Member function for nested list in Scheme - recursion

Can someone show me the error in this code please?
I want to generalize the member function to support nested lists. I need to search thing inside the nested list and return the rest of the list when I found thing. I don't really understand whats wrong with the code below.
(define (memberk thing lis)
(cond
((null? lis) #f)
((list? (car lis))
(cons (memberk thing (car lis))
(memberk thing (cdr lis))))
(else
(if (equal? (car lis) thing)
lis
(memberk thing (cdr lis))))))
Expexted output: (memberk 3 '(1 4 (3 1) 2)) = '((3 1) 2)
Actual output from the code above: '((3 1) . #f)

So how I see this you would like the top level cons that has the key found somewhere in car. I'm thinking something like:
(define (memberk needle lst)
(define (found? haystack)
(or (equal? needle haystack)
(and (pair? haystack)
(or (found? (car haystack))
(found? (cdr haystack))))))
(let loop ((lst lst))
(cond ((null? lst) #f)
((found? (car lst)) lst)
(else (loop (cdr lst))))))
(memberk '(a) '(a b (b (a) c) c d)) ; ==> ((b (a) c) c d)

Something like this?
It is a bit unclear what you want - since there is only one test case.
(define (memberk thing lis)
(cond
[(null? lis)
#f]
[(and (cons? (car lis)) (memberk thing (car lis)))
=> (λ (found) (cons found (cdr lis)))]
[(equal? (car lis) thing)
lis]
[else
(memberk thing (cdr lis))]))

Related

Implementing last-non-zero without continuations

last-non-zero takes a list of numbers and return the last cdr whose car is 0.
So, I can implement it using continuations, but how do I do this with natural recursion.
(define last-non-zero
(lambda (ls)
(let/cc return
(letrec
((lnz
(lambda (ls)
(cond
((null? ls) '())
((zero? (car ls)) ;; jump out when we get to last 0.
(return (lnz (cdr ls))))
(else
(cons (car ls) (lnz (cdr ls))))))))
(lnz ls)))))
Here's an obvious version which is not tail-recursive:
(define (last-non-zero l)
;; Return the last cdr of l which does not contain zero
;; or #f if there is none
(cond
((null? l)
#f)
((zero? (car l))
(let ((lnzc (last-non-zero (cdr l))))
;; This is (or lnzc (cdr l)) but that makes me feel bad
(if lnzc
lnzc
(cdr l))))
(else
(last-non-zero (cdr l)))))
Here is that version turned into a tail-recursive equivalent with also the zero test moved around a bit.
(define (last-non-zero l)
(let lnzl ([lt l]
[r #f])
(if (null? lt)
r
(lnzl (cdr lt) (if (zero? (car lt)) (cdr lt) r)))))
It's much clearer in this last version that the list is traversed exactly once.
Please indicate if I have correctly understood the problem:
#lang scheme
; returns cdr after last zero in lst
(define (last-non-zero lst)
; a helper function with 'saved' holding progress
(define (lnz-iter lst saved)
(if (null? lst)
saved
(if (zero? (car lst))
(lnz-iter (cdr lst) (cdr lst))
(lnz-iter (cdr lst) saved))))
(lnz-iter lst '()))
(last-non-zero '(1 2 3 0 7 9)) ; result (7 9)
Racket's takef-right can do it:
> (takef-right '(1 2 0 3 4 0 5 6 7) (lambda (n) (not (zero? n))))
'(5 6 7)
But assuming you have an assignment where you're supposed to write the logic yourself instead of just using a built in function, one easy if not very efficient approach is to reverse the list, build a new list out of everything up to the first zero, and return that. Something like:
(define (last-non-zero ls)
(let loop ([res '()]
[ls (reverse ls)])
(if (or (null? ls) (zero? (car ls)))
res
(loop (cons (car ls) res) (cdr ls)))))
Using your implementation where you return the argument in the event there are no zero you can just have a variable to keep the value you think has no zero values until you hit it and then update both:
(define (last-non-zero lst)
(let loop ((lst lst) (result lst))
(cond ((null? lst) result)
((zero? (car lst)) (loop (cdr lst) (cdr lst)))
(else (loop (cdr lst) result)))))
(last-non-zero '()) ; ==> ()
(last-non-zero '(2 3)) ; ==> (2 3)
(last-non-zero '(2 3 0)) ; ==> ()
(last-non-zero '(2 3 0 1 2)) ; ==> (1 2)
(define last-non-zero
(lambda (l)
((lambda (s) (s s l (lambda (x) x)))
(lambda (s l* ret)
(if (null? l*)
(ret '())
(let ((a (car l*))
(r (cdr l*)))
(if (zero? a)
(s s r (lambda (x) x))
(s s r
(lambda (r)
(ret (cons a r)))))))))))
Also possible, to use foldr:
(define (last-non-zero l)
(reverse (foldl (lambda (e res) (if (zero? e) '() (cons e res))) 0 l)))
Or use recursion:
(define (last-non-zero l (res '()))
(cond ((empty? l) res)
((zero? (car l)) (last-non-zero (cdr l) (cdr l)))
(else (last-non-zero (cdr l) res))))

Why is this function returning true when it should be returning false?

So, I have this helper function that checks to see if there is a reflexive relationship between a list and a list of pairs.
(define helper
(lambda (L S)
(cond
((if (equal? L '()) #f ;; here, when L equals empty list, it should return #f, but somehow it returns #t even if L is '().
(if (equal? S (car (car L)))
(if (list-equal? (car L))#t
(helper (cdr L) S))
(helper (cdr L) S))))
)))
However, the part where it checks if L is an empty list returns true even if the list is an empty list, allowing my other function to return true.
I've been stumped trying to figure out why its returning #t instead of #f for hours. Please help me figure out what's making this happen.
Oh and I'm using Dr.Racket version 6.12.
EDIT: more clearly, I would like the function to return #f when L is '() as a base case so that the function doesn't need to do anymore recursion.
You put if forms within cond which is quite superfluous.
So your mistake was for sure your lack of understanding of the cond syntax.
Remember cond syntax goes like:
(cond (condition1 what-to-do-if-condition1-is-true)
(condition2 what-to-do-if-condition2-is-true)
( ... ... )
(else what-to-do-if-none-of-the-conditions-listed-above-evaluated-to-true))
So I formed your expression accordingly to:
(define helper
(lambda (L S)
(cond ((equal? L '()) #f)
((and (equal? S (car (car L))) (list-equal? (car L))) #t)
(else (helper (cdr L) S)))))
Since you didn't gave definition for list-equal? - I cannot run this code for testing.
You have nested if in cond. Lets rewrite you code som something identical:
(define helper
(lambda (L S)
(let ((result
(if (equal? L '())
#f
(if (equal? S (car (car L)))
(if (list-equal? (car L))
#t
(helper (cdr L) S))
(helper (cdr L) S)))))
(cond
(result result)
(else 'implementation-defined-value)))))
A cond will return a implementation defined value as the else clause should none of the previous predicates hit. Since your base casse returns #f it goes to the default else case.
Since the other answer show the code with cond, here is the same with if:
(define helper
(lambda (L S)
(if (equal? L '())
#f
(if (and (equal? S (car (car L)))
(list-equal? (car L)))
#t
(helper (cdr L) S)))))
You can also write this only with and and or:
(define helper
(lambda (L S)
(and (pair? L)
(or (and (equal? S (car (car L)))
(list-equal? (car L)))
(helper (cdr L) S)))))

Leave only the elements that are not repeated in a given list IN SCHEME [duplicate]

I'm trying to teach myself functional language thinking and have written a procedure that takes a list and returns a list with duplicates filtered out. This works, but the output list is sorted in the order in which the last instance of each duplicate item is found in the input list.
(define (inlist L n)
(cond
((null? L) #f)
((= (car L) n) #t)
(else (inlist (cdr L) n))
))
(define (uniquelist L)
(cond
((null? L) '())
((= 1 (length L)) L)
((inlist (cdr L) (car L)) (uniquelist (cdr L)))
(else (cons (car L) (uniquelist (cdr L))))
))
So..
(uniquelist '(1 1 2 3)) => (1 2 3)
...but...
(uniquelist '(1 2 3 1)) => (2 3 1)
Is there a simple alternative that maintains the order of the first instance of each duplicate?
The best way to solve this problem would be to use Racket's built-in remove-duplicates procedure. But of course, you want to implement the solution from scratch. Here's a way using idiomatic Racket, and notice that we can use member (another built-in function) in place of inlist:
(define (uniquelist L)
(let loop ([lst (reverse L)] [acc empty])
(cond [(empty? lst)
acc]
[(member (first lst) (rest lst))
(loop (rest lst) acc)]
[else
(loop (rest lst) (cons (first lst) acc))])))
Or we can write the same procedure using standard Scheme, as shown in SICP:
(define (uniquelist L)
(let loop ((lst (reverse L)) (acc '()))
(cond ((null? lst)
acc)
((member (car lst) (cdr lst))
(loop (cdr lst) acc))
(else
(loop (cdr lst) (cons (car lst) acc))))))
The above makes use of a named let for iteration, and shows how to write a tail-recursive implementation. It works as expected:
(uniquelist '(1 1 2 3))
=> '(1 2 3)
(uniquelist '(1 2 3 1))
=> '(1 2 3)

Scheme reverse a list

I am trying to reverse a list in Scheme using DrRacket.
Code:
(define rev
(lambda(l)
(if (null? l)
'()
(append (rev (cdr l)) (list (car l))))))
If I input (rev '(a((b)(c d)(((e)))))), the output is (((b) (c d) (((e)))) a).
I want it to be (((((e)))(d c)(b))a). I looked here: How to Reverse a List? but I get an even worse output. What am I doing wrong? Any help would be appreciated!
This is trickier than it looks, you're trying to do a "deep reverse" on a list of lists, not only the elements are reversed, but also the structure … here, try this:
(define (rev l)
(let loop ((lst l)
(acc '()))
(cond ((null? lst) acc)
((not (pair? lst)) lst)
(else (loop (cdr lst)
(cons (rev (car lst))
acc))))))
It works as expected:
(rev '(a ((b) (c d) (((e))))))
=> '(((((e))) (d c) (b)) a)
This code will do it:
(define (rev-list lst)
(if (null? lst)
null
(if (list? lst)
(append (rev-list (cdr lst)
(list (rev-list (car lst))))
lst)))
And the result is:
>>> (display (rev-list '((1 7) 5 (2 4 (5 9))) ))
(((9 5) 4 2) 5 (7 1))
The idea is simple: Return the arg if it's not a list, return rev-list(arg) otherwise.

Weird syntax in common lisp

I found this lisp function while I was googling
(defun filter (lst items-to-filter)
(cond ((null lst) nil)
((member (car lst) items-to-filter) #1=(filter (cdr lst) items-to-filter))
(t (cons (car lst) #1#))))
It's just set difference, but this is the first time i see #1= and #1#, syntax. I think I understand what it means just by looking at the code, but I am not too sure. I think the #1= is used to label an expression so as not to retype it later when needed, one can just refer to it by #index#, in this case index=1. I was wondering if someone could shed some light on this. What are these constructs called, if there's a reference for them, and if they are widely used in modern lisp code. Thanks
To see it in written source code is very very unusual. Most of the time you see it in data. It is used to create or print shared data items in s-expressions. This way you can also read or print circular s-expressions.
You could use it for easier creation of repeated code, but usually one writes functions or macros for that. Functions have the advantage that they save code space - unless they are inlined.
CL-USER 3 > (pprint '(defun filter (lst items-to-filter)
(cond ((null lst) nil)
((member (car lst) items-to-filter)
#1=(filter (cdr lst) items-to-filter))
(t (cons (car lst) #1#)))))
(DEFUN FILTER (LST ITEMS-TO-FILTER)
(COND ((NULL LST) NIL)
((MEMBER (CAR LST) ITEMS-TO-FILTER)
(FILTER (CDR LST) ITEMS-TO-FILTER))
(T
(CONS (CAR LST) (FILTER (CDR LST) ITEMS-TO-FILTER)))))
As you see above the printer does not print it that way. Why is that?
There is a global variable *print-circle* which controls it. For above example it was set to NIL. Let's change that:
CL-USER 4 > (setf *print-circle* t)
T
CL-USER 5 > (pprint '(defun filter (lst items-to-filter)
(cond ((null lst) nil)
((member (car lst) items-to-filter)
#1=(filter (cdr lst) items-to-filter))
(t (cons (car lst) #1#)))))
(DEFUN FILTER (LST ITEMS-TO-FILTER)
(COND ((NULL LST) NIL)
((MEMBER (CAR LST) ITEMS-TO-FILTER)
#1=(FILTER (CDR LST) ITEMS-TO-FILTER))
(T
(CONS (CAR LST) #1#))))
So this shows that one can read and print such s-expressions in Common Lisp
Sharing some source code data structures is more common in computed code:
CL-USER 22 > (defmacro add-1-2-3 (n) `(,n 1 2 3))
ADD-1-2-3
CL-USER 23 > (walker:walk-form '(+ (add-1-2-3 4) (add-1-2-3 5)))
(+ (4 . #1=(1 2 3)) (5 . #1#))

Resources