Suppose I have a dataframe like this:
X. Name Type Total HP Attack Defense Sp..Atk Sp..Def Speed
795 718 Zygarde50% Forme Dragon/Ground 600 108 100 121 81 95 95
796 719 Diancie Rock/Fairy 600 50 100 150 100 150 50
797 719 DiancieMega Diancie Rock/Fairy 700 50 160 110 160 110 110
798 720 HoopaHoopa Confined Psychic/Ghost 600 80 110 60 150 130 70
799 720 HoopaHoopa Unbound Psychic/Dark 680 80 160 60 170 130 80
800 721 Volcanion Fire/Water 600 80 110 120 130 90 70
If I want to calculate the average stats (Total, HP, Attack, Defense, etc...), per type Dragon, type Ground, type Rock, type Fairy, etc... (instead of type Dragon/Ground, Rock/Fairy), how would I proceed? The stats of pokemons that belong to any two types would be used in calculating the average stats for both.
I have written the code using functions in the dplyr package:
summaryStats_byType<- summarise(byType,
count = n(),
averageTotal = mean(Total, na.rm = T),
averageHP = mean(HP, na.rm = T),
averageDefense = mean(Defense, na.rm = T),
averageSpAtk = mean(Sp..Atk, na.rm = T),
averageSpDef = mean(Sp..Def, na.rm = T),
averageSpeed = mean(Speed, na.rm = T))
but obviously it counts "Dragon/Ground" as a type instead of two.
One way is to split the Type column in long format (I chose cSplit from splitstackshape to do this) and group_by as usual, i.e.
library(splitstackshape)
library(dplyr)
df1 <- cSplit(df, 'Type', sep = '/', 'long')
df1 %>%
group_by(Type) %>%
summarise_each(funs(mean), -c(X., Name))
# A tibble: 9 × 8
# Type Total HP Attack Defense Sp..Atk Sp..Def Speed
# <fctr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Dark 680 80 160 60 170 130 80
#2 Dragon 600 108 100 121 81 95 95
#3 Fairy 650 50 130 130 130 130 80
#4 Fire 600 80 110 120 130 90 70
#5 Ghost 600 80 110 60 150 130 70
#6 Ground 600 108 100 121 81 95 95
#7 Psychic 640 80 135 60 160 130 75
#8 Rock 650 50 130 130 130 130 80
#9 Water 600 80 110 120 130 90 70
Alternatively (as noted by #DavidArenburg) we can also use separate_rows from tidyr as part of the pipe, i.e.
library(tidyr)
library(dplyr)
df %>%
separate_rows(Type) %>%
group_by(Type) %>%
summarise_each(funs(mean), -c(X., Name))
which of course yields the same results
DATA
dput(df)
structure(list(X. = c(718L, 719L, 719L, 720L, 720L, 721L), Name = structure(c(6L,
1L, 2L, 3L, 4L, 5L), .Label = c("Diancie", "DiancieMega_Diancie",
"HoopaHoopa_Confined", "HoopaHoopa_Unbound", "Volcanion", "Zygarde50%_Forme"
), class = "factor"), Type = structure(c(1L, 5L, 5L, 4L, 3L,
2L), .Label = c("Dragon/Ground", "Fire/Water", "Psychic/Dark",
"Psychic/Ghost", "Rock/Fairy"), class = "factor"), Total = c(600L,
600L, 700L, 600L, 680L, 600L), HP = c(108L, 50L, 50L, 80L, 80L,
80L), Attack = c(100L, 100L, 160L, 110L, 160L, 110L), Defense = c(121L,
150L, 110L, 60L, 60L, 120L), Sp..Atk = c(81L, 100L, 160L, 150L,
170L, 130L), Sp..Def = c(95L, 150L, 110L, 130L, 130L, 90L), Speed = c(95L,
50L, 110L, 70L, 80L, 70L)), .Names = c("X.", "Name", "Type",
"Total", "HP", "Attack", "Defense", "Sp..Atk", "Sp..Def", "Speed"
), class = "data.frame", row.names = c("795", "796", "797", "798",
"799", "800"))
Related
My data:
c5 =structure(list(comorbid = c("heart", "ihd", "cabg", "angio",
"cerebrovasc", "diabetes", "pvd", "amputation", "liver", "malig",
"smoke", "ulcers"), AVF_Y = c(626L, 355L, 266L, 92L, 320L, 1175L,
199L, 89L, 75L, 450L, 901L, 114L), AVG_Y = c(54L, 14L, 18L, 5L,
21L, 37L, 5L, 7L, 5L, 29L, 33L, 3L), AVF_tot = c(2755L, 1768L,
2770L, 2831L, 2844L, 2877L, 1745L, 2823L, 2831L, 2823L, 2798L,
2829L), AVG_tot = c(161L, 61L, 161L, 165L, 166L, 167L, 61L, 165L,
165L, 165L, 159L, 164L)), row.names = c(NA, -12L), class = "data.frame")
I want to perform a prop.test for each row ( a two-proportions z-test) and add the p value as a new column.
I've tried using the following code, but this gives me 24 1-sample proportions test results instead of 12 2-sample test for equality of proportions.
Map(prop.test, x = c(c5$AVF_Y, c5$AVG_Y), n = c(c5$AVF_tot, c5$AVG_tot))
Use a lambda function and extract. When we concatenate the columns, it returns a vector and its length will be 2 times the number of rows of the data. We would need to concatenate within in the loop to create a vector of length 2 for each x and n from corresponding columns of '_Y', and '_tot'
mapply(function(avf, avg, avf_n, avg_n) prop.test(c(avf, avg), c(avf_n, avg_n))$p.value, c5$AVF_Y, c5$AVG_Y, c5$AVF_tot, c5$AVG_tot)
-output
[1] 2.218376e-03 6.985883e-01 6.026012e-01 1.000000e+00 6.695440e-01 2.425781e-06 5.672322e-01 5.861097e-01 9.627050e-01 6.546286e-01 3.360300e-03 2.276857e-0
Or use do.cal with Map or mapply
do.call(mapply, c(FUN = function(x, y, n1, n2)
prop.test(c(x, y), c(n1, n2))$p.value, unname(c5[-1])))
[1] 2.218376e-03 6.985883e-01 6.026012e-01 1.000000e+00 6.695440e-01 2.425781e-06 5.672322e-01 5.861097e-01 9.627050e-01 6.546286e-01 3.360300e-03 2.276857e-01
Or with apply
apply(c5[-1], 1, function(x) prop.test(x[1:2], x[3:4])$p.value)
[1] 2.218376e-03 6.985883e-01 6.026012e-01 1.000000e+00 6.695440e-01 2.425781e-06 5.672322e-01 5.861097e-01 9.627050e-01 6.546286e-01 3.360300e-03 2.276857e-01
Or use rowwise
library(dplyr)
c5 %>%
rowwise %>%
mutate(pval = prop.test(c(AVF_Y, AVG_Y),
n = c(AVF_tot, AVG_tot))$p.value) %>%
ungroup
-output
# A tibble: 12 × 6
comorbid AVF_Y AVG_Y AVF_tot AVG_tot pval
<chr> <int> <int> <int> <int> <dbl>
1 heart 626 54 2755 161 0.00222
2 ihd 355 14 1768 61 0.699
3 cabg 266 18 2770 161 0.603
4 angio 92 5 2831 165 1.00
5 cerebrovasc 320 21 2844 166 0.670
6 diabetes 1175 37 2877 167 0.00000243
7 pvd 199 5 1745 61 0.567
8 amputation 89 7 2823 165 0.586
9 liver 75 5 2831 165 0.963
10 malig 450 29 2823 165 0.655
11 smoke 901 33 2798 159 0.00336
12 ulcers 114 3 2829 164 0.228
I have a dataframe structure that calculates the sum of Response.Status found per month with this mutate function:
DF1 <- complete_df %>%
mutate(Month = format(as.Date(date, format = "%Y/%m/%d"), "%m/%Y"),
UNSUBSCRIBE = if_else(UNSUBSCRIBE == "TRUE", "UNSUBSCRIBE", NA_character_)) %>%
pivot_longer(c(Response.Status, UNSUBSCRIBE), values_to = "Response.Status") %>%
drop_na() %>%
count(Month, Response.Status) %>%
pivot_wider(names_from = Month, names_sep = "/", values_from = n)
# A tibble: 7 x 16
Response.Status `01/2020` `02/2020` `03/2020` `04/2020` `05/2020` `06/2020` `07/2020` `08/2020` `09/2019` `09/2020` `10/2019` `10/2020` `11/2019` `11/2020` `12/2019`
<chr> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
1 EMAIL_OPENED 1068 3105 4063 4976 2079 1856 4249 3638 882 4140 865 2573 1167 684 862
2 NOT_RESPONDED 3187 9715 13164 15239 5458 4773 12679 10709 2798 15066 2814 8068 3641 1931 2647
3 PARTIALLY_SAVED 5 34 56 8 28 22 73 86 11 14 7 23 8 8 2
4 SUBMITTED 216 557 838 828 357 310 654 621 214 1001 233 497 264 122 194
5 SURVEY_OPENED 164 395 597 1016 245 212 513 625 110 588 123 349 202 94 120
6 UNDELIVERED_OR_BOUNCED 92 280 318 260 109 127 319 321 63 445 69 192 93 39 74
7 UNSUBSCRIBE 397 1011 1472 1568 727 737 1745 2189 372 1451 378 941 429 254 355
What I would like to do is take those values created in table to calculate average based on # of people in each Response.Status group.
structure(list(Response.Status = c("EMAIL_OPENED", "NOT_RESPONDED",
"PARTIALLY_SAVED", "SUBMITTED", "SURVEY_OPENED", "UNDELIVERED_OR_BOUNCED"
), `01/2020` = c(1068L, 3187L, 5L, 216L, 164L, 92L), `02/2020` = c(3105L,
9715L, 34L, 557L, 395L, 280L), `03/2020` = c(4063L, 13164L, 56L,
838L, 597L, 318L), `04/2020` = c(4976L, 15239L, 8L, 828L, 1016L,
260L), `05/2020` = c(2079L, 5458L, 28L, 357L, 245L, 109L), `06/2020` = c(1856L,
4773L, 22L, 310L, 212L, 127L), `07/2020` = c(4249L, 12679L, 73L,
654L, 513L, 319L), `08/2020` = c(3638L, 10709L, 86L, 621L, 625L,
321L), `09/2019` = c(882L, 2798L, 11L, 214L, 110L, 63L), `09/2020` = c(4140L,
15066L, 14L, 1001L, 588L, 445L), `10/2019` = c(865L, 2814L, 7L,
233L, 123L, 69L), `10/2020` = c(2573L, 8068L, 23L, 497L, 349L,
192L), `11/2019` = c(1167L, 3641L, 8L, 264L, 202L, 93L), `11/2020` = c(684L,
1931L, 8L, 122L, 94L, 39L), `12/2019` = c(862L, 2647L, 2L, 194L,
120L, 74L)), row.names = c(NA, -6L), class = c("tbl_df", "tbl",
"data.frame"))
I made a separate table that contains sum values based on those group names:
Response.Status
EMAIL_OPENED : 451
NOT_RESPONDED : 1563
PARTIALLY_SAVED : 4
SUBMITTED : 71
SURVEY_OPENED : 53
UNDELIVERED_OR_BOUNCED: 47
UNSUBSCRIBE: 135
If I understood your problem correctly you have 2 data.frame/tibbles. One that is shown in the "structure" part an one that informs the quantity of people/users per response status. Now you want to get the value per person. If so this is a possible solution:
# people/users data set
df2 <- data.frame(Response.Status = c("EMAIL_OPENED", "NOT_RESPONDED", "PARTIALLY_SAVED", "SUBMITTED", "SURVEY_OPENED", "UNDELIVERED_OR_BOUNCED", "UNSUBSCRIBE"),
PEOPLE = c(451, 1563, 4, 71, 53, 47, 135))
df %>% # this is your "structure"
tidyr::pivot_longer(-Response.Status, names_to = "DATE", values_to = "nmbr") %>%
dplyr::group_by(Response.Status) %>%
dplyr::summarise(SUM = sum(nmbr)) %>%
dplyr::inner_join(df2) %>%
dplyr::mutate(MEAN_PP = SUM / PEOPLE)
Response.Status SUM PEOPLE MEAN_PP
<chr> <int> <dbl> <dbl>
1 EMAIL_OPENED 36207 451 80.3
2 NOT_RESPONDED 111889 1563 71.6
3 PARTIALLY_SAVED 385 4 96.2
4 SUBMITTED 6906 71 97.3
5 SURVEY_OPENED 5353 53 101
6 UNDELIVERED_OR_BOUNCED 2801 47 59.6
I've done a self-paced reading experiment in which 151 participants read 112 sentences divided into three lists and I'm having some problems cleaning the data in R. I'm not a programmer so I'm kind of struggling with all this!
I've got the results file which looks something like this:
results
part item word n.word rt
51 106 * 1 382
51 106 El 2 286
51 106 asistente 3 327
51 106 del 4 344
51 106 carnicero 5 394
51 106 que 6 274
51 106 abapl’a 7 2327
51 106 el 8 1104
51 106 sabor 9 409
51 106 del 10 360
51 106 pollo 11 1605
51 106 envipi— 12 256
51 106 un 13 4573
51 106 libro 14 660
51 106 *. 15 519
Part=participant; item=sentences; n.word=number of word; rt=reading times.
In the results file, I have the reading times of every word of every sentence read by every participant. Every participant read more or less 40 sentences. My problem is that I am interested in the reading times of specific words, such as the main verb or the last word of each sentence. But as every sentence is a bit different, the main verb is not always in the same position for each sentence. So I've done another table with the position of the words I'm interested in every sentence.
rules
item v1 v2 n1 n2
106 12 7 3 5
107 11 8 3 6
108 11 8 3 6
item=sentence; v1=main verb; v2=secondary verb; n1=first noun; n2=second noun.
So this should be read: For sentence 106, the main verb is the word number 12, the secondary verb is the word number 7 and so on.
I want to have a final table that looks like this:
results2
part item v1 v2 n1 n2
51 106 256 2327 327 394
51 107 ...
52 106 ...
Does anyone know how to do this? It's kind of a from long to wide problem but with a more complex scenario.
If anyone could help me, I would really appreciate it! Thanks!!
You can try the following code, which joins your results data to a reshaped rules data, and then reshapes the result into a wider form.
library(tidyr)
library(dplyr)
inner_join(select(results, -word),
pivot_longer(rules, -item), c("item", "n.word"="value")) %>%
select(-n.word) %>%
pivot_wider(names_from=name, values_from=rt) %>%
select(part, item, v1, v2, n1, n2)
# A tibble: 1 x 6
# part item v1 v2 n1 n2
# <int> <int> <int> <int> <int> <int>
#1 51 106 256 2327 327 394
Data:
results <- structure(list(part = c(51L, 51L, 51L, 51L, 51L, 51L, 51L, 51L,
51L, 51L, 51L, 51L, 51L, 51L, 51L), item = c(106L, 106L, 106L,
106L, 106L, 106L, 106L, 106L, 106L, 106L, 106L, 106L, 106L, 106L,
106L), word = c("*", "El", "asistente", "del", "carnicero", "que",
"abapl’a", "el", "sabor", "del", "pollo", "envipi—", "un", "libro",
"*."), n.word = 1:15, rt = c(382L, 286L, 327L, 344L, 394L, 274L,
2327L, 1104L, 409L, 360L, 1605L, 256L, 4573L, 660L, 519L)), class = "data.frame", row.names = c(NA,
-15L))
rules <- structure(list(item = 106:108, v1 = c(12L, 11L, 11L), v2 = c(7L,
8L, 8L), n1 = c(3L, 3L, 3L), n2 = c(5L, 6L, 6L)), class = "data.frame", row.names = c(NA,
-3L))
I have excel dataset as follows:
Weight Quantity Price
72 5 460
73 8 720
75 20 830
95 2 490
91 15 680
82 14 340
88 30 250
89 6 770
78 27 820
98 24 940
99 29 825
I want to get a weight vs Quantity pivot table with sum of prices for each category as follows:
0-10 10-20 20-30
70-80 1180 830 820
80-90 770 340 250
90-100 490 680 1765
I had created two tables for the individual categories to get the average and count using dplyr package as follows:
table1 <- group_by(dataset, Weight = cut(Weight, breaks = c(70,80,90,100))
result1 <- summarise(table1, Count = n(), Avg_Price = mean(Price, na.rm = T))
table2 <- group_by(dataset, Quantity = cut(Quantity, breaks = c(0,10,20,30))
result2 <- summarise(table2, Count = n(), Avg_Price = mean(Price, na.rm = T))
Now, How do i use table1 and table2 to create a crosstab table as above?
Maybe the following is what you want. It uses cut like you have, then xtabs.
Weight = cut(dataset$Weight, breaks = c(70,80,90,100))
Quantity = cut(dataset$Quantity, breaks = c(0,10,20,30))
dt2 <- data.frame(Weight, Quantity, Price = dataset$Price)
xtabs(Price ~ Weight + Quantity, dt2)
# Quantity
#Weight (0,10] (10,20] (20,30]
# (70,80] 1180 830 820
# (80,90] 770 340 250
# (90,100] 490 680 1765
A dplyr and tidyr solution:
library(dplyr)
library(tidyr)
df %>%
mutate(Weight = cut(Weight, breaks = c(70,80,90,100)),
Quantity = cut(Quantity, breaks = c(0,10,20,30))) %>%
group_by(Weight, Quantity) %>%
summarise(Price = sum(Price)) %>%
spread(Quantity, Price)
# A tibble: 3 x 4
# Groups: Weight [3]
Weight `(0,10]` `(10,20]` `(20,30]`
* <fct> <int> <int> <int>
1 (70,80] 1180 830 820
2 (80,90] 770 340 250
3 (90,100] 490 680 1765
Data:
df <- structure(list(Weight = c(72L, 73L, 75L, 95L, 91L, 82L, 88L,
89L, 78L, 98L, 99L), Quantity = c(5L, 8L, 20L, 2L, 15L, 14L,
30L, 6L, 27L, 24L, 29L), Price = c(460L, 720L, 830L, 490L, 680L,
340L, 250L, 770L, 820L, 940L, 825L)), .Names = c("Weight", "Quantity",
"Price"), class = "data.frame", row.names = c(NA, -11L))
I have following data frame oridf:
test_name gp1_0month gp2_0month gp1_1month gp2_1month gp1_3month gp2_3month
Test_1 136 137 152 143 156 150
Test_2 130 129 81 78 86 80
Test_3 129 128 68 68 74 71
Test_4 40 40 45 43 47 46
Test_5 203 201 141 134 149 142
Test_6 170 166 134 116 139 125
oridf <- structure(list(test_name = structure(1:6, .Label = c("Test_1",
"Test_2", "Test_3", "Test_4", "Test_5", "Test_6"), class = "factor"),
gp1_0month = c(136L, 130L, 129L, 40L, 203L, 170L), gp2_0month = c(137L,
129L, 128L, 40L, 201L, 166L), gp1_1month = c(152L, 81L, 68L,
45L, 141L, 134L), gp2_1month = c(143L, 78L, 68L, 43L, 134L,
116L), gp1_3month = c(156L, 86L, 74L, 47L, 149L, 139L), gp2_3month = c(150L,
80L, 71L, 46L, 142L, 125L)), .Names = c("test_name", "gp1_0month",
"gp2_0month", "gp1_1month", "gp2_1month", "gp1_3month", "gp2_3month"
), class = "data.frame", row.names = c(NA, -6L))
I need to convert it to following format:
test_name month group value
Test_1 0 gp1 136
Test_1 0 gp2 137
Test_1 1 gp1 152
Test_1 1 gp2 143
.....
Hence, conversion would involve splitting of gp1 and 0month, etc. from columns 2:7 of the original data frame oridf so that I can plot it with following command:
qplot(data=newdf, x=month, y=value, geom=c("point","line"), color=test_name, linetype=group)
How can I convert these data? I tried the melt command, but I cannot combine it with the strsplit command.
First I would use melt like you had done.
library(reshape2)
mm <- melt(oridf)
then there is also a colsplit function you can use in the reshape2 library as well. Here we use it on the variable column to split at the underscore and the "m" in month (ignoring the rest)
info <- colsplit(mm$variable, "(_|m)", c("group","month", "xx"))[,-3]
Then we can recombine the data
newdf <- cbind(mm[,1, drop=F], info, mm[,3, drop=F])
# head(newdf)
# test_name group month value
# 1 Test_1 gp1 0 136
# 2 Test_2 gp1 0 130
# 3 Test_3 gp1 0 129
# 4 Test_4 gp1 0 40
# 5 Test_5 gp1 0 203
# 6 Test_6 gp1 0 170
And we can plot it using the qplot command you supplied above
Use gather from the tidyr package to convert from wide to long and then useseparate from the same package to separate the group_month column into group and month columns. Finally using mutate from dplyr smf extract_numeric from tidyr extract the numeric part of month.
library(dplyr)
# devtools::install_github("hadley/tidyr")
library(tidyr)
newdf <- oridf %>%
gather(group_month, value, -test_name) %>%
separate(group_month, into = c("group", "month")) %>%
mutate(month = extract_numeric(month))