functions are not implemented with a method for data.frames. The is.na() function does have a data.frame method.
The way to work around this is to apply() the function to every row, column, or element in the data.frame. Here's an example using sapply() to apply the is.infinite() function to each element:
x <- c(1:10, NA)
y <- c(1:11)
z <- data.frame(x,y)
any( sapply(z, is.infinite) )
## or
any( ! sapply(z, is.finite) )
Your solution of calling as.matrix will only work if the data.frame only has numeric columns. Otherwise, the matrix will typically become a character matrix and the result will be false everywhere...
#joran has a good approach, but you'll have problems with factor columns unless to add a method for factors too etc...
is.finite(letters[1:3]) # FALSE - OK
is.finite(factor(letters[1:3])) # TRUE - WRONG!!
is.finite.factor <- function(obj){
logical(length(obj))
}
is.finite(factor(letters[1:3])) # FALSE - OK
Also, if you want the check to be as fast as possible, you should avoid sapply and go for vapply instead.
d <- data.frame(matrix(runif(1e6), nrow=10), letters[1:10])
# #joran's method
is.finite.data.frame <- function(obj){
sapply(obj,FUN = function(x) all(is.finite(x)))
}
system.time( x <- is.finite(d) ) # 0.42 secs
# Using vapply instead...
is.finite.data.frame <- function(obj) {
vapply(obj,FUN = function(x) all(is.finite(x)), logical(1))
}
system.time( y <- is.finite(d) ) # 0.20 secs
identical(x,y) # TRUE
One difference is that is.na and is.finite are different types of functions. is.na is a generic and will dispatch based on the class of the argument.
> methods("is.na")
[1] is.na.data.frame is.na.numeric_version is.na.POSIXlt
[4] is.na.raster*
Non-visible functions are asterisked
Note in particular that there is an is.na.data.frame function. Looking at that function:
> is.na.data.frame
function (x)
{
y <- do.call("cbind", lapply(x, "is.na"))
if (.row_names_info(x) > 0L)
rownames(y) <- row.names(x)
y
}
<bytecode: 00000000054F40F0>
<environment: namespace:base>
the part that does the work is the do.call("cbind", lapply(x, "is.na")) call which puts columns together (cbind) which are the result of lapply(x, "is.na"). Running just this with an example data.frame (mtcars):
> lapply(mtcars, "is.na")
$mpg
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
$cyl
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
$disp
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
$hp
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
$drat
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
$wt
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
$qsec
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
$vs
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
$am
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
$gear
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
$carb
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
we see that this is really just a column-wise computation, put back together into a data.frame.
Compare that to is.finite which does not have a specific function for data.frames:
> methods("is.finite")
no methods were found
In fact, it is a primitive method, meaning that the details are in C code, not R code.
> is.finite
function (x) .Primitive("is.finite")
If you want to do a column-wise computation with is.finite, you can wrap it like is.na.data.frame does.
> do.call(cbind, lapply(mtcars, is.finite))
mpg cyl disp hp drat wt qsec vs am gear carb
[1,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[3,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[4,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[5,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[6,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[7,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[8,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[9,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[10,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[11,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[12,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[13,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[14,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[15,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[16,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[17,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[18,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[19,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[20,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[21,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[22,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[23,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[24,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[25,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[26,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[27,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[28,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[29,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[30,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[31,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[32,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
This latter could also be gotten as
sapply(mtcars, is.finite)
No testing on what would be most efficient, though.

Resources