Say I have a longitudinal data set as below
ID <- c(1, 1, 2, 2, 3, 3, 4, 4)
time <- c(1, 2, 1, 2, 1, 2, 1, 2)
value <- c(7, 5, 9, 2, NA, 3, 7, NA)
mydata <- data.frame(ID, time, value)
ID time value
1 1 1 7
2 1 2 5
3 2 1 9
4 2 2 2
5 3 1 NA
6 3 2 3
7 4 1 7
8 4 2 NA
In this data-set, we have 4 cases with data at two time-points (let's say pre and post treatment)
Something I want to do is set criteria to delete any case that are not complete for both time-points. In this example, I would want to delete ID3 (who is missing timepoint 1), and ID4 (who is missing timepoint 2). Like below:
ID time value
1 1 1 7
2 1 2 5
3 2 1 9
4 2 2 2
I am not having much luck. I've tried variants of complete.cases() or which() to no avail
I'm still new to R, and would be hugely appreciative if anyone could help me out
Edit: Thank you Ronak for answering my question. Upon reflection of my real data, I have encountered a second problem. My actual data is more reflected by the below:
ID <- c(1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8)
time <- c(1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1)
value <- c(7, 5, 9, 2, NA, 3, 7, NA, 8, 9, 7, 6)
mydata <- data.frame(ID, time, value)
ID time value
1 1 1 7
2 1 2 5
3 2 1 9
4 2 2 2
5 3 1 NA
6 3 2 3
7 4 1 7
8 4 2 NA
9 5 1 8
10 6 1 9
11 7 1 7
12 8 1 6
Where I would also want to remove cases 5, 6, 7 and 8. These IDs have an entry for Time 1, but not Time 2. Hopefully this makes sense
Thanks a heap
If you switch your data to wide format (where each time point is represented as its own column), then you can use na.omit. Using dplyr and tidyr functions:
library(dplyr)
mydata <- mydata %>%
tidyr::spread(key=time, value=value) %>% # reformat to wide
na.omit() %>% # delete cases with missingness on any variable (i.e. any time point)
tidyr::gather(key="time", value="value", -ID) # put it back in long format
> mydata
ID time value
1 1 1 7
2 2 1 9
3 1 2 5
4 2 2 2
Note that this will work (it will keep only cases with complete data for both time 1 and time 2) even when you have a time point missing without an explicit NA present in the data, like this:
> mydata
ID time value
1 1 1 7
2 1 2 5
3 2 1 9
4 2 2 2
5 3 1 NA
6 3 2 3
7 4 1 7
8 4 2 NA
9 5 1 8
10 6 1 9
11 7 1 7
12 8 1 6
You can do this easily with sqldf.
library(sqldf)
sqldf(' select * from (select ID, count(*) as cnt from mydata where value is not null group by id having cnt >1 ) t1 inner join mydata t2 on t1.ID=t2.ID')
You would select those id having a count greater than 1 and who doesn't have NA in their values and then join back with the original data.
#Ronak already provided
mydata[!mydata$ID %in% mydata$ID[is.na(mydata$value)], ]
For the second part, you can just group over each id and filter on their frequency
k2 <- data.frame(table(mydata$ID))
k2$Var1[k2$Freq > 1]
and then do something like
mydata[mydata$ID %in% k2$Var1[k2$Freq > 1],]
See the updated answer
# Eliminates ID cases with NA
mydata = mydata[!mydata$ID %in% mydata[!complete.cases(mydata) ,]$ID, ]
library(plyr)
# counts all the IDs
cnt = count(mydata, "ID")
# Eliminates any ID that doesn't have 2 observations
mydata[mydata$ID %in% cnt[cnt$freq == 2, ]$ID, ]
ID time value
1 1 1 7
2 1 2 5
3 2 1 9
4 2 2 2
Related
I have a large list with thousands of data frames included in it. These data frames have multiple columns each. Thereby, I want to automatically bind in each of these data frames the columns into one column. This means that they are appended below each other as shown below. Thereafter, I would transform the list to a data frame which would have varying column lengths due to the different number of columns within each element in the original list.
From this:
y1 y2
1 4
2 5
3 6
To this:
y1
1
2
3
4
5
6
This should be done for each element in the list, whereby the solution needs to take into account that there are thousands of different data frames, which cannot be mentioned individually (example):
df1 = data.frame(
X1 = c(1, 2, 3),
X1.2 = c(4, 5, 6)
)
df2 = data.frame(
X2 = c(7, 8, 9),
X2.2 = c(1, 4, 6)
)
df3 = data.frame(
X3 = c(3, 4, 1),
X3.2 = c(8, 3, 5),
X3.3 = c(3, 1, 9)
)
listOfDataframe = list(df1, df2, df3)
Final output:
df_final = data.frame(
X1 = c(1, 2, 3, 4, 5, 6),
X2 = c(7, 8, 9, 1, 4, 6),
X3 = c(3, 4, 1, 8, 3, 5, 3, 1, 9)
)
Another problem underlying this question is that there will be a differing number of rows, which I do not know how to account for in the data frame, as the columns need to have the same length.
Thank you in advance for your help, it is highly appreciated.
Structure of list within R:
We can unlist after looping over the list with lapply
lst1 <- lapply(listOfDataframe, \(x)
setNames(data.frame(unlist(x, use.names = FALSE)), names(x)[1]))
-output
lst1
[[1]]
X1
1 1
2 2
3 3
4 4
5 5
6 6
[[2]]
X2
1 7
2 8
3 9
4 1
5 4
6 6
[[3]]
X3
1 3
2 4
3 1
4 8
5 3
6 5
7 3
8 1
9 9
If we need to convert the list to a single data.frame, use cbind.na from qPCR
do.call(qpcR:::cbind.na, lst1)
X1 X2 X3
1 1 7 3
2 2 8 4
3 3 9 1
4 4 1 8
5 5 4 3
6 6 6 5
7 NA NA 3
8 NA NA 1
9 NA NA 9
Here is a tidyverse solution:
library(dplyr)
library(purrr)
listOfDataframe %>%
map(~.x %>% stack(.)) %>%
map(~.x %>% select(-ind))
[[1]]
values
1 1
2 2
3 3
4 4
5 5
6 6
[[2]]
values
1 7
2 8
3 9
4 1
5 4
6 6
[[3]]
values
1 3
2 4
3 1
4 8
5 3
6 5
7 3
8 1
9 9
I have a dataframe with observations from three years time, with column df$week that indicates the week of the observation. (The week count of the second year continues from the count of the first, so the data contains 207 weeks).
I would like to divide the data to longer time periods, to df$period that would include all observations from several weeks' time.
If a period would be the length of three weeks, and I the data would include 13 observations in six weeks time, the I idea would be to divide
weeks <- c(1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 6)
into
periods <- c(1, 1, 1, 2, 2, 3, 3), c(4, 5, 5, 6, 6, 6)
periods
[1]
1 1 1 2 2 3 3
[2]
4 5 5 6 6 6
To look something like
> df
week period
1 1 1
2 1 1
3 1 1
4 2 1
5 2 1
6 3 1
7 3 1
8 4 2
9 5 2
10 5 2
11 6 2
12 6 2
13 6 2
>
The data contains +13k rows so would need to do some sort of map in style of
mapPeriod <- function(df, fun) {
out <- vector("vector_of_weeks", length(df))
for (i in seq_along(df)) {
out[i] <- fun(df[[i]])
}
out
}
I just don't know what to include in the fun to divide the weeks to the decided sequences of periods. Can function rep be of assistance here? How?
I would be very grateful for all input and suggestions.
split(weeks, f = (weeks - 1) %/% 3)
$`0`
[1] 1 1 1 2 2 3 3
$`1`
[1] 4 5 5 6 6 6
from comments below
weeks <- c(1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 6)
df <- data.frame(weeks)
library(data.table)
df$period <- data.table::rleid((weeks - 1) %/% 3)
# weeks period
# 1 1 1
# 2 1 1
# 3 1 1
# 4 2 1
# 5 2 1
# 6 3 1
# 7 3 1
# 8 4 2
# 9 5 2
# 10 5 2
# 11 6 2
# 12 6 2
# 13 6 2
df is a test dataframe and I need to sort the last three columns in ascending order (without hardcoding the order).
df <- data.frame(X = c(1, 2, 3, 4, 5),
Z = c(1, 2, 3, 4, 5),
Y = c(1, 2, 3, 4, 5),
A = c(1, 2, 3, 4, 5),
C = c(1, 2, 3, 4, 5),
B = c(1, 2, 3, 4, 5))
Desired output:
> df
X Z Y A B C
1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 5 5 5 5 5 5
I'm aware of the order() function but I can't seem to find the right way to implement it to get the desired output.
Update:
Base R:
cbind(df[1:3],df[4:6][,order(colnames(df[4:6]))])
First answer:
We could use relocate from dplyr:
https://dplyr.tidyverse.org/reference/relocate.html
It is configured to arrange columns:
Here we relocate by the index.
We take last (index = 6) and put it before (position 5, which is C)
library(dplyr)
df %>%
relocate(6, .before = 5)
An alternative:
library(dplyr)
df %>%
select(order(colnames(df))) %>%
relocate(4:6, .before = 1)
X Z Y A B C
1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 5 5 5 5 5 5
In base R, a selection on the first columns then sort the last 3 names :
df[, c(names(df)[1:(ncol(df)-3)], sort(names(df)[ncol(df)-2:0]))]
We want to reorder the columns based on the column names, so if we use names(df) as the argument to order, we can reorder the data frame as follows.
The complicating factor is that order() returns a vector of numbers, so if we want to reorder only a subset of the column names, we'll need an approach that retains the original sort order for the first three columns.
We accomplish this by creating a vector of the first 3 column names, the sorted remaining column names using a function that returns the values rather than locations in the vector, and then use this with the [ form of the extract operator.
df <- data.frame(X = c(1, 2, 3, 4, 5),
Z = c(1, 2, 3, 4, 5),
Y = c(1, 2, 3, 4, 5),
A = c(1, 2, 3, 4, 5),
C = c(1, 2, 3, 4, 5),
B = c(1, 2, 3, 4, 5))
df[,c(names(df[1:3]),sort(names(df[4:6])))]
...and the output:
> df[,c(names(df[1:3]),sort(names(df[4:6])))]
X Z Y A B C
1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 5 5 5 5 5 5
to_order <- seq(ncol(df)) > ncol(df) - 3
df[order(to_order*order(names(df)))]
#> X Z Y A B C
#> 1 1 1 1 1 1 1
#> 2 2 2 2 2 2 2
#> 3 3 3 3 3 3 3
#> 4 4 4 4 4 4 4
#> 5 5 5 5 5 5 5
Created on 2021-12-24 by the reprex package (v2.0.1)
I have data on several thousand US basketball players over multiple years.
Each basketball player has a unique ID. It is known for what team and on which position they play in a given year, much like the mock data df below:
df <- data.frame(id = c(rep(1:4, times=2), 1),
year = c(1, 1, 2, 2, 3, 4, 4, 4,5),
team = c(1,2,3,4, 2,2,4,4,2),
position = c(1,2,3,4,1,1,4,4,4))
> df
id year team position
1 1 1 1 1
2 2 1 2 2
3 3 2 3 3
4 4 2 4 4
5 1 3 2 1
6 2 4 2 1
7 3 4 4 4
8 4 4 4 4
9 1 5 2 4
What is an efficient way to manipulate df into new_df below?
> new_df
id move time position.1 position.2 year.1 year.2
1 1 0 2 1 1 1 3
2 2 1 3 2 1 1 4
3 3 0 2 3 4 2 4
4 4 1 2 4 4 2 4
5 1 0 2 1 4 3 5
In new_df the first occurrence of the basketball player is compared to the second occurrence, recorded whether the player switched teams and how long it took the player to make the switch.
Note:
In the real data some basketball players occur more than twice and can play for multiple teams and on multiple positions.
In such a case a new row in new_df is added that compares each additional occurrence of a player with only the previous occurrence.
Edit: I think this is not a rather simple reshape exercise, because of the reasons mentioned in the previous two sentences. To clarify this, I've added an additional occurrence of player ID 1 to the mock data.
Any help is most welcome and appreciated!
s=table(df$id)
df$time=rep(1:max(s),each=length(s))
df1 = reshape(df,idvar = "id",dir="wide")
transform(df1, move=+(team.1==team.2),time=year.2-year.1)
id year.1 team.1 position.1 year.2 team.2 position.2 move time
1 1 1 1 1 3 2 1 0 2
2 2 1 2 2 4 2 1 1 3
3 3 2 3 3 4 4 4 0 2
4 4 2 4 4 4 4 4 1 2
The below code should help you get till the point where the data is transposed
You'll have to create the move and time variables
df <- data.frame(id = rep(1:4, times=2),
year = c(1, 1, 2, 2, 3, 4, 4, 4),
team = c(1, 2, 3, 4, 2, 2, 4, 4),
position = c(1, 2, 3, 4, 1, 1, 4, 4))
library(reshape2)
library(data.table)
setDT(df) #convert to data.table
df[,rno:=rank(year,ties="min"),by=.(id)] #gives the occurance
#creating the transposed dataset
Dcast_DT<-dcast(df,id~rno,value.var = c("year","team","position"))
This piece of code did the trick, using data.table
#transform to data.table
dt <- as.data.table(df)
#sort on year
setorder(dt, year, na.last=TRUE)
#indicate the names of the new columns
new_cols= c("time", "move", "prev_team", "prev_year", "prev_position")
#set up the new variables
dtt[ , (new_cols) := list(year - shift(year),team!= shift(team), shift(team), shift(year), shift(position)), by = id]
# select only repeating occurrences
dtt <- dtt[!is.na(dtt$time),]
#outcome
dtt
id year team position time move prev_team prev_year prev_position
1: 1 3 2 1 2 TRUE 1 1 1
2: 2 4 2 1 3 FALSE 2 1 2
3: 3 4 4 4 2 TRUE 3 2 3
4: 4 4 4 4 2 FALSE 4 2 4
5: 1 5 2 4 2 FALSE 2 3 1
I have 2 vectors:
v1 <- c(1, 2, 3, 4, 1, 3, 5, 6, 4)
v2 <- c(1, 2, 3, 4, 5, 6, 7)
I want to calculate the occurrence of values of v1 in v2. The expected result is:
1 2 3 4 5 6 7
2 1 2 2 1 1 0
I know there is a function can do this:
table(v1[v1 %in% v2])
However, it only list the matched values:
1 2 3 4 5 6
2 1 2 2 1 1
How can I show all the values in v2?
You can do
table(factor(v1, levels=unique(v2)))
# 1 2 3 4 5 6 7
# 2 1 2 2 1 1 0