Related
I have a dataframe which contains overlapping sites, I want to be able to remove these overlapping site according to this rule.
End(B) > Start(A) & End(A) > Start(B) then we remove site B
For example ,
Chrom Start End
scaffold_98 8309 8313
scaffold_98 8311 8320
scaffold_98 8811 8815
In this case, I should remove site (8311,8320) because it overlaps with (8309,8313).
Is there a fast way to do it when we are working with a large data.
Using GenomicRanges is not critically necessary here, but I recommend its use for more complex operations involving genomic coordinates. It is a very powerful library, and has been designed for these kind of operations.
Here is a solution using findOverlaps::GenomicRanges.
Load the library.
library(GenomicRanges);
Read-in the sample data and turn into GRanges object.
df <- read.table(text =
"Chrom Start End
scaffold_98 8309 8313
scaffold_98 8311 8320
scaffold_98 8811 8815 ", header = T)
gr <- makeGRangesFromDataFrame(df);
Select for non-overlapping regions using findOverlaps.
gr[unique(findOverlaps(gr, type = "any", select = "first"))];
#GRanges object with 2 ranges and 0 metadata columns:
# seqnames ranges strand
# <Rle> <IRanges> <Rle>
# [1] scaffold_98 [8309, 8313] *
# [2] scaffold_98 [8811, 8815] *
# -------
# seqinfo: 1 sequence from an unspecified genome; no seqlengths
Assuming that your df is ordered based on the start column, this might work:
remove <- vector()
for (i in 2:nrow(df)){
if(df[i,3] > df[i-1, 2] && df[i-1, 3] > df[i, 2]) {
remove <- append(remove, i)
}
}
df[-remove,]
I would like to use foverlaps to find the intersecting ranges of two bed files, and collapse any rows containing overlapping ranges into a single row. In the example below I have two tables with genomic ranges. The tables are called "bed" files that have zero-based start coordinates and one-based ending positions of features in chromosomes. For example, START=9, STOP=20 is interpreted to span bases 10 through 20, inclusive. These bed files can contain millions of rows. The solution would need to give the same result, regardless of the order in which the two files to be intersected are provided.
First Table
> table1
CHROMOSOME START STOP
1: 1 1 10
2: 1 20 50
3: 1 70 130
4: X 1 20
5: Y 5 200
Second Table
> table2
CHROMOSOME START STOP
1: 1 5 12
2: 1 15 55
3: 1 60 65
4: 1 100 110
5: 1 130 131
6: X 60 80
7: Y 1 15
8: Y 10 50
I was thinking that the new foverlaps function could be a very fast way to find the intersecting ranges in these two table to produce a table that would look like:
Result Table:
> resultTable
CHROMOSOME START STOP
1: 1 5 10
2: 1 20 50
3: 1 100 110
4: Y 5 50
Is that possible, or is there a better way to do that in data.table?
I'd also like to first confirm that in one table, for any given CHROMOSOME, the STOP coordinate does not overlap with the start coordinate of the next row. For example, CHROMOSOME Y:1-15 and CHROMOSOME Y:10-50 would need to be collapsed to CHROMOSOME Y:1-50 (see Second Table Rows 7 and 8). This should not be the case, but the function should probably check for that. A real life example of how potential overlaps should be collapsed is below:
CHROM START STOP
1: 1 721281 721619
2: 1 721430 721906
3: 1 721751 722042
Desired output:
CHROM START STOP
1: 1 721281 722042
Functions to create example tables are as follows:
table1 <- data.table(
CHROMOSOME = as.character(c("1","1","1","X","Y")) ,
START = c(1,20,70,1,5) ,
STOP = c(10,50,130,20,200)
)
table2 <- data.table(
CHROMOSOME = as.character(c("1","1","1","1","1","X","Y","Y")) ,
START = c(5,15,60,100,130,60,1,10) ,
STOP = c(12,55,65,110,131,80,15,50)
)
#Seth provided the fastest way to solve the problem of intersection overlaps using the data.table foverlaps function. However, this solution did not take into account the fact that the input bed files may have overlapping ranges that needed to be reduced into single regions. #Martin Morgan solved that with his solution using the GenomicRanges package, that did both the intersecting and range reducing. However, Martin's solution didn't use the foverlaps function. #Arun pointed out that the overlapping ranges in different rows within a table was not currently possible using foverlaps. Thanks to the answers provided, and some additional research on stackoverflow, I came up with this hybrid solution.
Create example BED files without overlapping regions within each file.
chr <- c(1:22,"X","Y","MT")
#bedA contains 5 million rows
bedA <- data.table(
CHROM = as.vector(sapply(chr, function(x) rep(x,200000))),
START = rep(as.integer(seq(1,200000000,1000)),25),
STOP = rep(as.integer(seq(500,200000000,1000)),25),
key = c("CHROM","START","STOP")
)
#bedB contains 500 thousand rows
bedB <- data.table(
CHROM = as.vector(sapply(chr, function(x) rep(x,20000))),
START = rep(as.integer(seq(200,200000000,10000)),25),
STOP = rep(as.integer(seq(600,200000000,10000)),25),
key = c("CHROM","START","STOP")
)
Now create a new bed file containing the intersecting regions in bedA and bedB.
#This solution uses foverlaps
system.time(tmpA <- intersectBedFiles.foverlaps(bedA,bedB))
user system elapsed
1.25 0.02 1.37
#This solution uses GenomicRanges
system.time(tmpB <- intersectBedFiles.GR(bedA,bedB))
user system elapsed
12.95 0.06 13.04
identical(tmpA,tmpB)
[1] TRUE
Now, modify bedA and bedB such that they contain overlapping regions:
#Create overlapping ranges
makeOverlaps <- as.integer(c(0,0,600,0,0,0,600,0,0,0))
bedC <- bedA[, STOP := STOP + makeOverlaps, by=CHROM]
bedD <- bedB[, STOP := STOP + makeOverlaps, by=CHROM]
Test time to intersect bed files with overlapping ranges using either the foverlaps or GenomicRanges fucntions.
#This solution uses foverlaps to find the intersection and then run GenomicRanges on the result
system.time(tmpC <- intersectBedFiles.foverlaps(bedC,bedD))
user system elapsed
1.83 0.05 1.89
#This solution uses GenomicRanges
system.time(tmpD <- intersectBedFiles.GR(bedC,bedD))
user system elapsed
12.95 0.04 12.99
identical(tmpC,tmpD)
[1] TRUE
The winner: foverlaps!
FUNCTIONS USED
This is the function based upon foverlaps, and will only call the GenomicRanges function (reduceBed.GenomicRanges) if there are overlapping ranges (which are checked for using the rowShift function).
intersectBedFiles.foverlaps <- function(bed1,bed2) {
require(data.table)
bedKey <- c("CHROM","START","STOP")
if(nrow(bed1)>nrow(bed2)) {
bed <- foverlaps(bed1, bed2, nomatch = 0)
} else {
bed <- foverlaps(bed2, bed1, nomatch = 0)
}
bed[, START := pmax(START, i.START)]
bed[, STOP := pmin(STOP, i.STOP)]
bed[, `:=`(i.START = NULL, i.STOP = NULL)]
if(!identical(key(bed),bedKey)) setkeyv(bed,bedKey)
if(any(bed[, STOP+1 >= rowShift(START), by=CHROM][,V1], na.rm = T)) {
bed <- reduceBed.GenomicRanges(bed)
}
return(bed)
}
rowShift <- function(x, shiftLen = 1L) {
#Note this function was described in this thread:
#http://stackoverflow.com/questions/14689424/use-a-value-from-the-previous-row-in-an-r-data-table-calculation
r <- (1L + shiftLen):(length(x) + shiftLen)
r[r<1] <- NA
return(x[r])
}
reduceBed.GenomicRanges <- function(bed) {
setnames(bed,colnames(bed),bedKey)
if(!identical(key(bed),bedKey)) setkeyv(bed,bedKey)
grBed <- makeGRangesFromDataFrame(bed,
seqnames.field = "CHROM",start.field="START",end.field="STOP")
grBed <- reduce(grBed)
grBed <- data.table(
CHROM=as.character(seqnames(grBed)),
START=start(grBed),
STOP=end(grBed),
key = c("CHROM","START","STOP"))
return(grBed)
}
This function strictly used the GenomicRanges package, produces the same result, but is about 10 fold slower that the foverlaps funciton.
intersectBedFiles.GR <- function(bed1,bed2) {
require(data.table)
require(GenomicRanges)
bed1 <- makeGRangesFromDataFrame(bed1,
seqnames.field = "CHROM",start.field="START",end.field="STOP")
bed2 <- makeGRangesFromDataFrame(bed2,
seqnames.field = "CHROM",start.field="START",end.field="STOP")
grMerge <- suppressWarnings(intersect(bed1,bed2))
resultTable <- data.table(
CHROM=as.character(seqnames(grMerge)),
START=start(grMerge),
STOP=end(grMerge),
key = c("CHROM","START","STOP"))
return(resultTable)
}
An additional comparison using IRanges
I found a solution to collapse overlapping regions using IRanges but it is more than 10 fold slower than GenomicRanges.
reduceBed.IRanges <- function(bed) {
bed.tmp <- bed
bed.tmp[,group := {
ir <- IRanges(START, STOP);
subjectHits(findOverlaps(ir, reduce(ir)))
}, by=CHROM]
bed.tmp <- bed.tmp[, list(CHROM=unique(CHROM),
START=min(START),
STOP=max(STOP)),
by=list(group,CHROM)]
setkeyv(bed.tmp,bedKey)
bed[,group := NULL]
return(bed.tmp[, -(1:2)])
}
system.time(bedC.reduced <- reduceBed.GenomicRanges(bedC))
user system elapsed
10.86 0.01 10.89
system.time(bedD.reduced <- reduceBed.IRanges(bedC))
user system elapsed
137.12 0.14 137.58
identical(bedC.reduced,bedD.reduced)
[1] TRUE
foverlaps() will do nicely.
First set the keys for both of the tables:
setkey(table1, CHROMOSOME, START, STOP)
setkey(table2, CHROMOSOME, START, STOP)
Now join them using foverlaps() with nomatch = 0 to drop unmatched rows in table2.
resultTable <- foverlaps(table1, table2, nomatch = 0)
Next choose the appropriate values for START and STOP, and drop the extra columns.
resultTable[, START := pmax(START, i.START)]
resultTable[, STOP := pmin(STOP, i.STOP)]
resultTable[, `:=`(i.START = NULL, i.STOP = NULL)]
The overlapping STOP to a future START should be a different question. It's actually one that I have, so maybe I'll ask it and come back to it here when I have a good answer.
In case you're not stuck on a data.table solution, GenomicRanges
source("http://bioconductor.org/biocLite.R")
biocLite("GenomicRanges")
gives
> library(GenomicRanges)
> intersect(makeGRangesFromDataFrame(table1), makeGRangesFromDataFrame(table2))
GRanges object with 5 ranges and 0 metadata columns:
seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] 1 [ 5, 10] *
[2] 1 [ 20, 50] *
[3] 1 [100, 110] *
[4] 1 [130, 130] *
[5] Y [ 5, 50] *
-------
seqinfo: 3 sequences from an unspecified genome; no seqlengths
In most overlapping ranges problems in genomics, we have one large data set x (usually sequenced reads) and another smaller data set y (usually the gene model, exons, introns etc.). We are tasked with finding which intervals in x overlap with which intervals in y or how many intervals in x overlap for each y interval.
In foverlaps(), we don't have to setkey() on the larger data set x - it's quite an expensive operation. But y needs to have it's key set. For your case, from this example it seems like table2 is larger = x, and table1 = y.
require(data.table)
setkey(table1) # key columns = chr, start, end
ans = foverlaps(table2, table1, type="any", nomatch=0L)
ans[, `:=`(i.START = pmax(START, i.START),
i.STOP = pmin(STOP, i.STOP))]
ans = ans[, .(i.START[1L], i.STOP[.N]), by=.(CHROMOSOME, START, STOP)]
# CHROMOSOME START STOP V1 V2
# 1: 1 1 10 5 10
# 2: 1 20 50 20 50
# 3: 1 70 130 100 130
# 4: Y 5 200 5 50
But I agree it'd be great to be able to do this in one step. Not sure how yet, but maybe using additional values reduce and intersect for mult= argument.
Here's a solution entirely in data.table based on Pete's answer. It's actually slower than his solution that uses GenomicRanges and data.table, but still faster than the solution that uses only GenomicRanges.
intersectBedFiles.foverlaps2 <- function(bed1,bed2) {
require(data.table)
bedKey <- c("CHROM","START","STOP")
if(nrow(bed1)>nrow(bed2)) {
if(!identical(key(bed2),bedKey)) setkeyv(bed2,bedKey)
bed <- foverlaps(bed1, bed2, nomatch = 0)
} else {
if(!identical(key(bed1),bedKey)) setkeyv(bed1,bedKey)
bed <- foverlaps(bed2, bed1, nomatch = 0)
}
bed[,row_id:=1:nrow(bed)]
bed[, START := pmax(START, i.START)]
bed[, STOP := pmin(STOP, i.STOP)]
bed[, `:=`(i.START = NULL, i.STOP = NULL)]
setkeyv(bed,bedKey)
temp <- foverlaps(bed,bed)
temp[, `:=`(c("START","STOP"),list(min(START,i.START),max(STOP,i.STOP))),by=row_id]
temp[, `:=`(c("START","STOP"),list(min(START,i.START),max(STOP,i.STOP))),by=i.row_id]
out <- unique(temp[,.(CHROM,START,STOP)])
setkeyv(out,bedKey)
out
}
I have some RNA-seq data and I need to calculate the number of singletons. We define a singleton as a read that does not have any other reads mapped close by (in a distance of 100 bases to either side).
I have a dataframe with the begin coordinate and the end coordinate of each read. I'm using R to do this.
I have written this code for the moment, but the apply is not correct and therefore is giving an error.
begin_end <- data.frame(begin_coordinate, final_coordinate)
apply(begin_end, 1, function(x) x[,1]-(x-1)[,2])
The first lines of the dataframe are:
> head(begin_end)
begin final
1 60507 60551
2 60790 60840
3 62004 62051
4 62819 62868
5 65141 65187
The first one seems to be a singleton because the next reads starts more than 100 bases after it ends and so are the rest in the first lines of the dataset. But the dataframe is long and I hope not all the reads are singletons.
Here's the same thing #jeremycg did with dplyr's lag and lead, but in data.table:
library(data.table)
setDT(begin_end)
begin_end[{
d = begin - shift(final, type="lag")
pmin(d, shift(d, type="lead"), na.rm=TRUE) > 100
}]
Comment. The basic data.table syntax is DT[i,j]. i is for filtering the input while j is for modifying the output.
We used i above, but to examine how it works, we can toss the relevant vectors into j:
begin_end[,{
d = begin - shift(final, type="lag")
d_lead = shift(d, type="lead")
my_pmin = pmin(d, d_lead, na.rm=TRUE)
c(.SD, list(d = d, d_lead = d_lead, my_pmin = my_pmin))
}]
# begin final d d_lead my_pmin
# 1: 60507 60551 NA 239 239
# 2: 60790 60840 239 1164 239
# 3: 62004 62051 1164 768 768
# 4: 62819 62868 768 2273 768
# 5: 65141 65187 2273 NA 2273
.SD is a list of column vectors already in the table, short for Subset of Data.
You seem to be trying to get the previous end value out of the apply using (x-1). Unfortunately, you can't do this inside the apply family.
Luckily, there is a function called lag (there are several, so i'll use the one from dplyr). This lets us lag a column by a given number of entries:
begin_end$space <- begin_end$begin - dplyr::lag(begin_end$final)
here's the output:
begin final space
1 60507 60551 NA
2 60790 60840 239
3 62004 62051 1164
4 62819 62868 768
5 65141 65187 2273
Then you can try:
begin_end$issingle <- begin_end$space >= 100
Using Bioconductor's GenomicRanges I think the idea would be to create a GRanges() (maybe from reading the data using GenomicAlignments::readGAlignments() or makeGRangesFromDataFrame()) from your reads, extend them in each direction using resize(), then use findOverlaps() to identify singletons as the reads that only overlap themselves. Roughly
library(GenomicRanges)
gr = GRanges(seqnames="chr1",
IRanges(start=c(1000, 1150, 1500), width=100))
gr100 = resize(gr, width(gr) + 200, fix="center")
hits = findOverlaps(gr100)
gr100[tabulate(queryHits(hits), queryLength(hits)) == 1]
leading to
> gr100[tabulate(queryHits(hits), queryLength(hits)) == 1]
GRanges object with 1 range and 0 metadata columns:
seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] chr1 [1400, 1699] *
-------
seqinfo: 1 sequence from an unspecified genome; no seqlengths
This will be fast for millions of records.
I am attempting to repeatedly add a "fixed number" to a numeric vector depending on a specified bin size. However, the "fixed number" is dependent on the data range.
For instance ; i have a data range 10 to 1010, and I wish to separate the data into 100 bins. Therefore ideally the data would look like this
Since 1010 - 10 = 1000
And 1000 / 100(The number of bin specified) = 10
Therefore the ideal data would look like this
bin1 - 10 (initial data)
bin2 - 20 (initial data + 10)
bin3 - 30 (initial data + 20)
bin4 - 40 (initial data + 30)
bin100 - 1010 (initial data + 1000)
Now the real data is slightly more complex, there is not just one data range but multiple data range, hopefully the example below would clarify
# Some fixed values
start <- c(10, 5000, 4857694)
end <- c(1010, 6500, 4897909)
Ideally I wish to get something like
10 20
20 30
30 40
.. ..
5000 5015
5015 5030
5030 5045
.. ..
4857694 4858096 # Note theoretically it would have decimal places,
#but i do not want any decimal place
4858096 4858498
.. ..
So far I was thinking along this kind of function, but it seems inefficient because ;
1) I have to retype the function 100 times (because my number of bin is 100)
2) I can't find a way to repeat the function along my values - In other words my function can only deal with the data 10-1010 and not the next one 5000-6500
# The range of the variable
width <- end - start
# The bin size (Number of required bin)
bin_size <- 100
bin_count <- width/bin_size
# Create a function
f1 <- function(x,y){
c(x[1],
x[1] + y[1],
x[1] + y[1]*2,
x[1] + y[1]*3)
}
f1(x= start,y=bin_count)
f1
[1] 10 20 30 40
Perhaps any hint or ideas would be greatly appreciated. Thanks in advance!
Aafter a few hours trying, managed to answer my own question, so I thought to share it. I used the package "binr" and the function in the package called "bins" to get the required bin. Please find below my attempt to answer my question, its slightly different than the intended output but for my purpose it still is okay
library(binr)
# Some fixed values
start <- c(10, 5000, 4857694)
end <- c(1010, 6500, 4897909)
tmp_list_start <- list() # Create an empty list
# This just extract the output from "bins" function into a list
for (i in seq_along(start)){
tmp <- bins(start[i]:end[i],target.bins = 100,max.breaks = 100)
# Now i need to convert one of the output from bins into numeric value
s <- gsub(",.*", "", names(tmp$binct))
s <- gsub("\\[","",s)
tmp_list_start[[i]] <- as.numeric(s)
}
# Repeating the same thing with slight modification to get the end value of the bin
tmp_list_end <- list()
for (i in seq_along(end)){
tmp <- bins(start[i]:end[i],target.bins = 100,max.breaks = 100)
e <- gsub(".*,", "", names(tmp$binct))
e <- gsub("]","",e)
tmp_list_end[[i]] <- as.numeric(e)
}
v1 <- unlist(tmp_list_start)
v2 <- unlist(tmp_list_end)
df <- data.frame(start=v1, end=v2)
head(df)
start end
1 10 20
2 21 30
3 31 40
4 41 50
5 51 60
6 61 70
Pardon my crappy code, Please share if there is a better way of doing this. Would be nice if someone could comment on how to wrap this into a function..
Here's a way that may help with base R:
bin_it <- function(START, END, BINS) {
range <- END-START
jump <- range/BINS
v1 <- c(START, seq(START+jump+1, END, jump))
v2 <- seq(START+jump-1, END, jump)+1
data.frame(v1, v2)
}
It uses the function seq to create the vectors of numbers leading to the ending number. It may not work for every case, but for the ranges you gave it should give the desired output.
bin_it(10, 1010)
v1 v2
1 10 20
2 21 30
3 31 40
4 41 50
5 51 60
bin_it(5000, 6500)
v1 v2
1 5000 5015
2 5016 5030
3 5031 5045
4 5046 5060
5 5061 5075
bin_it(4857694, 4897909)
v1 v2
1 4857694 4858096
2 4858097 4858498
3 4858499 4858900
4 4858901 4859303
5 4859304 4859705
6 4859706 4860107
I would like to use foverlaps to find the intersecting ranges of two bed files, and collapse any rows containing overlapping ranges into a single row. In the example below I have two tables with genomic ranges. The tables are called "bed" files that have zero-based start coordinates and one-based ending positions of features in chromosomes. For example, START=9, STOP=20 is interpreted to span bases 10 through 20, inclusive. These bed files can contain millions of rows. The solution would need to give the same result, regardless of the order in which the two files to be intersected are provided.
First Table
> table1
CHROMOSOME START STOP
1: 1 1 10
2: 1 20 50
3: 1 70 130
4: X 1 20
5: Y 5 200
Second Table
> table2
CHROMOSOME START STOP
1: 1 5 12
2: 1 15 55
3: 1 60 65
4: 1 100 110
5: 1 130 131
6: X 60 80
7: Y 1 15
8: Y 10 50
I was thinking that the new foverlaps function could be a very fast way to find the intersecting ranges in these two table to produce a table that would look like:
Result Table:
> resultTable
CHROMOSOME START STOP
1: 1 5 10
2: 1 20 50
3: 1 100 110
4: Y 5 50
Is that possible, or is there a better way to do that in data.table?
I'd also like to first confirm that in one table, for any given CHROMOSOME, the STOP coordinate does not overlap with the start coordinate of the next row. For example, CHROMOSOME Y:1-15 and CHROMOSOME Y:10-50 would need to be collapsed to CHROMOSOME Y:1-50 (see Second Table Rows 7 and 8). This should not be the case, but the function should probably check for that. A real life example of how potential overlaps should be collapsed is below:
CHROM START STOP
1: 1 721281 721619
2: 1 721430 721906
3: 1 721751 722042
Desired output:
CHROM START STOP
1: 1 721281 722042
Functions to create example tables are as follows:
table1 <- data.table(
CHROMOSOME = as.character(c("1","1","1","X","Y")) ,
START = c(1,20,70,1,5) ,
STOP = c(10,50,130,20,200)
)
table2 <- data.table(
CHROMOSOME = as.character(c("1","1","1","1","1","X","Y","Y")) ,
START = c(5,15,60,100,130,60,1,10) ,
STOP = c(12,55,65,110,131,80,15,50)
)
#Seth provided the fastest way to solve the problem of intersection overlaps using the data.table foverlaps function. However, this solution did not take into account the fact that the input bed files may have overlapping ranges that needed to be reduced into single regions. #Martin Morgan solved that with his solution using the GenomicRanges package, that did both the intersecting and range reducing. However, Martin's solution didn't use the foverlaps function. #Arun pointed out that the overlapping ranges in different rows within a table was not currently possible using foverlaps. Thanks to the answers provided, and some additional research on stackoverflow, I came up with this hybrid solution.
Create example BED files without overlapping regions within each file.
chr <- c(1:22,"X","Y","MT")
#bedA contains 5 million rows
bedA <- data.table(
CHROM = as.vector(sapply(chr, function(x) rep(x,200000))),
START = rep(as.integer(seq(1,200000000,1000)),25),
STOP = rep(as.integer(seq(500,200000000,1000)),25),
key = c("CHROM","START","STOP")
)
#bedB contains 500 thousand rows
bedB <- data.table(
CHROM = as.vector(sapply(chr, function(x) rep(x,20000))),
START = rep(as.integer(seq(200,200000000,10000)),25),
STOP = rep(as.integer(seq(600,200000000,10000)),25),
key = c("CHROM","START","STOP")
)
Now create a new bed file containing the intersecting regions in bedA and bedB.
#This solution uses foverlaps
system.time(tmpA <- intersectBedFiles.foverlaps(bedA,bedB))
user system elapsed
1.25 0.02 1.37
#This solution uses GenomicRanges
system.time(tmpB <- intersectBedFiles.GR(bedA,bedB))
user system elapsed
12.95 0.06 13.04
identical(tmpA,tmpB)
[1] TRUE
Now, modify bedA and bedB such that they contain overlapping regions:
#Create overlapping ranges
makeOverlaps <- as.integer(c(0,0,600,0,0,0,600,0,0,0))
bedC <- bedA[, STOP := STOP + makeOverlaps, by=CHROM]
bedD <- bedB[, STOP := STOP + makeOverlaps, by=CHROM]
Test time to intersect bed files with overlapping ranges using either the foverlaps or GenomicRanges fucntions.
#This solution uses foverlaps to find the intersection and then run GenomicRanges on the result
system.time(tmpC <- intersectBedFiles.foverlaps(bedC,bedD))
user system elapsed
1.83 0.05 1.89
#This solution uses GenomicRanges
system.time(tmpD <- intersectBedFiles.GR(bedC,bedD))
user system elapsed
12.95 0.04 12.99
identical(tmpC,tmpD)
[1] TRUE
The winner: foverlaps!
FUNCTIONS USED
This is the function based upon foverlaps, and will only call the GenomicRanges function (reduceBed.GenomicRanges) if there are overlapping ranges (which are checked for using the rowShift function).
intersectBedFiles.foverlaps <- function(bed1,bed2) {
require(data.table)
bedKey <- c("CHROM","START","STOP")
if(nrow(bed1)>nrow(bed2)) {
bed <- foverlaps(bed1, bed2, nomatch = 0)
} else {
bed <- foverlaps(bed2, bed1, nomatch = 0)
}
bed[, START := pmax(START, i.START)]
bed[, STOP := pmin(STOP, i.STOP)]
bed[, `:=`(i.START = NULL, i.STOP = NULL)]
if(!identical(key(bed),bedKey)) setkeyv(bed,bedKey)
if(any(bed[, STOP+1 >= rowShift(START), by=CHROM][,V1], na.rm = T)) {
bed <- reduceBed.GenomicRanges(bed)
}
return(bed)
}
rowShift <- function(x, shiftLen = 1L) {
#Note this function was described in this thread:
#http://stackoverflow.com/questions/14689424/use-a-value-from-the-previous-row-in-an-r-data-table-calculation
r <- (1L + shiftLen):(length(x) + shiftLen)
r[r<1] <- NA
return(x[r])
}
reduceBed.GenomicRanges <- function(bed) {
setnames(bed,colnames(bed),bedKey)
if(!identical(key(bed),bedKey)) setkeyv(bed,bedKey)
grBed <- makeGRangesFromDataFrame(bed,
seqnames.field = "CHROM",start.field="START",end.field="STOP")
grBed <- reduce(grBed)
grBed <- data.table(
CHROM=as.character(seqnames(grBed)),
START=start(grBed),
STOP=end(grBed),
key = c("CHROM","START","STOP"))
return(grBed)
}
This function strictly used the GenomicRanges package, produces the same result, but is about 10 fold slower that the foverlaps funciton.
intersectBedFiles.GR <- function(bed1,bed2) {
require(data.table)
require(GenomicRanges)
bed1 <- makeGRangesFromDataFrame(bed1,
seqnames.field = "CHROM",start.field="START",end.field="STOP")
bed2 <- makeGRangesFromDataFrame(bed2,
seqnames.field = "CHROM",start.field="START",end.field="STOP")
grMerge <- suppressWarnings(intersect(bed1,bed2))
resultTable <- data.table(
CHROM=as.character(seqnames(grMerge)),
START=start(grMerge),
STOP=end(grMerge),
key = c("CHROM","START","STOP"))
return(resultTable)
}
An additional comparison using IRanges
I found a solution to collapse overlapping regions using IRanges but it is more than 10 fold slower than GenomicRanges.
reduceBed.IRanges <- function(bed) {
bed.tmp <- bed
bed.tmp[,group := {
ir <- IRanges(START, STOP);
subjectHits(findOverlaps(ir, reduce(ir)))
}, by=CHROM]
bed.tmp <- bed.tmp[, list(CHROM=unique(CHROM),
START=min(START),
STOP=max(STOP)),
by=list(group,CHROM)]
setkeyv(bed.tmp,bedKey)
bed[,group := NULL]
return(bed.tmp[, -(1:2)])
}
system.time(bedC.reduced <- reduceBed.GenomicRanges(bedC))
user system elapsed
10.86 0.01 10.89
system.time(bedD.reduced <- reduceBed.IRanges(bedC))
user system elapsed
137.12 0.14 137.58
identical(bedC.reduced,bedD.reduced)
[1] TRUE
foverlaps() will do nicely.
First set the keys for both of the tables:
setkey(table1, CHROMOSOME, START, STOP)
setkey(table2, CHROMOSOME, START, STOP)
Now join them using foverlaps() with nomatch = 0 to drop unmatched rows in table2.
resultTable <- foverlaps(table1, table2, nomatch = 0)
Next choose the appropriate values for START and STOP, and drop the extra columns.
resultTable[, START := pmax(START, i.START)]
resultTable[, STOP := pmin(STOP, i.STOP)]
resultTable[, `:=`(i.START = NULL, i.STOP = NULL)]
The overlapping STOP to a future START should be a different question. It's actually one that I have, so maybe I'll ask it and come back to it here when I have a good answer.
In case you're not stuck on a data.table solution, GenomicRanges
source("http://bioconductor.org/biocLite.R")
biocLite("GenomicRanges")
gives
> library(GenomicRanges)
> intersect(makeGRangesFromDataFrame(table1), makeGRangesFromDataFrame(table2))
GRanges object with 5 ranges and 0 metadata columns:
seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] 1 [ 5, 10] *
[2] 1 [ 20, 50] *
[3] 1 [100, 110] *
[4] 1 [130, 130] *
[5] Y [ 5, 50] *
-------
seqinfo: 3 sequences from an unspecified genome; no seqlengths
In most overlapping ranges problems in genomics, we have one large data set x (usually sequenced reads) and another smaller data set y (usually the gene model, exons, introns etc.). We are tasked with finding which intervals in x overlap with which intervals in y or how many intervals in x overlap for each y interval.
In foverlaps(), we don't have to setkey() on the larger data set x - it's quite an expensive operation. But y needs to have it's key set. For your case, from this example it seems like table2 is larger = x, and table1 = y.
require(data.table)
setkey(table1) # key columns = chr, start, end
ans = foverlaps(table2, table1, type="any", nomatch=0L)
ans[, `:=`(i.START = pmax(START, i.START),
i.STOP = pmin(STOP, i.STOP))]
ans = ans[, .(i.START[1L], i.STOP[.N]), by=.(CHROMOSOME, START, STOP)]
# CHROMOSOME START STOP V1 V2
# 1: 1 1 10 5 10
# 2: 1 20 50 20 50
# 3: 1 70 130 100 130
# 4: Y 5 200 5 50
But I agree it'd be great to be able to do this in one step. Not sure how yet, but maybe using additional values reduce and intersect for mult= argument.
Here's a solution entirely in data.table based on Pete's answer. It's actually slower than his solution that uses GenomicRanges and data.table, but still faster than the solution that uses only GenomicRanges.
intersectBedFiles.foverlaps2 <- function(bed1,bed2) {
require(data.table)
bedKey <- c("CHROM","START","STOP")
if(nrow(bed1)>nrow(bed2)) {
if(!identical(key(bed2),bedKey)) setkeyv(bed2,bedKey)
bed <- foverlaps(bed1, bed2, nomatch = 0)
} else {
if(!identical(key(bed1),bedKey)) setkeyv(bed1,bedKey)
bed <- foverlaps(bed2, bed1, nomatch = 0)
}
bed[,row_id:=1:nrow(bed)]
bed[, START := pmax(START, i.START)]
bed[, STOP := pmin(STOP, i.STOP)]
bed[, `:=`(i.START = NULL, i.STOP = NULL)]
setkeyv(bed,bedKey)
temp <- foverlaps(bed,bed)
temp[, `:=`(c("START","STOP"),list(min(START,i.START),max(STOP,i.STOP))),by=row_id]
temp[, `:=`(c("START","STOP"),list(min(START,i.START),max(STOP,i.STOP))),by=i.row_id]
out <- unique(temp[,.(CHROM,START,STOP)])
setkeyv(out,bedKey)
out
}