Split dataframe into bins based on another vector - r

suppose I have the following dataframe
x <- c(12,30,45,100,150,305,2,46,10,221)
x2 <- letters[1:10]
df <- data.frame(x,x2)
df <- df[with(df, order(x)), ]
x x2
7 2 g
9 10 i
1 12 a
2 30 b
3 45 c
8 46 h
4 100 d
5 150 e
10 221 j
6 305 f
And I would like to split these into groups based on another vector,
v <- seq(0, 500, 50)
Basically, I would like to partition out each row based on column x and how it matches with to v ( so for example x <= an element in v) - the location/index of that element in v is then used to assign a group for that row. The resulting table should look something like the following:
x x2 group
7 2 g g1
9 10 i g1
1 12 a g1
2 30 b g1
3 45 c g1
8 46 h g2
4 100 d g3
5 150 e g4
10 221 j g4
6 305 f g6
I could try to loop through each row and try and match it to v but I'm still confuse as to how I could easily detect where the match x<=element v occurs so that I can assign a group id to it. thanks.

You can use cut to break up df$x by the values of v:
df$group <- as.numeric(cut(df$x, breaks = v))
df$group <- paste0('g', df$group)
cut returns a factor so you can use as.numeric to just pull out which numeric bucket the value of df$x falls into based on v.

Related

R: Reshape count matrix to long format with multiple entries

I have a matrix. The entries of the matrix are counts for the combination of the dimension levels. For example:
(m0 <- matrix(1:4, nrow=2, dimnames=list(c("A","B"),c("A","B"))))
A B
A 1 3
B 2 4
I can change it to a long format:
library("reshape")
(m1 <- melt(m0))
X1 X2 value
1 A A 1
2 B A 2
3 A B 3
4 B B 4
But I would like to have multipe entries according to value:
m2 <- m1
for (i in 1:nrow(m1)) {
j <- m1[i,"value"]
k <- 2
while ( k <= j) {
m2 <- rbind(m2,m1[i,])
k = k+1
}
}
> m2 <- subset(m2,select = - value)
> m2[order(m2$X1),]
X1 X2
1 A A
3 A B
31 A B
32 A B
2 B A
4 B B
21 B A
41 B B
42 B B
43 B B
Is there a parameter in melt which considers to multiply the entries according to value? Or any other library which can perform this issue?
We could do this with base R. We convert the dimnames of 'm0' to a 'data.frame' with two columns using expand.grid, then replicate the rows of the dataset with the values in 'm0', order the rows and change the row names to NULL (if necessary).
d1 <- expand.grid(dimnames(m0))
d2 <- d1[rep(1:nrow(d1), c(m0)),]
res <- d2[order(d2$Var1),]
row.names(res) <- NULL
res
# Var1 Var2
#1 A A
#2 A B
#3 A B
#4 A B
#5 B A
#6 B A
#7 B B
#8 B B
#9 B B
#10 B B
Or with melt, we convert the 'm0' to 'long' format and then replicate the rows as before.
library(reshape2)
dM <- melt(m0)
dM[rep(1:nrow(dM), dM$value),1:2]
As #Frank mentioned, we can also use table with as.data.frame to create 'dM'
dM <- as.data.frame(as.table(m0))

replace values in a data.frame with values from another data.frame

I have two dataframes with different dimensions,
df1 <- data.frame(names= sample(LETTERS[1:10]), duration=sample(0:100, 10))
>df1
names duration
1 J 97
2 G 57
3 H 53
4 A 23
5 E 100
6 D 90
7 C 73
8 F 60
9 B 37
10 I 67
df2 <- data.frame(names= LETTERS[1:5], names_new=letters[1:5])
> df2
names names_new
1 A a
2 B b
3 C c
4 D d
5 E e
I want to replace in df1 the values that match df1$names and df2$names but using the df2$names_new. My desired output would be:
> df1
names duration
1 J 97
2 G 57
3 H 53
4 a 23
5 e 100
6 d 90
7 c 73
8 F 60
9 b 37
10 I 67
This is the code I'm using but I wonder if there is a cleaner way to do it with no so many steps,
df2[,1] <- as.character(df2[,1])
df2[,2] <- as.character(df2[,2])
df1[,1] <- as.character(df1[,1])
match(df1[,1], df2[,1]) -> id
which(!is.na(id)==TRUE) -> idx
id[!is.na(id)] -> id
df1[idx,1] <- df2[id,2]
Many thanks
Here's an approach from qdapTools:
library(qdapTools)
df1$names <- df1$names %lc+% df2
The %l+% is a binary operator version of lookup. The left are the terms and the right side is the lookup table. The + means that any noncomparables will revert back to the original. This is a wrapper for the data.table package and is pretty speedy.
Here is the output including set.seed(1) for reproducibility:
set.seed(1)
df1 <- data.frame(names= sample(LETTERS[1:10]), duration=sample(0:100, 10),stringsAsFactors=F)
df2 <- data.frame(names= LETTERS[1:5], names_new=letters[1:5],stringsAsFactors=F)
library(qdapTools)
df1$names <- df1$names %lc+% df2
df1
## names duration
## 1 c 20
## 2 d 17
## 3 e 68
## 4 G 37
## 5 b 74
## 6 H 47
## 7 I 98
## 8 F 93
## 9 J 35
## 10 a 71
Are all names in df2 also in df1? And do you intent to keep them as a factor? If so, you might find this solution helpful.
idx <- match(levels(df2$names), levels(df1$names))
levels(df1$names)[idx] <- levels(df2$names_new)
This works but requires that names and names_new are character and not factor.
set.seed(1)
df1 <- data.frame(names= sample(LETTERS[1:10]), duration=sample(0:100, 10),stringsAsFactors=F)
df2 <- data.frame(names= LETTERS[1:5], names_new=letters[1:5],stringsAsFactors=F)
rownames(df1) <- df1$names
df1[df2$name,]$names <- df2$names_new
Another option using merge:
transform(merge(df1,df2,all.x=TRUE),
names=ifelse(is.na(names_new),as.character(names),
as.character(names_new)))
Another way using match would be (if df1$names and df1$names are characters of course)
df1[match(df2$names, df1$names), "names"] <- df2$names_new

Replacing header in data frame based on values in second data frame

Say I have a data frame which looks like this:
df.A
A B C
x 1 3 4
y 5 4 6
z 8 9 1
And I want to replace the column names in the first based on column values in a second:
df.B
Low High
A D
B F
C G
Such that I get:
df.A
D F G
x 1 3 4
y 5 4 6
z 8 9 1
How would I do it?
I have tried extracting the vector df.B$High from df.B and using this in names(df.A), but everything is in alphabetical order and shifted over one. Furthermore, this only works if the order of columns in df.A is conserved with respect to the elements in df.B$High, which is not always the case (and in my real example there is no numeric or alphabetical way to sort the two to the same order). So I think I need an rbind-type argument for matching elements, but I'm not sure.
Thanks!
You can use rename from plyr:
library(plyr)
dat <- read.table(text = " A B C
x 1 3 4
y 5 4 6
z 8 9 1",header = TRUE,sep = "")
> new <- read.table(text = "Low High
A D
B F
C G",header = TRUE,sep = "")
> rename(dat,replace = setNames(new$High,new$Low))
D F G
x 1 3 4
y 5 4 6
z 8 9 1
using match:
df.A <- read.table(sep=" ", header=T, text="
A B C
x 1 3 4
y 5 4 6
z 8 9 1")
df.B <- read.table(sep=" ", header=T, text="
Low High
A D
B F
C G")
df.C <- df.A
names(df.C) <- df.B$High[match(names(df.A), df.B$Low)]
df.C
# D F G
# x 1 3 4
# y 5 4 6
# z 8 9 1
You can play games with the row names of df.B to make a lookup more convenient:
rownames(df.B) <- df.B$Low
names(df.A) <- df.B[names(df.A),"High"]
df.A
## D F G
## x 1 3 4
## y 5 4 6
## z 8 9 1
Here's an approach abusing factor:
f <- factor(names(df.A), levels=df.B$Low)
levels(f) <- df.B$High
f
## [1] D F G
## Levels: D F G
names(df.A) <- f
## Desired results

r "slot" two columns into one (like a zip)

Given two columns (perhaps from a data frame) of equal length N, how can I produce a column of length 2N with the odd entries from the first column and the even entries from the second column?
Suppose I have the following data frame
df.1 <- data.frame(X = LETTERS[1:10], Y = 2*(1:10)-1, Z = 2*(1:10))
How can I produce this data frame df.2?
i <- 1
j <- 0
XX <- NA
while (i <= 10){
XX[i+j] <- LETTERS[i]
XX[i+j+1]<- LETTERS[i]
i <- i+1
j <- i-1
}
df.2 <- data.frame(X.X = XX, Y.Z = c(1:20))
ggplot2 has an unexported function interleave which does this.
Whilst unexported it does have a help page (?ggplot2:::interleave)
with(df.1, ggplot2:::interleave(Y,Z))
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
If I understand you right, you want to create a new vector twice the length of the vectors X, Y and Z in your data frame and then want all the elements of X to occupy the odd indices of this new vector and all the elements of Y the even indices. If so, then the code below should do the trick:
foo<-vector(length=2*nrow(df.1), mode='character')
foo[seq(from = 1, to = 2*length(df.1$X), by=2)]<-as.character(df.1$X)
foo[seq(from = 2, to = 2*length(df.1$X), by=2)]<-df.1$Y
Note, I first create an empty vector foo of length 20, then fill it in with elements of df.1$X and df.1$Y.
Cheers,
Danny
You can use melt from reshape2:
library(reshape2)
foo <- melt(df.1, id.vars='X')
> foo
X variable value
1 A Y 1
2 B Y 3
3 C Y 5
4 D Y 7
5 E Y 9
6 F Y 11
7 G Y 13
8 H Y 15
9 I Y 17
10 J Y 19
11 A Z 2
12 B Z 4
13 C Z 6
14 D Z 8
15 E Z 10
16 F Z 12
17 G Z 14
18 H Z 16
19 I Z 18
20 J Z 20
Then you can sort and pick the columns you want:
foo[order(foo$X), c('X', 'value')]
Another solution using base R.
First index the character vector of the data.frame using the vector [1,1,2,2 ... 10,10] and store as X.X. Next, rbind the data.frame vectors Y & Z effectively "zipping" them and store in Y.X.
> res <- data.frame(
+ X.X = df.1$X[c(rbind(1:10, 1:10))],
+ Y.Z = c(rbind(df.1$Y, df.1$Z))
+ )
> head(res)
X.X Y.Z
1 A 1
2 A 2
3 B 3
4 B 4
5 C 5
6 C 6
A one two liner in base R:
test <- data.frame(X.X=df.1$X,Y.Z=unlist(df.1[c("Y","Z")]))
test[order(test$X.X),]
Assuming that you want what you asked for in the first paragraph, and the rest of what you posted is your attempt at solving it.
a=df.1[df.1$Y%%2>0,1:2]
b=df.1[df.1$Z%%2==0,c(1,3)]
names(a)=c("X.X","Y.Z")
names(b)=names(a)
df.2=rbind(a, b)
If you want to group them by X.X as shown in your example, you can do:
library(plyr)
arrange(df.2, X.X)

Flatten matrix in R to four columns (indexes and upper/lower triangles)

I'm using the cor.prob() function that's been posted several times around the mailing list to get a matrix of correlations (lower diagonal) and p-values (upper diagonals):
cor.prob <- function (X, dfr = nrow(X) - 2) {
R <- cor(X)
above <- row(R) < col(R)
r2 <- R[above]^2
Fstat <- r2 * dfr/(1 - r2)
R[above] <- 1 - pf(Fstat, 1, dfr)
R[row(R) == col(R)] <- NA
R
}
d <- data.frame(x=1:5, y=c(10,16,8,60,80), z=c(10,9,12,2,1))
cor.prob(d)
> cor.prob(d)
x y z
x NA 0.04856042 0.107654038
y 0.8807155 NA 0.003523594
z -0.7953560 -0.97945703 NA
How would I collapse the above correlation matrix (with the correlations in the lower half, p-values in the upper half) into a four-column matrix: two indexes, the correlation, and the p-value? E.g.:
i j cor pval
x y .88 .048
x z -.79 .107
y z -.97 0.0035
I've seen the answer to the previous question like this, but will only give me a 3-column matrix, not a four column matrix with separate columns for the p-value and correlation.
Any help is appreciated!
well it's not a matrix, because you can't mix characters and numerics. But:
this is my first attempt (before your label swap):
m <- cor.prob(d)
ut <- upper.tri(m)
lt <- lower.tri(m)
d <- data.frame(i=rep(row.names(m),ncol(m))[as.vector(ut)],
j=rep(colnames(m),each=nrow(m))[as.vector(ut)],
cor=m[ut],
p=m[lt])
now apply the correction I suggested below and you get
d <- data.frame(i=rep(row.names(m),ncol(m))[as.vector(ut)],
j=rep(colnames(m),each=nrow(m))[as.vector(ut)],
cor=m[ut],
p=t(m)[ut])
finally your label swap, use row()/col(), and write it as a function:
f1 <- function(m) {
ut <- upper.tri(m)
data.frame(i = rownames(m)[row(m)[ut]],
j = rownames(m)[col(m)[ut]],
cor=t(m)[ut],
p=tm[ut])
}
then
m<-matrix(1:25,5,dimnames=list(letters[1:5],letters[1:5])
> m
a b c d e
a 1 6 11 16 21
b 2 7 12 17 22
c 3 8 13 18 23
d 4 9 14 19 24
e 5 10 15 20 25
> f1(m)
i j cor p
1 a b 6 2
2 a c 11 3
3 b c 12 8
4 a d 16 4
5 b d 17 9
6 c d 18 14
7 a e 21 5
8 b e 22 10
9 c e 23 15
10 d e 24 20
Can you explain what you expected if it wasn't this?
cd <- cor.prob(d)
dcd <- as.data.frame( which( row(cd) < col(cd), arr.ind=TRUE) )
dcd$pval <- cd[row(cd) < col(cd)]
dcd$cor <- cd[row(cd) > col(cd)]
dcd[[2]] <-dimnames(cd)[[2]][dcd$col]
dcd[[1]] <-dimnames(cd)[[2]][dcd$row]
dcd
#--------------------
row col pval cor
1 x y 0.048560420 0.8807155
2 x z 0.107654038 -0.7953560
3 y z 0.003523594 -0.9794570

Resources