replace NA by truncated normal distribution values in r - r

I am trying to replace NAs by truncated normal distribution values.
First I used sample as follows and the function worked:
v.new <- replace(vector,v, sample(8,length(v),replace =FALSE))
However when I try to use rtnorm it seems not to work. I got any error messages and it takes ages to replace the NAs by the desired interval. Any suggestion to make this work?
library(msm)
# Some data
data("airquality")
airquality$Ozone
# My function
add.trunc.to.NAvector <- function(vector){
v <- NULL
for(i in 1:length(vector)){
if(is.na(vector[i])==TRUE)
v <- append(v, i)
}
mean.val <- mean(vector)
sd.val <- sd(vector)
min.val <- mean.val - 4 * sd.val
max.val <- mean.val + 4 * sd.val
v.new <- replace(vector,v, rtnorm(length(v), lower = min.val, upper = max.val))
return(v.new)
}

Should not this work?
v <- airquality$Ozone
v.new <- v
indices <- which(is.na(v))
m <- mean(v[-indices])
s <- sd(v[-indices])
v.new[indices] <- rtnorm(length(indices), lower = m-4*s, upper = m+4*s)

Related

Cannot make sense of the error while using OptimParallel in R

I'm trying to run the following function mentioned below using OptimParallel in R on a certain data set. The code is as follows:
install.packages("optimParallel")
install.packages('parallel')
library(parallel)
library(optimParallel)
library(doParallel)
library(data.table)
library(Rlab)
library(HDInterval)
library(mvtnorm)
library(matrixStats)
library(dplyr)
library(cold)
## Bolus data:
data("bolus")
d1 <- bolus
d1$group <- ifelse(d1$group == "2mg",1,0)
colnames(d1) <- c("index",'group',"time","y")
d2 <- d1 %>% select(index, y, group, time)
colnames(d2) <- c('index','y','x1','x2') ### Final data
## Modification of the objective function:
## Another approach:
dpd_poi <- function(x,fixed = c(rep(FALSE,5))){
params <- fixed
dpd_1 <- function(p){
params[!fixed] <- p
alpha <- params[1]
beta_0 <- params[2]
beta_1 <- params[3]
beta_2 <- params[4]
rho <- params[5]
add_pi <- function(d){
k <- beta_0+(d[3]*beta_1)+(d[4]*beta_2)
k1 <- exp(k) ## for Poisson regression
d <- cbind(d,k1)
}
dat_split <- split(x , f = x$index)
result <- lapply(dat_split, add_pi)
result <- rbindlist(result)
result <- as.data.frame(result)
colnames(result) <- c('index','y','x1','x2','lamb')
result_split <- split(result, f = result$index)
expression <- function(d){
bin <- as.data.frame(combn(d$y , 2))
pr <- as.data.frame(combn(d$lamb , 2))
## Evaluation of the probabilities:
f_jk <- function(u,v){
dummy_func <- function(x,y){
ppois(x, lambda = y)
}
dummy_func_1 <- function(x,y){
ppois(x-1, lambda = y)
}
k <- mapply(dummy_func,u,v)
k_1 <- mapply(dummy_func_1,u,v)
inv1 <- inverseCDF(as.matrix(k), pnorm)
inv2 <- inverseCDF(as.matrix(k_1), pnorm)
mean <- rep(0,2)
lower <- inv2
upper <- inv1
corr <- diag(2)
corr[lower.tri(corr)] <- rho
corr[upper.tri(corr)] <- rho
prob <- pmvnorm(lower = lower, upper = upper, mean = mean, corr = corr)
prob <- (1+(1/alpha))*(prob^alpha)
## First expression: (changes for Poisson regression)
lam <- as.vector(t(v))
v1 <- rpois(1000, lambda = lam[1])
v2 <- rpois(1000, lambda = lam[2])
all_possib <- as.data.frame(rbind(v1,v2))
new_func <- function(u){
k <- mapply(dummy_func,u,v)
k_1 <- mapply(dummy_func_1,u,v)
inv1_1 <- inverseCDF(as.matrix(k), pnorm)
inv2_1 <- inverseCDF(as.matrix(k_1), pnorm)
mean1 <- rep(0,2)
lower1 <- inv2_1
upper1 <- inv1_1
corr1 <- diag(2)
corr1[lower.tri(corr1)] <- rho
corr1[upper.tri(corr1)] <- rho
prob1 <- pmvnorm(lower = lower1, upper = upper1, mean = mean1, corr = corr1)
prob1 <- prob1^(alpha)
}
val <- apply(all_possib, 2, new_func)
val_s <- mean(val) ## approximation
return(val_s - prob)
}
final_res <- mapply(f_jk, bin, pr)
final_value <- sum(final_res)
}
u <- sapply(result_split,expression)
return(sum(u))
}
}
## run the objective function:
cl <- makeCluster(25)
setDefaultCluster(cl=cl)
clusterExport(cl,c('d2','val'))
clusterEvalQ(cl,c(library(data.table), library(Rlab),library(HDInterval),library(mvtnorm),library(matrixStats),library(dplyr),library(cold)))
val <- dpd_poi(d2, c(0.5,FALSE,FALSE,FALSE,FALSE))
optimParallel(par = c(beta_0 =1, beta_1 =0.1 ,beta_2 = 1,rho=0.2),fn = val ,method = "L-BFGS-B",lower = c(-10,-10,-10,0),upper = c(Inf,Inf,Inf,1))
stopCluster(cl)
After running for some time, it returns the following error:
checkForRemoteErrors(val)
9 nodes produced errors; first error: missing value where TRUE/FALSE needed
However, when I make a minor change in the objective function (pick 2 random numbers from rpois instead of 1000) and run the same code using optim, it converges and gives me a proper result. This is a Monte Carlo simulation and it does not make sense to draw so few Poisson variables. I have to use optimParllel, otherwise, it takes way too long to converge. I could also run this code using simulated data.
I'm unable to figure out where the issue truly lies. I truly appreciate any help in this regard.

How to perform a bootstrap and find confidence interval in R

I want to create a custom bootstrap function because I want to better understand what bootstrap is doing and it seems like the other bootstrap libraries out there does not solve my issue.
The Problem: I would like to create my own wald confidence interval function where it takes in the bootstrap data, outputs the confidence interval, test the confidence interval is within a range, and gets the coverage.
Right now, I am getting this type of error:
Error in bootresults[i,}<-waldCI(y=bootdata[i], n=numTrials):number of
items to replace is not a multiple of replacement length
The goal: My goal is to get the bootresults dataset to return 4 columns(p value,One that shows the upper bound, lower bound, and whether or not the p is in the interval) and get a graph similar to this one:
Wald interval chart
Code:
set.seed(42)
samples10 <- list()
i <- 1
while(i < 100) {
sample10[[i]] <- rbinom(1500, size=10, prob=i*.01) ## rows=1500 ;columns=10
i <- i + 1
}
sample10 <- data.frame(samples10)
colnames(sample10) <- c(seq(.01, .99, .01)) ## p-values
waldconfidenceinterval <- function(y, n, alpha=0.05) {
p <- colSums(y)/(n*200)
sd <- sqrt(p*((1 - p)/(n*200)))
z <- qnorm(c(alpha/2, 1 - alpha/2))
ci <- p + z*sd
return(ci)
}
B <- 200
numTrials <- 10
bootresults <- matrix(ncol=length(sample10), nrow=B) ## rows=200, cols=99
## empty matrix in the beginning
set.seed(42)
for(i in seq_len(B)) {
bootdata <- sample10[sample(B, replace=T), ]
bootresults[i, ] <- waldCI(y=bootdata[i], n=numTrials)
## Pseudocode:
# boot_test_data$in_interval <-
# ifelse(boot_test_data$lower1 < i/100 & i/100 < boot_test_data$upper1, 1, 0)
# coverage[i] <- sum(boot_test_data$in_interval) / length(boot_test_data$in_interval)
}
Any help is greatly appreciated since I am fairly new to R.
Looks like that you want to initialize a three-dimensional array bootresults rather than a two-dimensional matrix. In your waldCI() you may use colMeans.
waldCI <- function(y, alpha=0.05) {
p <- colMeans(y)
se <- sqrt(p*(1 - p)/nrow(y))
z <- qnorm(1 - alpha/2)
ci <- p + z*se %*% cbind(lower=-1, upper=1)
return(ci)
}
B <- 200
numTrials <- 10
## initialize array
bootresults1 <- array(dim=c(ncol(samples10), 4, B),
dimnames=list(c(), c("p.values", "lower", "upper", "in.int"), c()))
set.seed(42)
for(i in seq_len(B)) {
samp <- samples10[sample(nrow(samples10), numTrials, replace=F), ]
ci <- waldCI(samp)
bootresults1[,,i] <- cbind(p.values, ci, in.int=ci[, 1] < p.values & p.values < ci[, 2])
}
coverage <- rowMeans(bootresults[,4,])
plot(p.values, coverage, type="l", main="My Plot")
Similar approach, more R-ish, though:
p.values <- seq(.01, .99, .01)
set.seed(42)
samples10 <- `colnames<-`(sapply(p.values, function(pr) rbinom(1.5e3, 1, pr)), p.values)
BOOT <- function(numTrials, ...) {
samp <- samples10[sample(nrow(samples10), numTrials, replace=F), ]
ci <- waldCI(samp, ...)
cbind(p.values, ci, in.int=ci[, 1] < p.values & p.values < ci[, 2])
}
B <- 200
numTrials <- 10
set.seed(42)
bootresults2 <- replicate(B, BOOT(numTrials=10))
stopifnot(all.equal(bootresults1, bootresults2))
Data:
Note, that I used rbinom(..., size=1, ...) to create your sample data. The use of "p" as an object name suggested that the data should be binomial.
set.seed(42)
samples10 <- matrix(nrow=1500, ncol=99, dimnames=list(c(), c(seq(.01, .99, .01))))
i <- 1
while (i < 100) {
samples10[, i] <- rbinom(1500, size=1, prob=i*.01) ## rows=1500 ;columns=10
i <- i + 1
}
Without a while loop, you could proceed vectorized:
p.values <- seq(.01, .99, .01)
set.seed(42)
samples10 <- `colnames<-`(sapply(p.values, function(pr) rbinom(1.5e3, 1, pr)), p.values)

R function writing - getting error: NaNs producedError in tsort[U + 1]only 0's may be mixed with negative subscripts

I am creating an R function that calculates a bootstrapped bias corrected and accelerated interval, (not using any pre-installed packages) My code seems to be working but am struggling actually writing the code for the lower and upper limits of the interval. Any suggestions would be helpful.
BCa <- function(stat,X,k,level=0.95,...){
if(!is.numeric(k)||k<=0){
stop("The number of bootstrap resamples 'k' must be a numeric value greater than 0")
}
t.star <- stat(X,...)
t.k <- rep(NA,k)
for(i in 1:k){
Xi <- sample(X,replace=TRUE)
t.k[i] <- stat(Xi,...)
}
z0 <- qnorm(mean(t.k<t.star))
n <- length(X)
t.minus.j <- rep(NA,n)
for(j in 1:n){
Xj <- X[-j]
t.minus.j[j]<- stat(Xj,...)
}
t.bar.minus <- mean(t.minus.j)
t.diff <- t.bar.minus - t.minus.j
a <- ((sum(t.diff^3))/(6*(t.diff^2)^3/2))
alpha <- 1-level
tsort <- sort(t.k, decreasing = FALSE)
L <- pnorm(z0 + ((z0+qnorm(alpha/2))/((1-a)*z0+qnorm(alpha/2))))
U <- qnorm(z0 + ((z0+qnorm(alpha/2))/((1-a)*z0+qnorm(alpha/2))))
if(!is.integer(L)){
L <- floor(L*(k+1))
}
if(!is.integer(U)){
U <- ceiling(U*(k+1))
}
lower.limit <- tsort[L]
upper.limit <- tsort[U+1]
return(list(t.star=t.star,ci=c(lower.limit,upper.limit)))
}

Plot cumulative value for different series

I have run a short simulation and want to plot the outcomes of each simulation in terms of the "running sum" over parameter k. For reference, I want to end up with a plot that looks similar to the ones in this article:
https://www.pinnacle.com/en/betting-articles/Betting-Strategy/betting-bankroll-management/VDM2GY6UX3B552BG
The following is the code for the simulation:
## Simulating returns over k bets.
odds <- 1.5
k <- 100
return <- odds - 1
edge <- 0.04
pw <- 1/(odds/(1-edge))
pl <- 1-pw
nsims <- 10000
set.seed(42)
sims <- replicate(nsims, {
x <- sample(c(-1,return), k, TRUE, prob=c(pl, pw))
})
rownames(sims) <- c(1:k)
colnames(sims) <- c(1:nsims)
If I wasn't being clear in the description let me know.
Okay so here is how you can achieve the plot of the cumulative value over bets (I set nsims <- 10 so that the plot is readable).
First I generate the data :
## Simulating returns over k bets.
odds <- 1.5
k <- 100
return <- odds - 1
edge <- 0.04
pw <- 1/(odds/(1-edge))
pl <- 1-pw
nsims <- 10
set.seed(42)
sims <- replicate(nsims, {
x <- sample(c(-1,return), k, TRUE, prob=c(pl, pw))
})
rownames(sims) <- c(1:k)
colnames(sims) <- c(1:nsims)
Then I create a dataframe containing the results of the n simulations (10 here) :
df <- as.data.frame(sims)
What we want to plot is the cumulative sum, not the result at a specific bet so we iterate through the columns (i.e. the simulations) to have that value :
for (i in colnames(df)){
df[[i]] <- cumsum(df[[i]])
}
df <- mutate(df, bets = rownames(df))
output <- melt(df, id.vars = "bets", variable.name = 'simulation')
Now we can plot our data :
ggplot(output, aes(bets,value,group=simulation)) + geom_line(aes(colour = simulation))

Extracting row and column in R

I have to write a one sample proportion Z test function in R. I need to have the sample proportion be the proportion of data in the first factor level.
For example,
data <- factor(c(NA, rep("a", 60), rep("b", 40)))
table(data)
a b
60 40
And I need the sample proportion to be 60/100. Here is portion of my code and it is returning an error saying unexpected symbol in mtab <- addmargins(table(data)).
hyp_test <- function(data, hyp_val=NULL, alpha, alternative="two-sided",graph=FALSE) {
n <- sum(!is.na(data))
ifelse(is.factor(data),
mtab <- addmargins(table(data))
phat <- mtab[1]/mtab[3]
qhat <- 1 - phat
if(length(hyp_val) > 0) {
q <- 1-hyp_val
SE.phat <- sqrt((hyp_val*q)/n)
ts.z <- (phat - hyp_val)/SE.phat
p.val <- pnorm(ts.z)*2
if(alternative=="less") {
p.val <- pnorm(ts.z)
}
if(alternative=="greater") {
p.val <- 1 - p.val
}
}
Any help would be much appreciated. I need to basically find out how to find the sample proportion.
In addition to what r2evans states, you should review if statements and pnorm. This is a guesstimate of what you are trying to accomplish since the code is cut off.
hyp_test <- function(data, hyp_val=NULL, alpha, alternative="two-sided",graph=FALSE) {
n <- sum(!is.na(data))
mtab <- addmargins(table(data))
phat <- mtab[1]/mtab[3]
qhat <- 1 - phat
q <- 1-hyp_val
SE.phat <- sqrt((hyp_val*q)/n)
ts.z <- (phat - hyp_val)/SE.phat
p.val <- ifelse(alternative=="two-sided", dnorm(ts.z)*2,ifelse(alternative=="less",1-dnorm(ts.z), dnorm(ts.z)))
if(graph==TRUE) {plot(...)}
return(p.val)
}

Resources