How to access a tuple of tuples in SML? - functional-programming

I have this:
val a = ((1,2),(1,2,1),(1,2,3),5,(4,5,6));
I need a function that returns few "x" is in this tuple...
Example:
Few "5" is in the tuple:
funMagic (a,5);
Must return 2
Help!

There may be some mistake in your question. In SML (as well as other major statically typed functional programming languages such as OCaml and Haskell), tuples have different types depending on the number (and types) of the elements. For example, your tuple a has the following type:
(int * int) * (int * int * int) * (int * int * int) * int * (int * int * int)
As a result, your function funMagic can only take a quintuple (a tuple with 5 elements) whose elements are themselves tuples with 2, 3, 3, 1, and 3 elements, respectively (in fact, there is no "tuple with 1 element" in SML; assume that it is equivalent to the element itself), at least unless you adopt some type encoding trick. Do you perhaps mean lists (such as [[1,2],[1,2,1],[1,2,3],[5],[4,5,6]]) rather than tuples?

The function would look similar to this one. I suggest, your main problem was not to create the function, but to access a position in a tuple of tuples.
funmag: (int*int)*int -> int
funMag (p:(int*int)*int) = #2(#1 p)
This function will "look up" the first position of the big tuple and then jump to the 2nd position of the small tuple. So for example our tuple is ((5,7),3) then our function will return 7

Related

Java 8 functional style to iterate with indexes

I have been practicing java 8 streams and functional style for a while.
Sometimes I try to solve some programming puzzles just using streams.
And during this time I found a class of tasks which I don't know how to solve with streams, only with classical approach.
One example of this kind of tasks is:
Given an array of numbers find index of the element which will make sum of the left part of array below zero.
e.g. for array [1, 2, 3, -1, 3, -10, 9] answer will be 5
My first idea was to use IntStream.generate(0, arr.length)... but then I don't know how to accumulate values and being aware of index same time.
So questions are:
Is it possible to somehow accumulate value over stream and then make conditional exit?
What is then with parallel execution? it's not fitting to problem of finding indexes where we need to be aware of elements order.
I doubt your task is well suited for streams. What you are looking for is a typical scan left operation which is by nature a sequential operation.
For instance imagine the following elements in the pipeline: [1, 2, -4, 5]. A parallel execution may split it into two subparts namely [1, 2] and [-4, 5]. Then what would you do with them ? You cannot sum them independently because it will yields [3] and [1] and then you lost the fact that 1 + 2 - 4 < 0 was respected.
So even if you write a collector that keeps track of the index, and the sum, it won't be able to perform well in parallel (I doubt you can even benefit from it) but you can imagine such a collector for sequential use :
public static Collector<Integer, ?, Integer> indexSumLeft(int limit) {
return Collector.of(
() -> new int[]{-1, 0, 0},
(arr, elem) -> {
if(arr[2] == 0) {
arr[1] += elem;
arr[0]++;
}
if(arr[1] < limit) {
arr[2] = 1;
}
},
(arr1, arr2) -> {throw new UnsupportedOperationException("Cannot run in parallel");},
arr -> arr[0]
);
}
and a simple usage:
int index = IntStream.of(arr).boxed().collect(indexSumLeft(0));
This will still traverse all the elements of the pipeline, so not very efficient.
Also you might consider using Arrays.parallelPrefix if the data-source is an array. Just compute the partial sums over it and then use a stream to find the first index where the sum is below the limit.
Arrays.parallelPrefix(arr, Integer::sum);
int index = IntStream.range(0, arr.length)
.filter(i -> arr[i] < limit)
.findFirst()
.orElse(-1);
Here also all the partial sums are computed (but in parallel).
In short, I would use a simple for-loop.
I can propose a solution using my StreamEx library (which provides additional functions to the Stream API), but I would not be very happy with such solution:
int[] input = {1, 2, 3, -1, 3, -10, 9};
System.out.println(IntStreamEx.of(
IntStreamEx.of(input).scanLeft(Integer::sum)).indexOf(x -> x < 0));
// prints OptionalLong[5]
It uses IntStreamEx.scanLeft operation to compute the array of prefix sums, then searches over this array using IntStreamEx.indexOf operation. While indexOf is short-circuiting, the scanLeft operation will process the whole input and create an intermediate array of the same length as the input which is completely unnecessary when solving the same problem in imperative style.
With new headTail method in my StreamEx library it's possibly to create lazy solution which works well for very long or infinite streams. First, we can define a new intermediate scanLeft operation:
public static <T> StreamEx<T> scanLeft(StreamEx<T> input, BinaryOperator<T> operator) {
return input.headTail((head, tail) ->
scanLeft(tail.mapFirst(cur -> operator.apply(head, cur)), operator)
.prepend(head));
}
This defines a lazy scanLeft using the headTail: it applies given function to the head and the first element of the tail stream, then prepends the head. Now you can use this scanLeft:
scanLeft(StreamEx.of(1, 2, 3, -1, 3, -10, 9), Integer::sum).indexOf(x -> x < 0);
The same can be applied to the infinite stream (e.g. stream of random numbers):
StreamEx<Integer> ints = IntStreamEx.of(new Random(), -100, 100)
.peek(System.out::println).boxed();
int idx = scanLeft(ints, Integer::sum).indexOf(x -> x < 0);
This will run till the cumulative sum becomes negative and returns the index of the corresponding element.

Extract nth element of a tuple

For a list, you can do pattern matching and iterate until the nth element, but for a tuple, how would you grab the nth element?
TL;DR; Stop trying to access directly the n-th element of a t-uple and use a record or an array as they allow random access.
You can grab the n-th element by unpacking the t-uple with value deconstruction, either by a let construct, a match construct or a function definition:
let ivuple = (5, 2, 1, 1)
let squared_sum_let =
let (a,b,c,d) = ivuple in
a*a + b*b + c*c + d*d
let squared_sum_match =
match ivuple with (a,b,c,d) -> a*a + b*b + c*c + d*d
let squared_sum_fun (a,b,c,d) =
a*a + b*b + c*c + d*d
The match-construct has here no virtue over the let-construct, it is just included for the sake of completeness.
Do not use t-uples, Don¹
There are only a few cases where using t-uples to represent a type is the right thing to do. Most of the times, we pick a t-uple because we are too lazy to define a type and we should interpret the problem of accessing the n-th field of a t-uple or iterating over the fields of a t-uple as a serious signal that it is time to switch to a proper type.
There are two natural replacements to t-uples: records and arrays.
When to use records
We can see a record as a t-uple whose entries are labelled; as such, they are definitely the most natural replacement to t-uples if we want to access them directly.
type ivuple = {
a: int;
b: int;
c: int;
d: int;
}
We then access directly the field a of a value x of type ivuple by writing x.a. Note that records are easily copied with modifications, as in let y = { x with d = 0 }. There is no natural way to iterate over the fields of a record, mostly because a record do not need to be homogeneous.
When to use arrays
A large² homogeneous collection of values is adequately represented by an array, which allows direct access, iterating and folding. A possible inconvenience is that the size of an array is not part of its type, but for arrays of fixed size, this is easily circumvented by introducing a private type — or even an abstract type. I described an example of this technique in my answer to the question “OCaml compiler check for vector lengths”.
Note on float boxing
When using floats in t-uples, in records containing only floats and in arrays, these are unboxed. We should therefore not notice any performance modification when changing from one type to the other in our numeric computations.
¹ See the TeXbook.
² Large starts near 4.
Since the length of OCaml tuples is part of the type and hence known (and fixed) at compile time, you get the n-th item by straightforward pattern matching on the tuple. For the same reason, the problem of extracting the n-th element of an "arbitrary-length tuple" cannot occur in practice - such a "tuple" cannot be expressed in OCaml's type system.
You might still not want to write out a pattern every time you need to project a tuple, and nothing prevents you from generating the functions get_1_1...get_i_j... that extract the i-th element from a j-tuple for any possible combination of i and j occuring in your code, e.g.
let get_1_1 (a) = a
let get_1_2 (a,_) = a
let get_2_2 (_,a) = a
let get_1_3 (a,_,_) = a
let get_2_3 (_,a,_) = a
...
Not necessarily pretty, but possible.
Note: Previously I had claimed that OCaml tuples can have at most length 255 and you can simply generate all possible tuple projections once and for all. As #Virgile pointed out in the comments, this is incorrect - tuples can be huge. This means that it is impractical to generate all possible tuple projection functions upfront, hence the restriction "occurring in your code" above.
It's not possible to write such a function in full generality in OCaml. One way to see this is to think about what type the function would have. There are two problems. First, each size of tuple is a different type. So you can't write a function that accesses elements of tuples of different sizes. The second problem is that different elements of a tuple can have different types. Lists don't have either of these problems, which is why you can have List.nth.
If you're willing to work with a fixed size tuple whose elements are all the same type, you can write a function as shown by #user2361830.
Update
If you really have collections of values of the same type that you want to access by index, you should probably be using an array.
here is a function wich return you the string of the ocaml function you need to do that ;) very helpful I use it frequently.
let tup len n =
if n>=0 && n<len then
let rec rep str nn = match nn<1 with
|true ->""
|_->str ^ (rep str (nn-1))in
let txt1 ="let t"^(string_of_int len)^"_"^(string_of_int n)^" tup = match tup with |" ^ (rep "_," n) ^ "a" and
txt2 =","^(rep "_," (len-n-2)) and
txt3 ="->a" in
if n = len-1 then
print_string (txt1^txt3)
else
print_string (txt1^txt2^"_"^txt3)
else raise (Failure "Error") ;;
For example:
tup 8 6;;
return:
let t8_6 tup = match tup with |_,_,_,_,_,_,a,_->a
and of course:
val t8_6 : 'a * 'b * 'c * 'd * 'e * 'f * 'g * 'h -> 'g = <fun>

SML/NJ - linked list which can hold any types

I trying to create a datatype for linked list which can hold all types at same time i.e linked list of void* elements , the designing is to create a Node datatype which hold a record contains Value and Next .
What I did so far is -
datatype 'a anything = dummy of 'a ; (* suppose to hold any type (i.e void*) *)
datatype linkedList = Node of {Value:dummy, Next:linkedList}; (* Node contain this record *)
As you can see the above trying does not works out , but I believe my idea is clear enough , so what changes are required here to make it work ?
I am not sure if you are being forced to use a record type. Because otherwise I think it is simpler to do:
datatype 'a linkedlist = Empty | Cons of 'a * 'a linkedlist
Then you can use it somewhat like:
val jedis = Cons ("Obi-wan", Cons("Luke", Cons("Yoda", Cons("Anakin", Empty))));
I think the use of the record is a poor choice here. I cannot even think how I could represent an empty list with that approach.
-EDIT-
To answer your comment about supporting multiple types:
datatype polymorphic = N of int | S of string | B of bool
Cons(S("A"), Cons(N(5), Cons(N(6), Cons(B(true), Empty))));
Given the circumstances you may prefer SML lists instead:
S("A")::N(5)::N(6)::B(true)::[];
Which produces the list
[S "A",N 5,N 6,B true]
That is, a list of the same type (i.e. polymorphic), but this type is capable of containing different kinds of things through its multiple constructors.
FYI, if it is important that the types of your polymorphic list remain open, you can use SML's built-in exception type: exn. The exn type is open and can be extended anywhere in the program.
exception INT of int
exception STR of string
val xs = [STR "A", INT 5, INT 6] : exn list
You can case selectively on particular types as usual:
val inc_ints = List.map (fn INT i => INT (i + 1) | other => other)
And you can later extend the type without mention of its previous definition:
exception BOOL of bool
val ys = [STR "A", INT 5, INT 6, BOOL true] : exn list
Notice that you can put the construction of any exception in there (here the div-by-zero exception):
val zs = Div :: ys : exn list
That said, this (ab)use really has very few good use cases and you are generally better off with a closed sum type as explained by Edwin in the answer above.

Recursive List Creation Function. Errors in type

I have an Ocaml function that is giving me errors.
What I am trying to do:
Recursively create a List of random numbers (0-2) of size "limit".
Here's what I have:
let rec carDoorNumbers = fun limit ->
match limit with
| [1] -> Random.int 3
| [] -> Random.int 3 :: carDoorNumbers (limit-1);;
I am getting this error:
Error: This expression has type 'a list
but an expression was expected of type int
Think about what your function has to do: given a limit, you have to create a list of numbers. So your type is something like carDoorNumbers : int -> int list.
Looking at that, it seems you have two errors. First, you're matching limit (which should be an int) against a list pattern. [1] -> ... matches a list containing only the element 1 and [] matches the empty list; you really want to match against the number 1 and any other number n.
The second error is that you return two different types in your match statement. Remember that you are supposed to be returning a list. In the first case, you are returning Random.int 3, which is an int rather than an int list. What you really want to return here is something like [Random.int 3].
The error you got is a little confusing. Since the first thing you returned was an int, it expects your second thing to also be an int. However, your second case was actually correct: you do return an int list! However, the compiler does not know what you meant, so its error is backwards; rather than changing the int list to an int, you need to change the int to an int list.
Your match expression treats limit like a list. Both [1] and [] are lists. That's what the compiler is telling you. But it seems limit should be an integer.
To match an integer, just use an integer constant. No square brackets.
(As a side comment, you might want to be sure the function works well when you pass it 0.)

What is 'Pattern Matching' in functional languages?

I'm reading about functional programming and I've noticed that Pattern Matching is mentioned in many articles as one of the core features of functional languages.
Can someone explain for a Java/C++/JavaScript developer what does it mean?
Understanding pattern matching requires explaining three parts:
Algebraic data types.
What pattern matching is
Why its awesome.
Algebraic data types in a nutshell
ML-like functional languages allow you define simple data types called "disjoint unions" or "algebraic data types". These data structures are simple containers, and can be recursively defined. For example:
type 'a list =
| Nil
| Cons of 'a * 'a list
defines a stack-like data structure. Think of it as equivalent to this C#:
public abstract class List<T>
{
public class Nil : List<T> { }
public class Cons : List<T>
{
public readonly T Item1;
public readonly List<T> Item2;
public Cons(T item1, List<T> item2)
{
this.Item1 = item1;
this.Item2 = item2;
}
}
}
So, the Cons and Nil identifiers define simple a simple class, where the of x * y * z * ... defines a constructor and some data types. The parameters to the constructor are unnamed, they're identified by position and data type.
You create instances of your a list class as such:
let x = Cons(1, Cons(2, Cons(3, Cons(4, Nil))))
Which is the same as:
Stack<int> x = new Cons(1, new Cons(2, new Cons(3, new Cons(4, new Nil()))));
Pattern matching in a nutshell
Pattern matching is a kind of type-testing. So let's say we created a stack object like the one above, we can implement methods to peek and pop the stack as follows:
let peek s =
match s with
| Cons(hd, tl) -> hd
| Nil -> failwith "Empty stack"
let pop s =
match s with
| Cons(hd, tl) -> tl
| Nil -> failwith "Empty stack"
The methods above are equivalent (although not implemented as such) to the following C#:
public static T Peek<T>(Stack<T> s)
{
if (s is Stack<T>.Cons)
{
T hd = ((Stack<T>.Cons)s).Item1;
Stack<T> tl = ((Stack<T>.Cons)s).Item2;
return hd;
}
else if (s is Stack<T>.Nil)
throw new Exception("Empty stack");
else
throw new MatchFailureException();
}
public static Stack<T> Pop<T>(Stack<T> s)
{
if (s is Stack<T>.Cons)
{
T hd = ((Stack<T>.Cons)s).Item1;
Stack<T> tl = ((Stack<T>.Cons)s).Item2;
return tl;
}
else if (s is Stack<T>.Nil)
throw new Exception("Empty stack");
else
throw new MatchFailureException();
}
(Almost always, ML languages implement pattern matching without run-time type-tests or casts, so the C# code is somewhat deceptive. Let's brush implementation details aside with some hand-waving please :) )
Data structure decomposition in a nutshell
Ok, let's go back to the peek method:
let peek s =
match s with
| Cons(hd, tl) -> hd
| Nil -> failwith "Empty stack"
The trick is understanding that the hd and tl identifiers are variables (errm... since they're immutable, they're not really "variables", but "values" ;) ). If s has the type Cons, then we're going to pull out its values out of the constructor and bind them to variables named hd and tl.
Pattern matching is useful because it lets us decompose a data structure by its shape instead of its contents. So imagine if we define a binary tree as follows:
type 'a tree =
| Node of 'a tree * 'a * 'a tree
| Nil
We can define some tree rotations as follows:
let rotateLeft = function
| Node(a, p, Node(b, q, c)) -> Node(Node(a, p, b), q, c)
| x -> x
let rotateRight = function
| Node(Node(a, p, b), q, c) -> Node(a, p, Node(b, q, c))
| x -> x
(The let rotateRight = function constructor is syntax sugar for let rotateRight s = match s with ....)
So in addition to binding data structure to variables, we can also drill down into it. Let's say we have a node let x = Node(Nil, 1, Nil). If we call rotateLeft x, we test x against the first pattern, which fails to match because the right child has type Nil instead of Node. It'll move to the next pattern, x -> x, which will match any input and return it unmodified.
For comparison, we'd write the methods above in C# as:
public abstract class Tree<T>
{
public abstract U Match<U>(Func<U> nilFunc, Func<Tree<T>, T, Tree<T>, U> nodeFunc);
public class Nil : Tree<T>
{
public override U Match<U>(Func<U> nilFunc, Func<Tree<T>, T, Tree<T>, U> nodeFunc)
{
return nilFunc();
}
}
public class Node : Tree<T>
{
readonly Tree<T> Left;
readonly T Value;
readonly Tree<T> Right;
public Node(Tree<T> left, T value, Tree<T> right)
{
this.Left = left;
this.Value = value;
this.Right = right;
}
public override U Match<U>(Func<U> nilFunc, Func<Tree<T>, T, Tree<T>, U> nodeFunc)
{
return nodeFunc(Left, Value, Right);
}
}
public static Tree<T> RotateLeft(Tree<T> t)
{
return t.Match(
() => t,
(l, x, r) => r.Match(
() => t,
(rl, rx, rr) => new Node(new Node(l, x, rl), rx, rr))));
}
public static Tree<T> RotateRight(Tree<T> t)
{
return t.Match(
() => t,
(l, x, r) => l.Match(
() => t,
(ll, lx, lr) => new Node(ll, lx, new Node(lr, x, r))));
}
}
For seriously.
Pattern matching is awesome
You can implement something similar to pattern matching in C# using the visitor pattern, but its not nearly as flexible because you can't effectively decompose complex data structures. Moreover, if you are using pattern matching, the compiler will tell you if you left out a case. How awesome is that?
Think about how you'd implement similar functionality in C# or languages without pattern matching. Think about how you'd do it without test-tests and casts at runtime. Its certainly not hard, just cumbersome and bulky. And you don't have the compiler checking to make sure you've covered every case.
So pattern matching helps you decompose and navigate data structures in a very convenient, compact syntax, it enables the compiler to check the logic of your code, at least a little bit. It really is a killer feature.
Short answer: Pattern matching arises because functional languages treat the equals sign as an assertion of equivalence instead of assignment.
Long answer: Pattern matching is a form of dispatch based on the “shape” of the value that it's given. In a functional language, the datatypes that you define are usually what are known as discriminated unions or algebraic data types. For instance, what's a (linked) list? A linked list List of things of some type a is either the empty list Nil or some element of type a Consed onto a List a (a list of as). In Haskell (the functional language I'm most familiar with), we write this
data List a = Nil
| Cons a (List a)
All discriminated unions are defined this way: a single type has a fixed number of different ways to create it; the creators, like Nil and Cons here, are called constructors. This means that a value of the type List a could have been created with two different constructors—it could have two different shapes. So suppose we want to write a head function to get the first element of the list. In Haskell, we would write this as
-- `head` is a function from a `List a` to an `a`.
head :: List a -> a
-- An empty list has no first item, so we raise an error.
head Nil = error "empty list"
-- If we are given a `Cons`, we only want the first part; that's the list's head.
head (Cons h _) = h
Since List a values can be of two different kinds, we need to handle each one separately; this is the pattern matching. In head x, if x matches the pattern Nil, then we run the first case; if it matches the pattern Cons h _, we run the second.
Short answer, explained: I think one of the best ways to think about this behavior is by changing how you think of the equals sign. In the curly-bracket languages, by and large, = denotes assignment: a = b means “make a into b.” In a lot of functional languages, however, = denotes an assertion of equality: let Cons a (Cons b Nil) = frob x asserts that the thing on the left, Cons a (Cons b Nil), is equivalent to the thing on the right, frob x; in addition, all variables used on the left become visible. This is also what's happening with function arguments: we assert that the first argument looks like Nil, and if it doesn't, we keep checking.
It means that instead of writing
double f(int x, int y) {
if (y == 0) {
if (x == 0)
return NaN;
else if (x > 0)
return Infinity;
else
return -Infinity;
} else
return (double)x / y;
}
You can write
f(0, 0) = NaN;
f(x, 0) | x > 0 = Infinity;
| else = -Infinity;
f(x, y) = (double)x / y;
Hey, C++ supports pattern matching too.
static const int PositiveInfinity = -1;
static const int NegativeInfinity = -2;
static const int NaN = -3;
template <int x, int y> struct Divide {
enum { value = x / y };
};
template <bool x_gt_0> struct aux { enum { value = PositiveInfinity }; };
template <> struct aux<false> { enum { value = NegativeInfinity }; };
template <int x> struct Divide<x, 0> {
enum { value = aux<(x>0)>::value };
};
template <> struct Divide<0, 0> {
enum { value = NaN };
};
#include <cstdio>
int main () {
printf("%d %d %d %d\n", Divide<7,2>::value, Divide<1,0>::value, Divide<0,0>::value, Divide<-1,0>::value);
return 0;
};
Pattern matching is sort of like overloaded methods on steroids. The simplest case would be the same roughly the same as what you seen in java, arguments are a list of types with names. The correct method to call is based on the arguments passed in, and it doubles as an assignment of those arguments to the parameter name.
Patterns just go a step further, and can destructure the arguments passed in even further. It can also potentially use guards to actually match based on the value of the argument. To demonstrate, I'll pretend like JavaScript had pattern matching.
function foo(a,b,c){} //no pattern matching, just a list of arguments
function foo2([a],{prop1:d,prop2:e}, 35){} //invented pattern matching in JavaScript
In foo2, it expects a to be an array, it breaks apart the second argument, expecting an object with two props (prop1,prop2) and assigns the values of those properties to variables d and e, and then expects the third argument to be 35.
Unlike in JavaScript, languages with pattern matching usually allow multiple functions with the same name, but different patterns. In this way it is like method overloading. I'll give an example in erlang:
fibo(0) -> 0 ;
fibo(1) -> 1 ;
fibo(N) when N > 0 -> fibo(N-1) + fibo(N-2) .
Blur your eyes a little and you can imagine this in javascript. Something like this maybe:
function fibo(0){return 0;}
function fibo(1){return 1;}
function fibo(N) when N > 0 {return fibo(N-1) + fibo(N-2);}
Point being that when you call fibo, the implementation it uses is based on the arguments, but where Java is limited to types as the only means of overloading, pattern matching can do more.
Beyond function overloading as shown here, the same principle can be applied other places, such as case statements or destructuring assingments. JavaScript even has this in 1.7.
Pattern matching allows you to match a value (or an object) against some patterns to select a branch of the code. From the C++ point of view, it may sound a bit similar to the switch statement. In functional languages, pattern matching can be used for matching on standard primitive values such as integers. However, it is more useful for composed types.
First, let's demonstrate pattern matching on primitive values (using extended pseudo-C++ switch):
switch(num) {
case 1:
// runs this when num == 1
case n when n > 10:
// runs this when num > 10
case _:
// runs this for all other cases (underscore means 'match all')
}
The second use deals with functional data types such as tuples (which allow you to store multiple objects in a single value) and discriminated unions which allow you to create a type that can contain one of several options. This sounds a bit like enum except that each label can also carry some values. In a pseudo-C++ syntax:
enum Shape {
Rectangle of { int left, int top, int width, int height }
Circle of { int x, int y, int radius }
}
A value of type Shape can now contain either Rectangle with all the coordinates or a Circle with the center and the radius. Pattern matching allows you to write a function for working with the Shape type:
switch(shape) {
case Rectangle(l, t, w, h):
// declares variables l, t, w, h and assigns properties
// of the rectangle value to the new variables
case Circle(x, y, r):
// this branch is run for circles (properties are assigned to variables)
}
Finally, you can also use nested patterns that combine both of the features. For example, you could use Circle(0, 0, radius) to match for all shapes that have the center in the point [0, 0] and have any radius (the value of the radius will be assigned to the new variable radius).
This may sound a bit unfamiliar from the C++ point of view, but I hope that my pseudo-C++ make the explanation clear. Functional programming is based on quite different concepts, so it makes better sense in a functional language!
Pattern matching is where the interpreter for your language will pick a particular function based on the structure and content of the arguments you give it.
It is not only a functional language feature but is available for many different languages.
The first time I came across the idea was when I learned prolog where it is really central to the language.
e.g.
last([LastItem], LastItem).
last([Head|Tail], LastItem) :-
last(Tail, LastItem).
The above code will give the last item of a list. The input arg is the first and the result is the second.
If there is only one item in the list the interpreter will pick the first version and the second argument will be set to equal the first i.e. a value will be assigned to the result.
If the list has both a head and a tail the interpreter will pick the second version and recurse until it there is only one item left in the list.
For many people, picking up a new concept is easier if some easy examples are provided, so here we go:
Let's say you have a list of three integers, and wanted to add the first and the third element. Without pattern matching, you could do it like this (examples in Haskell):
Prelude> let is = [1,2,3]
Prelude> head is + is !! 2
4
Now, although this is a toy example, imagine we would like to bind the first and third integer to variables and sum them:
addFirstAndThird is =
let first = head is
third = is !! 3
in first + third
This extraction of values from a data structure is what pattern matching does. You basically "mirror" the structure of something, giving variables to bind for the places of interest:
addFirstAndThird [first,_,third] = first + third
When you call this function with [1,2,3] as its argument, [1,2,3] will be unified with [first,_,third], binding first to 1, third to 3 and discarding 2 (_ is a placeholder for things you don't care about).
Now, if you only wanted to match lists with 2 as the second element, you can do it like this:
addFirstAndThird [first,2,third] = first + third
This will only work for lists with 2 as their second element and throw an exception otherwise, because no definition for addFirstAndThird is given for non-matching lists.
Until now, we used pattern matching only for destructuring binding. Above that, you can give multiple definitions of the same function, where the first matching definition is used, thus, pattern matching is a little like "a switch statement on stereoids":
addFirstAndThird [first,2,third] = first + third
addFirstAndThird _ = 0
addFirstAndThird will happily add the first and third element of lists with 2 as their second element, and otherwise "fall through" and "return" 0. This "switch-like" functionality can not only be used in function definitions, e.g.:
Prelude> case [1,3,3] of [a,2,c] -> a+c; _ -> 0
0
Prelude> case [1,2,3] of [a,2,c] -> a+c; _ -> 0
4
Further, it is not restricted to lists, but can be used with other types as well, for example matching the Just and Nothing value constructors of the Maybe type in order to "unwrap" the value:
Prelude> case (Just 1) of (Just x) -> succ x; Nothing -> 0
2
Prelude> case Nothing of (Just x) -> succ x; Nothing -> 0
0
Sure, those were mere toy examples, and I did not even try to give a formal or exhaustive explanation, but they should suffice to grasp the basic concept.
You should start with the Wikipedia page that gives a pretty good explanation. Then, read the relevant chapter of the Haskell wikibook.
This is a nice definition from the above wikibook:
So pattern matching is a way of
assigning names to things (or binding
those names to those things), and
possibly breaking down expressions
into subexpressions at the same time
(as we did with the list in the
definition of map).
Here is a really short example that shows pattern matching usefulness:
Let's say you want to sort up an element in a list:
["Venice","Paris","New York","Amsterdam"]
to (I've sorted up "New York")
["Venice","New York","Paris","Amsterdam"]
in an more imperative language you would write:
function up(city, cities){
for(var i = 0; i < cities.length; i++){
if(cities[i] === city && i > 0){
var prev = cities[i-1];
cities[i-1] = city;
cities[i] = prev;
}
}
return cities;
}
In a functional language you would instead write:
let up list value =
match list with
| [] -> []
| previous::current::tail when current = value -> current::previous::tail
| current::tail -> current::(up tail value)
As you can see the pattern matched solution has less noise, you can clearly see what are the different cases and how easy it's to travel and de-structure our list.
I've written a more detailed blog post about it here.

Resources