covariance structure for multilevel modelling - r

I have a multilevel repeated measures dataset of around 300 patients each with up to 10 repeated measures predicting troponin rise. There are other variables in the dataset, but I haven't included them here.
I am trying to use nlme to create a random slope, random intercept model where effects vary between patients, and effect of time is different in different patients. When I try to introduce a first-order covariance structure to allow for the correlation of measurements due to time I get the following error message.
Error in `coef<-.corARMA`(`*tmp*`, value = value[parMap[, i]]) : Coefficient matrix not invertible
I have included my code and a sample of the dataset, and I would be very grateful for any words of wisdom.
#baseline model includes only the intercept. Random slopes - intercept varies across patients
randomintercept <- lme(troponin ~ 1,
data = df, random = ~1|record_id, method = "ML",
na.action = na.exclude,
control = list(opt="optim"))
#random intercept and time as fixed effect
timeri <- update(randomintercept,.~. + day)
#random slopes and intercept: effect of time is different in different people
timers <- update(timeri, random = ~ day|record_id)
#model covariance structure. corAR1() first order autoregressive covariance structure, timepoints equally spaced
armodel <- update(timers, correlation = corAR1(0, form = ~day|record_id))
Error in `coef<-.corARMA`(`*tmp*`, value = value[parMap[, i]]) : Coefficient matrix not invertible
Data:
record_id day troponin
1 1 32
2 0 NA
2 1 NA
2 2 NA
2 3 8
2 4 6
2 5 7
2 6 7
2 7 7
2 8 NA
2 9 9
3 0 14
3 1 1167
3 2 1935
4 0 19
4 1 16
4 2 29
5 0 NA
5 1 17
5 2 47
5 3 684
6 0 46
6 1 45440
6 2 47085
7 0 48
7 1 87
7 2 44
7 3 20
7 4 15
7 5 11
7 6 10
7 7 11
7 8 197
8 0 28
8 1 31
9 0 NA
9 1 204
10 0 NA
10 1 19

You can fit this if you change your optimizer to "nlminb" (or at least it works with the reduced data set you posted).
armodel <- update(timers,
correlation = corAR1(0, form = ~day|record_id),
control=list(opt="nlminb"))
However, if you look at the fitted model, you'll see you have problems - the estimated AR1 parameter is -1 and the random intercept and slope terms are correlated with r=0.998.
I think the problem is with the nature of the data. Most of the data seem to be in the range 10-50, but there are excursions by one or two orders of magnitude (e.g. individual 6, up to about 45000). It might be hard to fit a model to data this spiky. I would strongly suggest log-transforming your data; the standard diagnostic plot (plot(randomintercept)) looks like this:
whereas fitting on the log scale
rlog <- update(randomintercept,log10(troponin) ~ .)
plot(rlog)
is somewhat more reasonable, although there is still some evidence of heteroscedasticity.
The AR+random-slopes model fits OK:
ar.rlog <- update(rlog,
random = ~day|record_id,
correlation = corAR1(0, form = ~day|record_id))
## Linear mixed-effects model fit by maximum likelihood
## ...
## Random effects:
## Formula: ~day | record_id
## Structure: General positive-definite, Log-Cholesky parametrization
## StdDev Corr
## (Intercept) 0.1772409 (Intr)
## day 0.6045765 0.992
## Residual 0.4771523
##
## Correlation Structure: ARMA(1,0)
## Formula: ~day | record_id
## Parameter estimate(s):
## Phi1
## 0.09181557
## ...
A quick glance at intervals(ar.rlog) shows that the confidence intervals on the autoregressive parameter are (-0.52,0.65), so it may not be worth keeping ...
With the random slopes in the model the heteroscedasticity no longer seems problematic ...
plot(rlog,sqrt(abs(resid(.)))~fitted(.),type=c("p","smooth"))

Related

Specify a model in R given coefficients and covariance matrices

I'm trying to implement a predictive model from a publication see here for reference
The paper specifies predictive models that are derived from a previous clinical study and provides the coefficients and covariance matrices for each.
I'm fairly familiar with fitting a model to data in R - but I've never had to specify one.
Specifically, I am looking to create the model so that I can leverage predict() to generate predictive outcomes for a different set of patients while accounting of the model's variability.
For convenience I've provided the one of the two models and related coefficients and covariance matrices, both are of a similar form. Any help is greatly appreciated:
# Model 1
# TKV model
#
# delta_TKV = exp(intercept + a x age + b x Ln(TKV_t) + c x female + d x age x Ln(TKV_t)) - 500
# delta_TKV - the change in total kidney volume (TKV) over a period of time in years
# age - age of patient in years
# Ln(TKV_t) - natural log of total kidney volume at time t
# female - boolean value for gender
# age:Ln(TKV_t) - interaction term between age and Ln(TKV)
# Coefficients Estimate SE
# intercept 0.7889 1.1313
# age 0.1107 0.0287
# Ln(TKV) 0.8207 0.1556
# Female -0.0486 0.0266
# Age:Ln(TKV) -0.0160 0.0039
# Covariance intercept age Ln(TKV) Female Age:Ln(TKV)
# intercept 1.279758 -0.031790 -0.175654 -0.001306 0.004362
# age -0.031790 0.00823 0.004361 -0.000016 -0.000113
# Ln(TKV) -0.175651 0.004361 0.024207 -0.000155 -0.000601
# Female -0.001306 -0.000016 0.000155 0.000708 0.000002
# Age:Ln(TKV) 0.004362 -0.000113 -0.000601 0.000002 0.000016
I don't known wether you can generate a model to be used with predict with custom coefficients. But you can use model.frame or model.matrix to generate a design matrix based on your formula e.g.
data = data.frame(delta_TKV = 1:3 , TKV_t = 3.5, female = c(T,F,T), age = 40:42 )
model = model.frame(log(delta_TKV + 500) ~ age + log(TKV_t) + female + age:log(TKV_t),
data)
model
#> (Intercept) age log(TKV_t) femaleTRUE age:log(TKV_t)
#> 1 1 40 1.252763 1 50.11052
#> 2 1 41 1.252763 0 51.36328
#> 3 1 42 1.252763 1 52.61604
#> attr(,"assign")
#> [1] 0 1 2 3 4
#> attr(,"contrasts")
#> attr(,"contrasts")$female
#> [1] "contr.treatment"
coefs = c(
intercept = 0.7889 ,
age = 0.1107 ,
`log(TKV)` = 0.8207 ,
female = -0.0486 ,
`Age:log(TKV)` = -0.0160
)
model %*% coefs
#> [,1]
#> 1 5.394674
#> 2 5.533930
#> 3 5.575986
i transformed the formula to make it like lm spec, thus the response is the logarithm of y + 500 and you must obtain y doing the reverse, the same apply if you were to use lm

How to use knn classification (class package) using training and test datasets

Dfcensus is the original data frame. I am trying to use Sex, EducYears and Age to predict whether a person's Income is "<=50K" or ">50K".
There are 20,000 rows in x_train_auto (training set) and 12,561 in x_test_auto (test set).
My classification variable (training set) has 15,124 <=50k and 4876 >50k.
Here is my code:
predictions = knn(train = x_train_auto, # response
test = x_test_auto, # response
cl = Df_census$Income[in_train_census], # prediction
k = 25)
table(predictions)
#<=50K
#12561
As you can see, all 12,561 test samples were predicted to have an Income of ">=50K".
This doesn't make sense. I am not sure where I am going wrong.
P.S.: I have sex one-hot encodes as 0 for male and 1 for female. And I have scaled Educ_years and Age and added sex to the data frame. I then added the one-hot encoded sex variable back into the scaled test and train data.
identifying the problem
Your provided x_test-auto.csv data suggests that you passed logical vectors with TRUEs and FALSEs (which define the indices of training and test samples rather than the actual data) to the train and test arguments of class::knn.
the solution
Rather, use the logical vector in x_train_auto (which I believe corresponds to in_train_census in your example) to define two separate data.frames, each containing all your desired predictors. These are then the training and the test set.
p <- c("Age","EducYears","Sex")
Df_train <- Df_census[in_train_census,p]
Df_test <- Df_census[!in_train_census,p]
In the knn function, pass the training set to the train argument, and the test set to the test argument, and further pass the outcome / target variable of the training set (as a factor) to cl.
The output (see ?class::knn) will be the predicted outcome for the test set.
Here is a complete and reproducible workflow using your data.
the data
library(class)
# read data from Dropbox
x_train_auto <- read.csv("https://dropbox.com/s/6kupkp4u4qyizy7/x_test_auto.csv?dl=1", row.names = 1)
Df_census <- read.csv("https://dropbox.com/s/ccvck8ajnatmpv0/Df_census.csv?dl=1", row.names = 1, stringsAsFactors = TRUE)
table(x_train_auto) # TRUE are training, FALSE are test set
#> x_train_auto
#> FALSE TRUE
#> 12561 20000
str(Df_census) # Income as factor, Sex is binary, Age and EducYears are numeric
#> 'data.frame': 32561 obs. of 15 variables:
#> $ Age : int 39 50 38 53 28 37 49 52 31 42 ...
#> $ Work : Factor w/ 9 levels "?","Federal-gov",..: 8 7 5 5 5 5 5 7 5 5 ...
#> $ Fnlwgt : int 77516 83311 215646 234721 338409 284582 160187 209642 45781 159449 ...
#> $ Education : Factor w/ 16 levels "10th","11th",..: 10 10 12 2 10 13 7 12 13 10 ...
#> $ EducYears : int 13 13 9 7 13 14 5 9 14 13 ...
#> $ MaritalStatus: Factor w/ 7 levels "Divorced","Married-AF-spouse",..: 5 3 1 3 3 3 4 3 5 3 ...
#> $ Occupation : Factor w/ 15 levels "?","Adm-clerical",..: 2 5 7 7 11 5 9 5 11 5 ...
#> $ Relationship : Factor w/ 6 levels "Husband","Not-in-family",..: 2 1 2 1 6 6 2 1 2 1 ...
#> $ Race : Factor w/ 5 levels "Amer-Indian-Eskimo",..: 5 5 5 3 3 5 3 5 5 5 ...
#> $ Sex : int 1 1 1 1 0 0 0 1 0 1 ...
#> $ CapitalGain : int 2174 0 0 0 0 0 0 0 14084 5178 ...
#> $ CapitalLoss : int 0 0 0 0 0 0 0 0 0 0 ...
#> $ HoursPerWeek : int 40 13 40 40 40 40 16 45 50 40 ...
#> $ NativeCountry: Factor w/ 42 levels "?","Cambodia",..: 40 40 40 40 6 40 24 40 40 40 ...
#> $ Income : Factor w/ 2 levels "<=50K",">50K": 1 1 1 1 1 1 1 2 2 2 ...
# predictors and response
p <- c("Age","EducYears","Sex")
y <- "Income"
# create data partition
in_train_census <- x_train_auto$x
Df_train <- Df_census[in_train_census,]
Df_test <- Df_census[!in_train_census,]
# check
dim(Df_train)
#> [1] 20000 15
dim(Df_test)
#> [1] 12561 15
table(Df_train$Income)
#>
#> <=50K >50K
#> 15124 4876
using class::knn
The knn (k-nearest-neighbors) algorithm can perform better or worse depending on the choice of the hyperparameter k. It's often difficult to know which k value is best for the classification of a particular dataset. In a machine learning setting, you'd want to try out different values of k to find a value that gives the highest performance on your test dataset (i.e., data which was not used for model fitting).
It's always important to strike a good balance between overfitting (model is too complex, and will give good results on the training data, but less accurate or even rubbish results on new test data) and underfitting (model is too trivial to explain the actual patterns in the data). In the case of knn, using a larger k value would probably better safeguard against overfitting, according to the explanations here.
# apply knn for various k using the given training / test set
r <- data.frame(array(NA, dim = c(0, 2), dimnames = list(NULL, c("k","accuracy"))))
for (k in 1:30) {
#cat("k =", k, "\n")
# fit model on training set, predict test set data
set.seed(60402) # to be reproducible
predictions <- knn(train = Df_train[,p],
test = Df_test[,p],
cl = Df_train[,y],
k = k)
# confusion matrix on test set
t <- table(pred = predictions, ref = Df_test[,y])
# accuracy
a <- sum(diag(t)) / sum(t)
# bind
r <- rbind(r, data.frame(k = k, accuracy = a))
}
visualize model assessment
# find best k
r[which.max(r$accuracy),]
#> k accuracy
#> 17 17 0.8007324
(k.best <- r[which.max(r$accuracy),"k"])
#> [1] 17
# plot
with(r, plot(k, accuracy, type = "l"))
abline(v = k.best, lty = 2)
Created on 2021-09-23 by the reprex package (v2.0.1)
interpretation
The loop results suggest that your optimal value of k for this particular training and test set is between 12 and 17 (see plot above), but the accuracy gain is very small compared to using k = 1 (it's at around 80% regardless of k).
additional thoughts
Given that high income is rarer compared to lower income, accuracy might not be the desired performance metric. Sensitivity might be equally or more important, and you could modify the example code to calculate and assess other performance metrics instead.
In addition to pure prediction, you might want to explore whether other variables could be informative predictors of the Income class, by adding them to the p vector and comparing the resulting accuracies.
Here, we base our conclusions on a particular realization of training and test data. Better machine learning practice would be to split your data into 2 (as here), but then repeatedly split the training set again to fit and assess many more models, using e.g. (repeated) k-fold cross validation. A good package to do this in R is e.g. caret or tidymodels.
To gain a better understanding regarding which variables are the best predictors of Income class, I would also carry out a logistic regression on various uncorrelated predictors.

sandwich + mlogit: `Error in ef/X : non-conformable arrays` when using `vcovHC()` to compute robust/clustered standard errors

I am trying to compute robust/cluster standard errors after using mlogit() to fit a Multinomial Logit (MNL) in a Discrete Choice problem. Unfortunately, I suspect I am having problems with it because I am using data in long format (this is a must in my case), and getting the error #Error in ef/X : non-conformable arrays after sandwich::vcovHC( , "HC0").
The Data
For illustration, please gently consider the following data. It represents data from 5 individuals (id_ind ) that choose among 3 alternatives (altern). Each of the five individuals chose three times; hence we have 15 choice situations (id_choice). Each alternative is represented by two generic attributes (x1 and x2), and the choices are registered in y (1 if selected, 0 otherwise).
df <- read.table(header = TRUE, text = "
id_ind id_choice altern x1 x2 y
1 1 1 1 1.586788801 0.11887832 1
2 1 1 2 -0.937965347 1.15742493 0
3 1 1 3 -0.511504401 -1.90667519 0
4 1 2 1 1.079365680 -0.37267925 0
5 1 2 2 -0.009203032 1.65150370 1
6 1 2 3 0.870474033 -0.82558651 0
7 1 3 1 -0.638604013 -0.09459502 0
8 1 3 2 -0.071679538 1.56879334 0
9 1 3 3 0.398263302 1.45735788 1
10 2 4 1 0.291413453 -0.09107974 0
11 2 4 2 1.632831160 0.92925495 0
12 2 4 3 -1.193272276 0.77092623 1
13 2 5 1 1.967624379 -0.16373709 1
14 2 5 2 -0.479859282 -0.67042130 0
15 2 5 3 1.109780885 0.60348187 0
16 2 6 1 -0.025834772 -0.44004183 0
17 2 6 2 -1.255129594 1.10928280 0
18 2 6 3 1.309493274 1.84247199 1
19 3 7 1 1.593558740 -0.08952151 0
20 3 7 2 1.778701074 1.44483791 1
21 3 7 3 0.643191170 -0.24761157 0
22 3 8 1 1.738820924 -0.96793288 0
23 3 8 2 -1.151429915 -0.08581901 0
24 3 8 3 0.606695064 1.06524268 1
25 3 9 1 0.673866953 -0.26136206 0
26 3 9 2 1.176959443 0.85005871 1
27 3 9 3 -1.568225496 -0.40002252 0
28 4 10 1 0.516456176 -1.02081089 1
29 4 10 2 -1.752854918 -1.71728381 0
30 4 10 3 -1.176101700 -1.60213536 0
31 4 11 1 -1.497779616 -1.66301234 0
32 4 11 2 -0.931117325 1.50128532 1
33 4 11 3 -0.455543630 -0.64370825 0
34 4 12 1 0.894843784 -0.69859139 0
35 4 12 2 -0.354902281 1.02834859 0
36 4 12 3 1.283785176 -1.18923098 1
37 5 13 1 -1.293772990 -0.73491317 0
38 5 13 2 0.748091387 0.07453705 1
39 5 13 3 -0.463585127 0.64802031 0
40 5 14 1 -1.946438667 1.35776140 0
41 5 14 2 -0.470448172 -0.61326604 1
42 5 14 3 1.478763383 -0.66490028 0
43 5 15 1 0.588240775 0.84448489 1
44 5 15 2 1.131731049 -1.51323232 0
45 5 15 3 0.212145247 -1.01804594 0
")
The problem
Consequently, we can fit an MNL using mlogit() and extract their robust variance-covariance as follows:
library(mlogit)
library(sandwich)
mo <- mlogit(formula = y ~ x1 + x2|0 ,
method ="nr",
data = df,
idx = c("id_choice", "altern"))
sandwich::vcovHC(mo, "HC0")
#Error in ef/X : non-conformable arrays
As we can see there is an error produced by sandwich::vcovHC, which says that ef/X is non-conformable. Where X <- model.matrix(x) and ef <- estfun(x, ...). After looking through the source code on the mirror on GitHub I spot the problem which comes from the fact that, given that the data is in long format, ef has dimensions 15 x 2 and X has 45 x 2.
My workaround
Given that the show must continue, I am computing the robust and cluster standard errors manually using some functions that I borrow from sandwich and I adjusted to accommodate the Stata's output.
> Robust Standard Errors
These lines are inspired on the sandwich::meat() function.
psi<- estfun(mo)
k <- NCOL(psi)
n <- NROW(psi)
rval <- (n/(n-1))* crossprod(as.matrix(psi))
vcov(mo) %*% rval %*% vcov(mo)
# x1 x2
# x1 0.23050261 0.09840356
# x2 0.09840356 0.12765662
Stata Equivalent
qui clogit y x1 x2 ,group(id_choice) r
mat li e(V)
symmetric e(V)[2,2]
y: y:
x1 x2
y:x1 .23050262
y:x2 .09840356 .12765662
> Clustered Standard Errors
Here, given that each individual answers 3 questions is highly likely that there is some degree of correlation among individuals; hence cluster corrections should be preferred in such situations. Below I compute the cluster correction in this case and I show the equivalence with the Stata output of clogit , cluster().
id_ind_collapsed <- df$id_ind[!duplicated(mo$model$idx$id_choice,)]
psi_2 <- rowsum(psi, group = id_ind_collapsed )
k_cluster <- NCOL(psi_2)
n_cluster <- NROW(psi_2)
rval_cluster <- (n_cluster/(n_cluster-1))* crossprod(as.matrix(psi_2))
vcov(mo) %*% rval_cluster %*% vcov(mo)
# x1 x2
# x1 0.1766707 0.1007703
# x2 0.1007703 0.1180004
Stata equivalent
qui clogit y x1 x2 ,group(id_choice) cluster(id_ind)
symmetric e(V)[2,2]
y: y:
x1 x2
y:x1 .17667075
y:x2 .1007703 .11800038
The Question:
I would like to accommodate my computations within the sandwich ecosystem, meaning not computing the matrices manually but actually using the sandwich functions. Is it possible to make it work with models in long format like the one described here? For example, providing the meat and bread objects directly to perform the computations? Thanks in advance.
PS: I noted that there is a dedicated bread function in sandwich for mlogit, but I could not spot something like meat for mlogit, but anyways I am probably missing something here...
Why vcovHC does not work for mlogit
The class of HC covariance estimators can just be applied in models with a single linear predictor where the score function aka estimating function is the product of so-called "working residuals" and a regressor matrix. This is explained in some detail in the Zeileis (2006) paper (see Equation 7), provided as vignette("sandwich-OOP", package = "sandwich") in the package. The ?vcovHC also pointed to this but did not explain it very well. I have improved this in the documentation at http://sandwich.R-Forge.R-project.org/reference/vcovHC.html now:
The function meatHC is the real work horse for estimating the meat of HC sandwich estimators - the default vcovHC method is a wrapper calling sandwich and bread. See Zeileis (2006) for more implementation details. The theoretical background, exemplified for the linear regression model, is described below and in Zeileis (2004). Analogous formulas are employed for other types of models, provided that they depend on a single linear predictor and the estimating functions can be represented as a product of “working residual” and regressor vector (Zeileis 2006, Equation 7).
This means that vcovHC() is not applicable to multinomial logit models as they generally use separate linear predictors for the separate response categories. Similarly, two-part or hurdle models etc. are not supported.
Basic "robust" sandwich covariance
Generally, for computing the basic Eicker-Huber-White sandwich covariance matrix estimator, the best strategy is to use the sandwich() function and not the vcovHC() function. The former works for any model with estfun() and bread() methods.
For linear models sandwich(..., adjust = FALSE) (default) and sandwich(..., adjust = TRUE) correspond to HC0 and HC1, respectively. In a model with n observations and k regression coefficients the former standardizes with 1/n and the latter with 1/(n-k).
Stata, however, divides by 1/(n-1) in logit models, see:
Different Robust Standard Errors of Logit Regression in Stata and R. To the best of my knowledge there is no clear theoretical reason for using specifically one or the other adjustment. And already in moderately large samples, this makes no difference anyway.
Remark: The adjustment with 1/(n-1) is not directly available in sandwich() as an option. However, coincidentally, it is the default in vcovCL() without specifying a cluster variable (i.e., treating each observation as a separate cluster). So this is a convenient "trick" if you want to get exactly the same results as Stata.
Clustered covariance
This can be computed "as usual" via vcovCL(..., cluster = ...). For mlogit models you just have to consider that the cluster variable just needs to be provided once (as opposed to stacked several times in long format).
Replicating Stata results
With the data and model from your post:
vcovCL(mo)
## x1 x2
## x1 0.23050261 0.09840356
## x2 0.09840356 0.12765662
vcovCL(mo, cluster = df$id_choice[1:15])
## x1 x2
## x1 0.1766707 0.1007703
## x2 0.1007703 0.1180004

Coefplot for a chi square distribution

I was told to do a coefplot in R to visualise my data better.
Therefore i first did a chi square test. and after i put my data into a table it looked like this:
1 2 3 5 6
5_min_blank 11 21 18 19 8
Boldstyle 6 7 14 10 2
Boldstyle_pause 9 22 19 8 0
Breaststroke 7 16 10 5 4
Breaststroke_pause 9 13 10 8 3
Diving 14 20 10 10 4
1-6 are categories and "bold style" etc. are different sounds.
i than did a test:
fit.swim<-chisq.test(X2,simulate.p.value = TRUE, B = 10000)
and got this result:
Pearson's Chi-squared test with simulated p-value (based on 10000 replicates)
data: X2
X-squared = 87.794, df = NA, p-value = 0.09479
Now i would like to do a coefplot with my data but i only get this error:
coefplot(fit.swim)
Error: $ operator is invalid for atomic vectors
Any ideas how to draw a nice plot?
Thank you very much for the help!
All the best
Marie
I think that the reason you are getting that error is because coefplot requires a fitted model as input in the form of an lm, glm or rxLinMod obj.
In your case you have carried out a goodness of fit test that essentially compares the observed sample distribution with the expected probability distribution. There isn't a fitted model to plot the coefficients from.

Linear Regression - Append Predicted Values to Same dataset

I recently started with R programming. This is my dataset
WeekOfYear Production
1 202612
2 245633
3 299653
4 252612
5 299633
6 288993
7 254653
8 288612
9 277733
10 245633
I need to predict “Production” values for the remaining Weeks of the Year
relation<-lm(Production~WeekOfYear,dataset)
predict(relation,data.frame(WeekOfYear=c(11)))
How to append predicted values for week nos 11 to 52 (end of year) to the same dataset like below
WeekOfYear Production
1 202612
2 245633
3 299653
4 252612
5 299633
6 288993
7 254653
8 288612
9 277733
10 245633
11 predicted value
12 predicted value
so on
-OR-
WeekOfYear Production Regression
1 202612 fitted value
2 245633 fitted value
3 299653 fitted value
4 252612 fitted value
5 299633 fitted value
6 288993 fitted value
7 254653 fitted value
8 288612 fitted value
9 277733 fitted value
10 245633 fitted value
11 predicted value
12 predicted value
13 predicted value
14 predicted value
.
.
52 predicted value
You could do it like this:
relation <- lm(Production ~ WeekOfYear, dat)
WeekOfYear <- 1:52
predict(relation, data.frame(WeekOfYear))
dat2 <- data.frame(WeekOfYear, regression = predict(relation, data.frame(WeekOfYear)))
merge(dat, dat2, by = 'WeekOfYear', all.y = TRUE)
The result:
WeekOfYear Production regression
1 1 202612 250517.6
2 2 245633 253864.1
3 3 299653 257210.5
4 4 252612 260557.0
5 5 299633 263903.5
6 6 288993 267249.9
7 7 254653 270596.4
8 8 288612 273942.9
9 9 277733 277289.3
10 10 245633 280635.8
11 11 NA 283982.3
12 12 NA 287328.7
----
51 51 NA 417840.9
52 52 NA 421187.4
To append your values you can use the following
test_data <- data.frame(WeekOfYear=11:52, Production = rep(0, 52-11+1))
test_data$Production <- predict(relation,test_data)
df = rbind(df, test_data)
where I have defined with df your data Frame
df = data.frame(WeekOfYear =
c(1,2,3,4,5,6,7,8,9,10),
Production = c(202612,245633,299653,252612,299633,288993,254653,288612, 277733,245633))
this will give you this behaviour (plot put together very quickly)
I am not sure anyway that your data follow a linear behaviour but you may know your data better...

Resources