I am writing a custom aggregation function with data.table (v 1.9.6) and struggle to pass function arguments to it. there have been similar questions on this but none deals with multiple (variable) inputs and none seems to have a conclusive answer but rather "little hacks".
pass variables and names to data.table function
eval and quote in data.table
How can one work fully generically in data.table in R with column names in variables
I would like to take a data table sum and order defined variables and create new variables on top (2 steps). the crucial think is that everything should be parameterized i.e. variables to sum, variables to group by, variables to order by. and they can all be one or more variables. a small example.
dt <- data.table(a=rep(letters[1:4], 5),
b=rep(letters[5:8], 5),
c=rep(letters[3:6], 5),
x=sample(1:100, 20),
y=sample(1:100, 20),
z=sample(1:100, 20))
temp <-
dt[, .(x_sum = sum(x, na.rm = T),
y_sum = sum(y, na.rm = T)),
by = .(a, b)][order(a, b)]
temp2 <-
temp[, `:=` (x_sum_del = (x_sum - shift(x = x_sum, n = 1, type = "lag")),
y_sum_del = (y_sum - shift(x = y_sum, n = 1, type = "lag")),
x_sum_del_rel = ((x_sum - shift(x = x_sum, n = 1, type = "lag")) /
(shift(x = x_sum, n = 1, type = "lag"))),
y_sum_del_rel = ((y_sum - shift(x = y_sum, n = 1, type = "lag")) /
(shift(x = y_sum, n = 1, type = "lag")))
)
]
how to programmatically pass following function arguments (i.e. not single inputs but vectors/list of inputs):
x and y --> var_list
new names of x and y (e.g. x_sum, y_sum) --> var_name_list
group by arguments a, b --> by_var_list
order by arguments a, b --> order_var_list
temp 2 should work on all pre-defined parameters, I was also thinking about using an apply function but again struggled to pass a list of variables.
I have played around with variations of get(), as.name(), eval(), quote() but as soon as I pass more than one variable, they don't work anymore. I hope the question is clear, otherwise I am happy to adjust where you deem necessary. a function call would look as follows:
fn_agg(dt, var_list, var_name_list, by_var_list, order_var_list)
Looks like a question to me :)
I prefer computing on the language over get/mget.
fn_agg = function(dt, var_list, var_name_list, by_var_list, order_var_list) {
j_call = as.call(c(
as.name("."),
sapply(setNames(var_list, var_name_list), function(var) as.call(list(as.name("sum"), as.name(var), na.rm=TRUE)), simplify=FALSE)
))
order_call = as.call(c(
as.name("order"),
lapply(order_var_list, as.name)
))
j2_call = as.call(c(
as.name(":="),
c(
sapply(setNames(var_name_list, paste0(var_name_list,"_del")), function(var) {
substitute(.var - shift(x = .var, n = 1, type = "lag"), list(.var=as.name(var)))
}, simplify=FALSE),
sapply(setNames(var_name_list, paste0(var_name_list,"_del_rel")), function(var) {
substitute((.var - shift(x = .var, n = 1, type = "lag")) / (shift(x = .var, n = 1, type = "lag")), list(.var=as.name(var)))
}, simplify=FALSE)
)
))
dt[eval(order_call), eval(j_call), by=by_var_list
][, eval(j2_call)
][]
}
ans = fn_agg(dt, var_list=c("x","y"), var_name_list=c("x_sum","y_sum"), by_var_list=c("a","b"), order_var_list=c("a","b"))
all.equal(temp2, ans)
#[1] TRUE
Some extra notes:
make strict input validation as debugging issues is more difficuilt against meta programming.
optimization of step2 is possible as shift is computed multiple times, easy way is just to compute _del in step2 and _del_rel in step3.
if order variables is always the same as by variables you can put them into keyby argument.
Here's an option using mget, as commented:
fn_agg <- function(DT, var_list, var_name_list, by_var_list, order_var_list) {
temp <- DT[, setNames(lapply(.SD, sum, na.rm = TRUE), var_name_list),
by = by_var_list, .SDcols = var_list]
setorderv(temp, order_var_list)
cols1 <- paste0(var_name_list, "_del")
cols2 <- paste0(cols1, "_rel")
temp[, (cols1) := lapply(mget(var_name_list), function(x) {
x - shift(x, n = 1, type = "lag")
})]
temp[, (cols2) := lapply(mget(var_name_list), function(x) {
xshift <- shift(x, n = 1, type = "lag")
(x - xshift) / xshift
})]
temp[]
}
fn_agg(dt,
var_list = c("x", "y"),
var_name_list = c("x_sum", "y_sum"),
by_var_list = c("a", "b"),
order_var_list = c("a", "b"))
# a b x_sum y_sum x_sum_del y_sum_del x_sum_del_rel y_sum_del_rel
#1: a e 254 358 NA NA NA NA
#2: b f 246 116 -8 -242 -0.031496063 -0.6759777
#3: c g 272 242 26 126 0.105691057 1.0862069
#4: d h 273 194 1 -48 0.003676471 -0.1983471
Instead of mget, you could also make use of data.table's .SDcols argument as in
temp[, (cols1) := lapply(.SD, function(x) {
x - shift(x, n = 1, type = "lag")
}), .SDcols = var_name_list]
Also, there are probably ways to improve the function by avoiding duplicated computation of shift(x, n = 1, type = "lag") but I only wanted to demonstrate a way to use data.table in functions.
Related
I am to calculate a number of different centrality and spread indicators on multiple timeframes on a relatively large data set ~1million rows. I have had multiple different tries, but the algorithm that I end up at is still waaay too slow for my purpose.
Here is my current iteration:
ts_rollapply <- function(COI, DATE_COL, FUN, n, unit = c("day", "week", "month", "year"), verbose = FALSE, ...) {
# Initiate Variables
APPLY_FUNC <- match.fun(FUN = FUN)
LAST_DATE <- last_date(DATE_COL, n = n, unit = match.arg(unit))
result <- vector(mode = "numeric", length = length(COI))
for(i in seq_along(COI)) {
# Extract range from Column of Interest
APPLY_RANGE <- COI[DATE_COL > LAST_DATE[i] & DATE_COL <= DATE_COL[i]]
# Apply function to extracted range
result[i] <- APPLY_FUNC(APPLY_RANGE, ...)
if(verbose && i%%100 == 0) {
ARL <- length(APPLY_RANGE)
writeLines(sprintf("Last Date: %10s, Current Date: %10s, Iteration: %3d, Length: %3d, Mean: %.2f",
LAST_DATE[i], DATE_COL[i], i, ARL, result[i]))
}
}
result
}
Note that I have also made a helper function to extract certain time periods (last_date), which is implemented as follows:
last_date <- function(x, n = 1, unit = c("day", "week", "month", "year")) {
require(lubridate)
# Stop function if x is not Class Date.
if(!is.Date(x)) stop("x is not class: Date")
if(any(is.na(x))) stop("x contains NA")
# Match unit and Perform Calculation
unit <- match.arg(unit)
result <- switch(unit,
day = x - n,
week = x - (7L*n),
month = x %m-% months(n),
year = x %m-% months(12L*n))
result
}
The problem that I face is that the function work as intended when I run it on a small sample, but it fail (time-wise) when I scale it to the full dataset. And I cannot figure out whether it is the function implementation that I have made, which is slow. Or if it is that way in which I call the function in my data.table.
library(data.table)
library(lubridate)
# Functions to apply -- I have multiple others, but these should work as example
functions <- c("mean", "median", "sd")
# Toy Data:
DT <- data.table(store = rep(1:10, each = 1000),
sales = rnorm(n = 10000, mean = 4500, sd = 2500),
date = rep(seq(ymd("2015-01-01"), by = "day", length.out = 1000), 10))
# How i call the ts_rollapply function
DT[, paste("sales_quarter", functions, sep = "_") := lapply(functions, function(x) ts_rollapply(sales, date, x, n = 3, unit = "month", na.rm = T)), store]
Any help on how to speed up my computation would be much appreciated!
One way is to do a non-equi join
DT[, (cols) :=
DT[.(STORE=STORE, START_DATE=DATE - 7L, END_DATE=DATE),
on=.(STORE, DATE>=START_DATE, DATE<=END_DATE),
lapply(functions, function(f) get(f)(SALES)), by=.EACHI][, (1:3) := NULL]
]
A faster way should be to fill in the SALES for all dates and use data.table::frollapply as mentioned in the comments.
res <- DT[DT[, .(DATE=seq(min(DATE), max(DATE), by="1 day")), STORE], on=.(STORE, DATE)][,
(cols) := lapply(functions, function(f) frollapply(SALES, 7L, f, na.rm=TRUE))]
DT[res, on=.(STORE, DATE), names(res) := mget(paste0("i.", names(res)))]
If the above suits your real-life problem, then we can create a function with it.
data:
library(data.table)
functions <- c("mean", "median", "sd")
nr <- 1e6
DT <- data.table(STORE=rep(1:10, each=nr/10),
SALES=rnorm(nr, 4500, 2500),
DATE=rep(seq(as.IDate("2015-01-01"), by="day", length.out=nr/10), 10))
cols <- paste("sales_quarter", functions, sep = "_")
I am trying to combine two approaches:
Bootstrapping multiple columns in data.table in a scalable fashion
with
Bootstrap weighted mean in R
Here is some random data:
## Generate sample data
# Function to randomly generate weights
set.seed(7)
rtnorm <- function(n, mean, sd, a = -Inf, b = Inf){
qnorm(runif(n, pnorm(a, mean, sd), pnorm(b, mean, sd)), mean, sd)
}
# Generate variables
nps <- round(runif(3500, min=-1, max=1), 0) # nps value which takes 1, 0 or -1
group <- sample(letters[1:11], 3500, TRUE) # groups
weight <- rtnorm(n=3500, mean=1, sd=1, a=0.04, b=16) # weights between 0.04 and 16
# Build data frame
df = data.frame(group, nps, weight)
# The following packages / libraries are required:
require("data.table")
require("boot")
This is the code from the first post above boostrapping the weighted mean:
samplewmean <- function(d, i, j) {
d <- d[i, ]
w <- j[i, ]
return(weighted.mean(d, w))
}
results_qsec <- boot(data= df[, 2, drop = FALSE],
statistic = samplewmean,
R=10000,
j = df[, 3 , drop = FALSE])
This works totally fine.
Below ist the code from the second post above bootstrapping the mean by groups within a data table:
dt = data.table(df)
stat <- function(x, i) {x[i, (m=mean(nps))]}
dt[, list(list(boot(.SD, stat, R = 100))), by = group]$V1
This, too, works fine.
I have trouble combining both approaches:
Running …
dt[, list(list(boot(.SD, samplewmean, R = 5000, j = dt[, 3 , drop = FALSE]))), by = group]$V1
… brings up the error message:
Error in weighted.mean.default(d, w) :
'x' and 'w' must have the same length
Running …
dt[, list(list(boot(dt[, 2 , drop = FALSE], samplewmean, R = 5000, j = dt[, 3 , drop = FALSE]))), by = group]$V1
… brings up a different error:
Error in weighted.mean.default(d, w) :
(list) object cannot be coerced to type 'double'
I still have problems getting my head around the arguments in data.table and how to combine functions running data.table.
I would appreciate any help.
It is related to how data.table behaves within the scope of a function. d is still a data.table within samplewmean even after subsetting with i whereas weighted.mean is expecting numerical vector of weights and of values. If you unlist before calling weighted.mean, you will be able to fix this error
Error in weighted.mean.default(d, w) :
(list) object cannot be coerced to type 'double'
Code to unlist before passing into weighted.mean:
samplewmean <- function(d, i, j) {
d <- d[i, ]
w <- j[i, ]
return(weighted.mean(unlist(d), unlist(w)))
}
dt[, list(list(boot(dt[, 2 , drop = FALSE], samplewmean, R = 5000, j = dt[, 3 , drop = FALSE]))), by = group]$V1
A more data.table-like (data.table version >= v1.10.2) syntax is probably as follows:
#a variable named original is being passed in from somewhere and i am unable to figure out from where
samplewmean <- function(d, valCol, wgtCol, original) {
weighted.mean(unlist(d[, ..valCol]), unlist(d[, ..wgtCol]))
}
dt[, list(list(boot(.SD, statistic=samplewmean, R=1, valCol="nps", wgtCol="weight"))), by=group]$V1
Or another possible syntax is: (see data.table faq 1.6)
samplewmean <- function(d, valCol, wgtCol, original) {
weighted.mean(unlist(d[, eval(substitute(valCol))]), unlist(d[, eval(substitute(wgtCol))]))
}
dt[, list(list(boot(.SD, statistic=samplewmean, R=1, valCol=nps, wgtCol=weight))), by=group]$V1
There are some columns(~20) I need in many data.tables, how do I encapsulate the operations in a function?
For example, I want to have column a1 and a2 in every data.table, the fastest method is to copy and paste codes:
n= 10
m = 2
d = data.table( p = c(1:n)*1.0, q = 1:m)
dnew = d[, list(a1 = mean(p),a2 = max(p), b = 2) , by = q] #copy and paste
I want write reusable functions like this,
f <- function(d) with(d, list( a1 = mean(p), a2 = max(p))) #return list
dnew = d[, c(f(.SD), list( b = 2)) , by = q]
or this,
g <- function(d)d[, list(a1 = mean(p), a2 = max(p)), by = q] #return data.table
dnew1 = g(d)
dnew2 = d[, list(b = 2),by = q]
dnew = merge(dnew1, dnew2, by = "q")
However, both are very slow when number of groups(m) is very large.
Well, you can follow the metaprogramming help from FAQ 1.6:
# expression instead of a function
fe = quote(list(a1 = mean(p), a2 = max(p)))
# add another element
e = fe
e$b = 2
# eval following FAQ
d[, eval(e), by=q]
I borrowed the e$b = 2 syntax from Hadley Wickham's notes on expressions.
This does work, but looking at d[, eval(e), by=q, verbose=TRUE] we see that max is not getting optimized. Since b is just a constant, I'd add it in a second step:
extrae = quote(`:=`(b = 2))
d[, eval(fe), by=q][, eval(extrae)][]
# or if working interactively...
d[, eval(fe), by=q][, b := 2][]
With verbose=TRUE, we'll now see that fe is optimized to list(gmean(p), gmax(p)).
I have a data.table that I want to split into a list and then modify. I'm discovering some weird behavior when I try to delete a column on one of the data.tables in the list after calling split. Here's a MWE (that throws an error and causes my R session to crash):
library(data.table)
d = data.table(level = c(1, 1, 2, 2), value = 1:4)
list = split(d, f = d$level)
list[[1]][, level := NULL]
list
I get:
Error in .shallow(x, cols = cols, retain.key = TRUE) : Internal error: length(names)>0 but <length(dt)
I recommend to use l name for a variable instead of list.
This seems to be a bug caused by split.data.frame method utilized in the process.
I've quite recently proposed a new split.data.table method defined below. It seems to address your problem.
Update 2016-03-30:
split.data.table has been implemented in data.table 1.9.7. Now use can simply use:
library(data.table)
d = data.table(level = c(1, 1, 2, 2), value = 1:4)
l = split(d, by = "level")
l[[1L]][, level := NULL]
l
#$`1`
# value
#1: 1
#2: 2
#
#$`2`
# level value
#1: 2 3
#2: 2 4
The old answer below, it may be useful if you stuck with 1.9.6 or below. Be aware that it won't handle factor levels the same way as split.data.frame, this isn't the case for method developed in data.table 1.9.7 which is consistent to data.frame method.
library(data.table)
split.data.table = function(x, f, drop = FALSE, by, flatten = FALSE, ...){
if(missing(by) && !missing(f)) by = f
stopifnot(!missing(by), is.character(by), is.logical(drop), is.logical(flatten), !".ll" %in% names(x), by %in% names(x))
if(!flatten){
.by = by[1L]
tmp = x[, list(.ll=list(.SD)), by = .by, .SDcols = if(drop) setdiff(names(x), .by) else names(x)]
setattr(ll <- tmp$.ll, "names", tmp[[.by]])
if(length(by) > 1L) return(lapply(ll, split.data.table, drop = drop, by = by[-1L])) else return(ll)
} else {
tmp = x[, list(.ll=list(.SD)), by=by, .SDcols = if(drop) setdiff(names(x), by) else names(x)]
setattr(ll <- tmp$.ll, 'names', tmp[, .(nm = paste(.SD, collapse = ".")), by = by, .SDcols = by]$nm)
return(ll)
}
}
d = data.table(level = c(1, 1, 2, 2), value = 1:4)
l = split.data.table(d, by = "level")
# below setattr to be addressed in split.data.table
invisible(lapply(l, setattr, ".data.table.locked", NULL))
l[[1]][, level := NULL]
l
#$`1`
# value
#1: 1
#2: 2
#
#$`2`
# level value
#1: 2 3
#2: 2 4
I've also filled a bug report describing your case, you can find it in data.table#1481.
I am trying to calculate a measure of association between all variables in a data.table. (This is not a stats question, but as an aside: the variables are all factors, and the measure is Cramér's V.)
Example dataset:
p = 50; n = 1e5; # actual dataset has p > 1e3, n > 1e5, much wider but barely longer
set.seed(1234)
obs <- as.data.table(
data.frame(
cbind( matrix(sample(c(LETTERS[1:4],NA), n*(p/2), replace=TRUE),
nrow=n, ncol=p/2),
matrix(sample(c(letters[1:6],NA), n*(p/2), replace=TRUE),
nrow=n, ncol=p/2) ),
stringsAsFactors=TRUE ) )
I am currently using the split-apply-combine approach, which involves looping (via plyr::adply) through all pairs of indices and returning one row for each pair. (I attempted to parallelize adply but failed.)
# Calculate Cramér's V between all variables -- my kludgey approach
pairs <- t( combn(ncol(obs), 2) ) # nx2 matrix contains indices of upper triangle of df
# library('doParallel') # I tried to parallelize -- bonus points for help here (Win 7)
# cl <- makeCluster(8)
# registerDoParallel(cl)
library('plyr')
out <- adply(pairs, 1, function(ix) {
complete_cases <- obs[,which(complete.cases(.SD)), .SDcols=ix]
chsq <- chisq.test(x= dcast(data = obs[complete_cases, .SD, .SDcols=ix],
formula = paste( names(obs)[ix], collapse='~'),
value.var = names(obs)[ix][1], # arbitrary
fun.aggregate=length)[,-1, with=FALSE] )
return(data.table(index_1 = ix[1],
var_1 = names(obs)[ix][1],
index_2 = ix[2],
var_2 = names(obs)[ix][2],
cramers_v = sqrt(chsq$statistic /
(sum(chsq$observed) *
(pmin(nrow(chsq$observed),
ncol(chsq$observed) ) -1 ) )
) )
)
})[,-1] #}, .parallel = TRUE)[,-1] # using .parallel returns Error in do.ply(i) :
# task 1 failed - "object 'obs' not found"
out <- data.table(out) # adply won't return a data.table
# stopCluster(cl)
What are my options for speeding up this calculation? My challenge is in passing the row-wise operation on pairs into the column-wise calculations in obs. I am wondering if it is possible to generate the column pairs directly into J, but the Force is just not strong enough with this data.table padawan.
First, I would go with 'long' data format as following:
obs[, id := 1:n]
mobs <- melt(obs, id.vars = 'id')
Next set key on data table setkeyv(mobs, 'id').
Finally, iterate through variables and do calculations on pairs:
out <- list()
for(i in 1:p) {
vari <- paste0('X', i)
tmp <- mobs[mobs[variable == vari]]
nn <- tmp[!(is.na(value) | is.na(i.value)), list(i.variable = i.variable[1], nij = length(id)), keyby = list(variable, value, i.value)]
cj <- nn[, CJ(value = value, i.value = i.value, sorted = FALSE, unique = TRUE), by = variable]
setkeyv(cj, c('variable', 'value', 'i.value'))
nn <- nn[cj]
nn[is.na(nij), nij := 0]
nn[, ni := sum(nij), by = list(variable, i.value)]
nn[, nj := sum(nij), by = list(variable, value)]
nn[, c('n', 'r', 'k') := list(sum(nij), length(unique(i.value)), length(unique(value))), by = variable]
out[[i]] <- nn[, list(i.variable = vari, cramers_v = (sqrt(sum((nij - ni * nj / n) ^ 2 / (ni * nj / n)) / n[1]) / min(k[1] - 1, r[1] - 1))), by = variable]
}
out <- rbindlist(out)
So you need to iterate only once through variables. As you see I would also wouldn't use chisq.test and would write computations myself.