Fill three numbers inside One number - math

I am trying to fit 3 numbers inside 1 number.But numbers will be only between 0 and 11.So their (base) is 12.For example i have 7,5,2 numbers.I come up with something like this:
Three numbers into One number :
7x12=84
84x5=420
420+2=422
Now getting back Three numbers from One number :
422 MOD 12 = 2 (the third number)
422 - 2 = 420
420 / 12 = 35
And i understanded that 35 is multiplication of first and the second number (i.e 7 and 5)
And now i cant get that 7 and 5 anyone knows how could i ???

(I started typing this answer before the other one got posted, but this one is more specific to Arduino then the other one, so I'm leaving it)
The code
You can use bit shifting to get multiple small numbers into one big number, in code it would look like this:
int a, b, c;
//putting then together
int big = (a << 8) + (b << 4) + c;
//separating them again
a = (big >> 8) & 15;
b = (big >> 4) & 15;
c = big & 15;
This code only works when a, b and c are all in the range [0, 15] witch appears to be enough for you case.
How it works
The >> and << operators are the bitshift operators, in short a << n shifts every bit in a by n places to the left, this is equivalent to multiplying by 2^n. Similarly, a >> n shifts to to the right. An example:
11 << 3 == 120 //0000 1011 -> 0101 1000
The & operator performs a bitwise and on the two operands:
6 & 5 == 4 // 0110
// & 0101
//-> 0100
These two operators are combined to "pack" and "unpack" the three numbers. For the packing every small number is shifted a bit to the left and they are all added together. This is how the bits of big now look (there are 16 of them because ints in Arduino are 16 bits wide):
0000aaaabbbbcccc
When unpacking, the bits are shifted to the right again, and they are bitwise anded together with 15 to filter out any excess bits. This is what that last operation looks like to get b out again:
00000000aaaabbbb //big shifted 4 bits to the right
& 0000000000001111 //anded together with 15
-> 000000000000bbbb //gives the original number b

All is working exactly like in base 10 (or 16). Here after your corrected example.
Three numbers into One number :
7x12^2=1008
5*12^1=60
2*12^0=2
1008+60+2=1070
Now getting back Three numbers from One number :
1070 MOD 12 = 2 (the third number)
1070/12 = 89 (integer division) => 89 MOD 12 = 5
89 / 12 = 7
Note also that the maximum value will be 11*12*12+11*12+11=1727.
If this is really programming related, you will be using 16bits instead of 3*8 bits so sparing one byte. An easyer method not using base 12 would be fit each number into half a byte (better code efficiency and same transmission length):
7<<(4+4) + 5<<4 + 2 = 1874
1874 & 0x000F = 2
1874>>4 & 0x000F = 5
1874>>8 & 0x0F = 7
Because MOD(12) and division by 12 is much less efficient than working with powers of 2

you can use the principle of the positional notation to change from one or the other in any base
Treat yours numbers (n0,n1,...,nm) as a digit of a big number in the base B of your choosing so the new number is
N = n0*B^0 + n1*B^1 + ... + nm*B^m
to revert the process is also simple, while your number is greater than 0 find its modulo in respect to the base to get to get the first digit, then subtracts that digit and divide for the base, repeat until finish while saving each digit along the way
digit_list = []
while N > 0 do:
d = N mod B
N = (N - d) / B
digit_list.append( d )
then if N is N = n0*B^0 + n1*B^1 + ... + nm*B^m doing N mod B give you n0, then subtract it leaving you with n1*B^1 + ... + nm*B^m and divide by B to reduce the exponents of all B and that is the new N, N = n1*B^0 + ... + nm*B^(m-1) repetition of that give you all the digit you start with
here is a working example in python
def compact_num( num_list, base=12 ):
return sum( n*pow(base,i) for i,n in enumerate(num_list) )
def decompact_num( n, base=12):
if n==0:
return [0]
result = []
while n:
n,d = divmod(n,base)
result.append(d)
return result
example
>>> compact_num([2,5,7])
1070
>>> decompact_num(1070)
[2, 5, 7]
>>> compact_num([10,2],16)
42
>>> decompact_num(42,16)
[10, 2]
>>>

Related

How to get the mid of 2 int32 number elegantly without overflow?

In some conditions like Segment Tree or Binary Search, I have to get the average value of 2 number.
An easy solution is mid = (a + b) / 2. But when it comes to a and b have the same plus-minus signs, The a + b thing will overflow. For example, 1234567 + 2147483647, -1234567 + (-2147483647) in int32 type.
I searched online and got to know mid = (b - a) / 2 + a, it can avoid the situation above, but still not perfect. When it comes to a and b have the different plus-minus signs, mid = (a + b) / 2 won't overflow but (b - a) / 2 + a will. For example, -2147483648 + 2147483647 in int32 type.
To thoroughly solve this problem, I've written the code in pic below. I divide the 2 situations by the plus-minus signs. (I use some bit operations to improve its efficiency.) But it is way too complex for such a simple problem, right?
Is there some elegant solution to this problem?
I tried to divide the problem to 2 situations and solve them respectively.
But I still want a more elegant solution.
Got the answer!
mid = (a & b) + ((a ^ b) >> 1)
a & b keeps the same bits that a and b have in common, they need not to be distributed averagely. Like when you find the average value of 102 and 110, you don't need to calculate the 100 they have in common. You can just keep that, and deal with the 2 and 10 part, distribute them averagely to 2 number. As (102 + 110) / 2 = (2 * 100 + 2 + 10) / 2 = 100 + (2 + 10) / 2 = 100 + 6 = 106.
(a ^ b) >> 1 deals with the "2 and 10 part", it gets all the bits that a and b don't have in common, and divide it by 2.
Adds up 2 parts above so we get the average value of a and b. Not a strict proof, though.

Is it possible to find a few common multiples of a list of numbers, without them having to be integers?

I don't even know if something like this is possible, but:
Let us say we have three numbers:
A = 6
B = 7.5
C = 24
I would like to find a few evenly spaced common multiples of these numbers between 0 and 2.
So the requirement is: one_of_these_numbers / common_multiple = an_integer (or almost an integer with a particular tolerance)
For example, a good result would be [0.1 , 0.5 , 1 , 1.5]
I have no idea if this is possible, because one can not iterate through a range of floats, but is there a smart way to do it?
I am using python, but a solution could be represented in any language of your preference.
Thank you for your help!
While I was writing my question, I actually came up with an idea for the solution.
To find common divisors using code, we have to work with integers.
My solution is to multiply all numbers by a factor = 1, 10, 100, ...
so that we can act as if they are integers, find their integer common divisors, and then redivide them by the factor to get a result.
Better explained in code:
a = 6
b = 7.5
c = 24
# Find a few possible divisors between 0 and 2 so that all numbers are divisible
by div.
# We define a function that finds all divisors in a range of numbers, supposing
all numbers are integers.
def find_common_divisors(numbers, range_start, range_end):
results = []
for i in range(range_start + 1, range_end + 1):
if all([e % i == 0 for e in numbers]):
results.append(i)
return results
def main():
nums = [a, b, c]
range_start = 0
range_end = 2
factor = 1
results = [1]
while factor < 11:
nums_i = [e * factor for e in nums]
range_end_i = range_end * factor
results += [e / factor for e in find_common_divisors(nums_i, range_start, range_end_i)]
factor *= 10
print(sorted(set(results)))
if __name__ == '__main__':
main()
For these particular numbers, I get the output:
[0.1, 0.3, 0.5, 1, 1.5]
If we need more results, we can adjust while factor < 11: to a higher number than 11 like 101.
I am curious to see if I made any mistake in my code.
Happy to hear some feedback.
Thank you!

Number of subsets of {1,2,3,...,N} containing at least 3 consecutive elements

Suppose we have a set like {1,2,3} then there is only one way to choose 3 consecutive numbers... it's the set {1,2,3}...
For a set of {1,2,3,4} we have 3 ways: 123 234 1234
(technically these are unordered sets of numbers, but writing them consecutively helps)
f(5) ; {1,2,3,4,5} -> 8 ways: 123 1234 1235 12345 234 2345 345 1345
f(6) ; {1,2,3,4,5,6} -> 20 ways: ...
f(7) ; {1,2,3,4,5,6,7} -> 47 ways: ...
So for a given N, I can get the answer by applying brute force, and calculating all such subset having 3 or more consecutive number.
Here I am just trying to find out a pattern, a technique to get the number of all such subset for a given N.
The problem is further generalized to .....discover m consecutive number within a set of size N.
There is a bijection between this problem and "the number of N-digit binary numbers with at least three consecutive 1s in a row somewhere" (the bijection being a number is 0 if excluded in the subset, and 1 if included in the subset).
This is a known problem, and should be enough information to google for a result, if you search for number of n-digit binary strings with m consecutive 1s, the second hit is Finding all n digit binary numbers with r adjacent digits as 1
Alternatively you can just look it up as http://oeis.org/search?q=0%2C0%2C1%2C3%2C8%2C20%2C47 (based on the brute-forcing you did for the first few terms) - resulting in an explicit formula of 2^n - tribonacci(n+3), see here for an explicit formula for tribonacci numbers. It also gives a recurrence relation. The analogy given is "probability (out of 2^n) of getting at least 1 run of 3 heads within n flips of a fair coin"
I can only assume that the answer to the general problem is 2^n - Fm(n+m), where Fm is the mth n-step Fibonacci number (edit: that does seem to be the case)
This sounds like homework to me, so I'll just get you started. FoOne approach is to think of the Lowest and Highest members of the run, L and H. If the set size is N and your minimum run length is M, then for each possible position P of L, you can work out how many positions of H there are....
With a bit of python code, we can investigate this:
y = set()
def cons(li, num):
if len(li) < num:
return
if len(li) == num:
y.add(tuple([i for i in li]))
else:
y.add(tuple([i for i in li]))
cons(li[1:], num)
cons(li[:-1], num)
This solution will be quite slow (it's exponential in complexity, actually), but try it out for a few small list sizes and I think you should be able to pick up the pattern.
Not sure if you mean consecutive or not. If not, then for {1, 2, 3, 4} there are 4 possibilities: {1, 2, 3} {2, 3, 4} {1, 3, 4} {1, 2, 3, 4}
I think you can calculate the solution with N!/3! where N! = N*(N-1)(N-2)...*1.
Quick answer:
Sequences(n) = (n-1)*(n-2) / 2
Long answer:
You can do this by induction. First, I'm going to re-state the problem, because your problem statement isn't clear enough.
Rule 1: For all sets of consecutive numbers 1..n where n is 2 or more
Rule 2: Count the subsets S(n) of consecutive numbers m..m+q where q is 2 or more
S(n=3)
By inspection we find only one - 123
S(n=4)
By inspection we find 3! - 123 234 and 1234
Note that S(4) contains S(3), plus two new ones... both include the new digit 4... hmm.
S(n=5)
By inspection we find ... S(n=4) as well as 345 2345 and 12345. That's 3+3=6 total.
I think there's a pattern forming here. Let's define a new function T.
Rule 3: S(n) = S(n-1) + T(n) ... for some T.
We know that S(n) contains the digit n, and should have spotted by now that S(n) also contains (as a subcomponent) all sequences of length 3 to n that include the digit n. We know they cannot be in S(n-1) so they must be in T(n).
Rule 4: T(n) contains all sequence ending in n that are of length 3 to n.
How many sequences are in S(n)?
Let's look back at S(3) S(4) and S(5), and incorporate T(n):
S(3) = S(3)
S(4) = S(3) + T(4)
S(5) = S(4) + T(5) = S(3) + T(4) + T(5)
let's generalise:
S(n) = S(3) + T(f) for all f from 4 to n.
So how many are in a given T?
Look back at rule 5 - how many sequences does it describe?
For T(4) it describes all sequences 3 and longer ending in 4. (that's 234)
For T(5) it describes all sequences 3 and longer ending in 5. (that's 345 2345 = 2)
T count Examples
4 2 1234 234
5 3 12345 2345 345
6 4 123456 23456 3456 456
Looks awfully like T(n) is simply n-2!
So
S(6) = T(6) + T(5) + T(4) + S(3)
10 = 4 + 3 + 2 + 1
And
S(7) = 15 = 5 + 4 + 3 + 2 + 1
S(8) = 21 = 6 + 5 + 4 + 3 + 2 + 1
Turning this into a formula
What's 2 * S(8)?
42 = 6 + 5 + 4 + 3 + 2 + 1 + 1 + 2 + 3 + 4 + 5 + 6
Add each pair of biggest and smallest numbers:
42 = 7 + 7 + 7 + 7 + 7 + 7
42 = 7 * 6
But that's 2 * S(8), so
S(8) = 42/2 = 21 = 7 * 6 / 2
This generalizes:
S(n) = (n-1)*(n-2) / 2
Let's check this works:
S(3) = 2*1/2 = 1
S(4) = 3*2/2 = 3
S(5) = 4*3/2 = 6
S(6) = 5*4/2 = 10
I'm satisfied.

How to find x mod 15 without using any Arithmetic Operations?

We are given a unsigned integer, suppose. And without using any arithmetic operators ie + - / * or %, we are to find x mod 15. We may use binary bit manipulations.
As far as I could go, I got this based on 2 points.
a = a mod 15 = a mod 16 for a<15
Let a = x mod 15
then a = x - 15k (for some non-negative k).
ie a = x - 16k + k...
ie a mod 16 = ( x mod 16 + k mod 16 ) mod 16
ie a mod 15 = ( x mod 16 + k mod 16 ) mod 16
ie a = ( x mod 16 + k mod 16 ) mod 16
OK. Now to implement this. A mod16 operations is basically & OxF. and k is basically x>>4
So a = ( x & OxF + (x>>4) & OxF ) & OxF.
It boils down to adding 2 4-bit numbers. Which can be done by bit expressions.
sum[0] = a[0] ^ b[0]
sum[1] = a[1] ^ b[1] ^ (a[0] & b[0])
...
and so on
This seems like cheating to me. I'm hoping for a more elegant solution
This reminds me of an old trick from base 10 called "casting out the 9s". This was used for checking the result of large sums performed by hand.
In this case 123 mod 9 = 1 + 2 + 3 mod 9 = 6.
This happens because 9 is one less than the base of the digits (10). (Proof omitted ;) )
So considering the number in base 16 (Hex). you should be able to do:
0xABCE123 mod 0xF = (0xA + 0xB + 0xC + 0xD + 0xE + 0x1 + 0x2 + 0x3 ) mod 0xF
= 0x42 mod 0xF
= 0x6
Now you'll still need to do some magic to make the additions disappear. But it gives the right answer.
UPDATE:
Heres a complete implementation in C++. The f lookup table takes pairs of digits to their sum mod 15. (which is the same as the byte mod 15). We then repack these results and reapply on half as much data each round.
#include <iostream>
uint8_t f[256]={
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,
1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,
2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,
3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,
4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,
5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,
6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,
7,8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,
8,9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,
9,10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,
10,11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,
11,12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,
12,13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,
13,14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,
14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0};
uint64_t mod15( uint64_t in_v )
{
uint8_t * in = (uint8_t*)&in_v;
// 12 34 56 78 12 34 56 78 => aa bb cc dd
in[0] = f[in[0]] | (f[in[1]]<<4);
in[1] = f[in[2]] | (f[in[3]]<<4);
in[2] = f[in[4]] | (f[in[5]]<<4);
in[3] = f[in[6]] | (f[in[7]]<<4);
// aa bb cc dd => AA BB
in[0] = f[in[0]] | (f[in[1]]<<4);
in[1] = f[in[2]] | (f[in[3]]<<4);
// AA BB => DD
in[0] = f[in[0]] | (f[in[1]]<<4);
// DD => D
return f[in[0]];
}
int main()
{
uint64_t x = 12313231;
std::cout<< mod15(x)<<" "<< (x%15)<<std::endl;
}
Your logic is somewhere flawed but I can't put a finger on it. Think about it yourself, your final formula operates on first 8 bits and ignores the rest. That could only be valid if the part you throw away (9+ bits) are always the multiplication of 15. However, in reality (in binary numbers) 9+ bits are always multiplications of 16 but not 15. For example try putting 1 0000 0000 and 11 0000 0000 in your formula. Your formula will give 0 as a result for both cases, while in reality the answer is 1 and 3.
In essense I'm almost sure that your task can not be solved without loops. And if you are allowed to use loops - then it's nothing easier than to implement bitwiseAdd function and do whatever you like with it.
Added:
Found your problem. Here it is:
... a = x - 15k (for some non-negative k).
... and k is basically x>>4
It equals x>>4 only by pure coincidence for some numbers. Take any big example, for instance x=11110000. By your calculation k = 15, while in reality it is k=16: 16*15 = 11110000.

What does bitwise XOR (exclusive OR) mean?

I'm trying to understand the binary operators in C# or in general, in particular ^ - exclusive or.
For example:
Given an array of positive integers. All numbers occur even number of times except one number which occurs odd number of times. Find the number in O(n) time and constant space.
This can be done with ^ as follows: Do bitwise XOR of all the elements. Finally we get the number which has odd occurrences.
How does it work?
When I do:
int res = 2 ^ 3;
res = 1;
int res = 2 ^ 5;
res = 7;
int res = 2 ^ 10;
res = 8;
What's actually happening? What are the other bit magics? Any reference I can look up and learn more about them?
I know this is a rather old post but I wanted simplify the answer since I stumbled upon it while looking for something else.
XOR (eXclusive OR/either or), can be translated simply as toggle on/off.
Which will either exclude (if exists) or include (if nonexistent) the specified bits.
Using 4 bits (1111) we get 16 possible results from 0-15:
decimal | binary | bits (expanded)
0 | 0000 | 0
1 | 0001 | 1
2 | 0010 | 2
3 | 0011 | (1+2)
4 | 0100 | 4
5 | 0101 | (1+4)
6 | 0110 | (2+4)
7 | 0111 | (1+2+4)
8 | 1000 | 8
9 | 1001 | (1+8)
10 | 1010 | (2+8)
11 | 1011 | (1+2+8)
12 | 1100 | (4+8)
13 | 1101 | (1+4+8)
14 | 1110 | (2+4+8)
15 | 1111 | (1+2+4+8)
The decimal value to the left of the binary value, is the numeric value used in XOR and other bitwise operations, that represents the total value of associated bits. See Computer Number Format and Binary Number - Decimal for more details.
For example: 0011 are bits 1 and 2 as on, leaving bits 4 and 8 as off. Which is represented as the decimal value of 3 to signify the bits that are on, and displayed in an expanded form as 1+2.
As for what's going on with the logic behind XOR here are some examples
From the original post
2^3 = 1
2 is a member of 1+2 (3) remove 2 = 1
2^5 = 7
2 is not a member of 1+4 (5) add 2 = 1+2+4 (7)
2^10 = 8
2 is a member of 2+8 (10) remove 2 = 8
Further examples
1^3 = 2
1 is a member of 1+2 (3) remove 1 = 2
4^5 = 1
4 is a member of 1+4 (5) remove 4 = 1
4^4 = 0
4 is a member of itself remove 4 = 0
1^2^3 = 0Logic: ((1^2)^(1+2))
(1^2) 1 is not a member of 2 add 2 = 1+2 (3)
(3^3) 1 and 2 are members of 1+2 (3) remove 1+2 (3) = 0
1^1^0^1 = 1 Logic: (((1^1)^0)^1)
(1^1) 1 is a member of 1 remove 1 = 0
(0^0) 0 is a member of 0 remove 0 = 0
(0^1) 0 is not a member of 1 add 1 = 1
1^8^4 = 13 Logic: ((1^8)^4)
(1^8) 1 is not a member of 8 add 1 = 1+8 (9)
(9^4) 1 and 8 are not members of 4 add 1+8 = 1+4+8 (13)
4^13^10 = 3 Logic: ((4^(1+4+8))^(2+8))
(4^13) 4 is a member of 1+4+8 (13) remove 4 = 1+8 (9)
(9^10) 8 is a member of 2+8 (10) remove 8 = 2
1 is not a member of 2+8 (10) add 1 = 1+2 (3)
4^10^13 = 3 Logic: ((4^(2+8))^(1+4+8))
(4^10) 4 is not a member of 2+8 (10) add 4 = 2+4+8 (14)
(14^13) 4 and 8 are members of 1+4+8 (13) remove 4+8 = 1
2 is not a member of 1+4+8 (13) add 2 = 1+2 (3)
To see how it works, first you need to write both operands in binary, because bitwise operations work on individual bits.
Then you can apply the truth table for your particular operator. It acts on each pair of bits having the same position in the two operands (the same place value). So the leftmost bit (MSB) of A is combined with the MSB of B to produce the MSB of the result.
Example: 2^10:
0010 2
XOR 1010 8 + 2
----
1 xor(0, 1)
0 xor(0, 0)
0 xor(1, 1)
0 xor(0, 0)
----
= 1000 8
And the result is 8.
The other way to show this is to use the algebra of XOR; you do not need to know anything about individual bits.
For any numbers x, y, z:
XOR is commutative: x ^ y == y ^ x
XOR is associative: x ^ (y ^ z) == (x ^ y) ^ z
The identity is 0: x ^ 0 == x
Every element is its own inverse: x ^ x == 0
Given this, it is easy to prove the result stated. Consider a sequence:
a ^ b ^ c ^ d ...
Since XOR is commutative and associative, the order does not matter. So sort the elements.
Now any adjacent identical elements x ^ x can be replaced with 0 (self-inverse property). And any 0 can be removed (because it is the identity).
Repeat as long as possible. Any number that appears an even number of times has an integral number of pairs, so they all become 0 and disappear.
Eventually you are left with just one element, which is the one appearing an odd number of times. Every time it appears twice, those two disappear. Eventually you are left with one occurrence.
[update]
Note that this proof only requires certain assumptions about the operation. Specifically, suppose a set S with an operator . has the following properties:
Assocativity: x . (y . z) = (x . y) . z for any x, y, and z in S.
Identity: There exists a single element e such that e . x = x . e = x for all x in S.
Closure: For any x and y in S, x . y is also in S.
Self-inverse: For any x in S, x . x = e
As it turns out, we need not assume commutativity; we can prove it:
(x . y) . (x . y) = e (by self-inverse)
x . (y . x) . y = e (by associativity)
x . x . (y . x) . y . y = x . e . y (multiply both sides by x on the left and y on the right)
y . x = x . y (because x . x = y . y = e and the e's go away)
Now, I said that "you do not need to know anything about individual bits". I was thinking that any group satisfying these properties would be enough, and that such a group need not necessarily be isomorphic to the integers under XOR.
But #Steve Jessup proved me wrong in the comments. If you define scalar multiplication by {0,1} as:
0 * x = 0
1 * x = x
...then this structure satisfies all of the axioms of a vector space over the integers mod 2.
Thus any such structure is isomorphic to a set of vectors of bits under component-wise XOR.
This is based on the simple fact that XOR of a number with itself results Zero.
and XOR of a number with 0 results the number itself.
So, if we have an array = {5,8,12,5,12}.
5 is occurring 2 times.
8 is occurring 1 times.
12 is occurring 2 times.
We have to find the number occurring odd number of times. Clearly, 8 is the number.
We start with res=0 and XOR with all the elements of the array.
int res=0;
for(int i:array)
res = res ^ i;
1st Iteration: res = 0^5 = 5
2nd Iteration: res = 5^8
3rd Iteration: res = 5^8^12
4th Iteration: res = 5^8^12^5 = 0^8^12 = 8^12
5th Iteration: res = 8^12^12 = 8^0 = 8
The bitwise operators treat the bits inside an integer value as a tiny array of bits. Each of those bits is like a tiny bool value. When you use the bitwise exclusive or operator, one interpretation of what the operator does is:
for each bit in the first value, toggle the bit if the corresponding bit in the second value is set
The net effect is that a single bit starts out false and if the total number of "toggles" is even, it will still be false at the end. If the total number of "toggles" is odd, it will be true at the end.
Just think "tiny array of boolean values" and it will start to make sense.
The definition of the XOR (exclusive OR) operator, over bits, is that:
0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0
One of the ways to imagine it, is to say that the "1" on the right side changes the bit from the left side, and 0 on the right side doesn't change the bit on the left side. However, XOR is commutative, so the same is true if the sides are reversed.
As any number can be represented in binary form, any two numbers can be XOR-ed together.
To prove it being commutative, you can simply look at its definition, and see that for every combination of bits on either side, the result is the same if the sides are changed. To prove it being associative, you can simply run through all possible combinations of having 3 bits being XOR-ed to each other, and the result will stay the same no matter what the order is.
Now, as we proved the above, let's see what happens if we XOR the same number at itself. Since the operation works on individual bits, we can test it on just two numbers: 0 and 1.
0 XOR 0 = 0
1 XOR 1 = 0
So, if you XOR a number onto itself, you always get 0 (believe it or not, but that property of XOR has been used by compilers, when a 0 needs to be loaded into a CPU register. It's faster to perform a bit operation than to explicitly push 0 into a register. The compiler will just produce assembly code to XOR a register onto itself).
Now, if X XOR X is 0, and XOR is associative, and you need to find out what number hasn't repeated in a sequence of numbers where all other numbers have been repeated two (or any other odd number of times). If we had the repeating numbers together, they will XOR to 0. Anything that is XOR-ed with 0 will remain itself. So, out of XOR-ing such a sequence, you will end up being left with a number that doesn't repeat (or repeats an even number of times).
This has a lot of samples of various functionalities done by bit fiddling. Some of can be quite complex so beware.
What you need to do to understand the bit operations is, at least, this:
the input data, in binary form
a truth table that tells you how to "mix" the inputs to form the result
For XOR, the truth table is simple:
1^1 = 0
1^0 = 1
0^1 = 1
0^0 = 0
To obtain bit n in the result you apply the rule to bits n in the first and second inputs.
If you try to calculate 1^1^0^1 or any other combination, you will discover that the result is 1 if there is an odd number of 1's and 0 otherwise. You will also discover that any number XOR'ed with itself is 0 and that is doesn't matter in what order you do the calculations, e.g. 1^1^(0^1) = 1^(1^0)^1.
This means that when you XOR all the numbers in your list, the ones which are duplicates (or present an even number of times) will XOR to 0 and you will be left with just the one which is present an odd number of times.
As it is obvious from the name(bitwise), it operates between bits.
Let's see how it works,
for example, we have two numbers a=3 and b=4,
the binary representation of 3 is 011 and of 4 is 100, so basically xor of the same bits is 0 and for opposite bits, it is 1.
In the given example 3^4, where "^" is a xor symbol, will give us 111 whose decimal value will be 7.
for another example, if you've given an array in which every element occurs twice except one element & you've to find that element.
How can you do that? simple xor of the same numbers will always be 0 and the number which occur exactly once will be your output. because the output of any one number with 0 will be the same name number because the number will have set bits which zero don't have.

Resources