Plotting lmer model without covariance matrix - r

I am trying to plot a number of lmer models for a paper. I had to simplify the random effect structure by dropping the correlation between the random slopes and intercept (Barr et al., 2013). However, when I try to plot using the sjp.lmer funtion, I get the following error:
Error in array(NA, c(J, K)) : 'dims' cannot be of length 0
In addition: Warning message:
In ranef.merMod(object, condVar = TRUE) :
conditional variances not currently available via ranef when there are multiple terms per factor
Is there a potential work-around for this? Any help would be greatly appreciated.
Hi Ben,
Here is some of the data I am working with:
> dput(df)
structure(list(Subject = c(1L, 2L, 3L, 5L, 6L, 6L, 6L, 7L, 7L,
7L, 8L, 8L, 8L, 9L, 9L, 9L, 10L, 10L, 11L, 11L, 11L, 12L, 12L,
13L, 13L, 14L, 14L, 15L, 15L, 16L, 16L, 16L, 17L, 17L, 17L, 18L,
18L, 18L, 19L, 19L, 20L, 20L, 21L, 21L, 22L, 22L, 23L, 23L, 23L,
24L, 24L, 25L, 25L, 25L, 26L, 26L, 26L, 27L, 27L, 28L, 28L, 29L,
29L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 40L,
41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L,
54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L,
67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L,
80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L, 90L, 91L, 92L,
93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L, 103L, 104L,
105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L, 113L, 114L, 115L,
116L), A = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("1",
"2"), class = "factor"), B = structure(c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L), .Label = c("1", "2", "3"), class = "factor"), C = c(9.58,
9.75, 15, 10.75, 13.3, 14.42, 15.5, 9.25, 10.33, 11.33, 9.55,
11, 11.92, 14.25, 15.5, 16.42, 14.92, 16.17, 10.83, 11.92, 12.92,
7.5, 8.5, 10.33, 11.25, 13.08, 13.83, 14.92, 15.92, 9.58, 14.83,
11.92, 8.33, 9.5, 10.5, 6.8, 7.92, 9, 13.5, 10.92, 10, 11, 13,
15.58, 12.92, 11.8, 5.75, 6.75, 7.83, 11.12, 12.25, 12.08, 13.08,
14.58, 8.08, 9.17, 10.67, 10.6, 12.67, 7.83, 8.83, 9.67, 10.58,
11.75, 7, 17.17, 11.25, 13.75, 11.83, 16.92, 8.83, 7.07, 7.83,
15.08, 15.83, 16.67, 18.87, 11.92, 12.83, 7.83, 12.33, 10, 11.08,
12.08, 15.67, 11.75, 15, 14.308, 15.9064, 16.161, 16.9578, 8.90197,
16.2897, 9.05805, 10.5969, 5.15334, 9.1046, 14.1019, 18.9736,
10.9447, 14.5455, 16.172, 6.65389, 11.3171, 12.2864, 17.9929,
10.5778, 16.9195, 7.6, 7.8, 7.2, 16.7, 17, 16.5, 17, 15.1, 16,
16.4, 13.8, 13.8, 14.5, 16.1, 15.8, 15, 14.1, 15, 14.7, 15, 14.5,
10.8, 11.4, 11.3, 10.9, 11.2, 9.3, 10.8, 9.7, 8, 8.2, 8.2, 17.5,
12.6, 11.6, 10.8, 11.8, 12.3, 16.3, 17.1, 9.626283368, 14.6,
13.7), D = structure(c(2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L,
1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("1",
"2"), class = "factor"), Frontal_FA = c(0.4186705, 0.4151535,
0.4349945, 0.4003705, 0.403488, 0.407451, 0.3997135, 0.38826,
0.3742275, 0.3851655, 0.3730715, 0.3825115, 0.3698805, 0.395406,
0.39831, 0.4462415, 0.413532, 0.419088, 0.4373975, 0.4633915,
0.4411375, 0.3545255, 0.389322, 0.349402, 0.352029, 0.367792,
0.365298, 0.3790775, 0.379298, 0.36231, 0.3632755, 0.357868,
0.3764865, 0.3726645, 0.351422, 0.3353255, 0.334196, 0.3462365,
0.367369, 0.3745925, 0.3610755, 0.360576, 0.357035, 0.3554905,
0.3745615, 0.38828, 0.3293275, 0.3246945, 0.3555345, 0.375563,
0.38116, 0.387508, 0.357707, 0.413193, 0.3658075, 0.3776355,
0.362678, 0.3824945, 0.3771, 0.375347, 0.362468, 0.367618, 0.3630925,
0.3763995, 0.359458, 0.3982755, 0.3834765, 0.386135, 0.3691575,
0.388099, 0.350435, 0.3629045, 0.3456775, 0.4404815, 0.4554165,
0.425763, 0.4491515, 0.461206, 0.453745, 0.4501255, 0.4451875,
0.4369835, 0.456838, 0.437759, 0.4377635, 0.44434, 0.4436615,
0.437532, 0.4335325, 0.4407995, 0.470447, 0.4458525, 0.440322,
0.4570775, 0.4410335, 0.436045, 0.4721345, 0.4734515, 0.4373905,
0.4139465, 0.440213, 0.440281, 0.425746, 0.454377, 0.4457435,
0.488561, 0.4393565, 0.4610565, 0.3562055, 0.381041, 0.353253,
0.4265975, 0.4069595, 0.40092, 0.4261365, 0.429605, 0.425479,
0.4331755, 0.3981285, 0.4206245, 0.3798475, 0.3704155, 0.395192,
0.404436, 0.4148915, 0.416144, 0.384652, 0.3916045, 0.41005,
0.3940605, 0.3926085, 0.383909, 0.391792, 0.372398, 0.3531025,
0.414441, 0.404335, 0.3682095, 0.359976, 0.376681, 0.4173705,
0.3492685, 0.397057, 0.3940605, 0.398825, 0.3707115, 0.400228,
0.3946595, 0.4278775, 0.384037, 0.43577)), .Names = c("Subject",
"A", "B", "C", "D", "Frontal_FA"), class = "data.frame", row.names = c(NA,
-151L))
Here is the code that I am running
lmer fit
FA <- lmer(Frontal_FA ~ poly(C) + A + B + D + (poly(C)||Subject), data = df)
plot lmer fit
sjp.lmer(FA)
Thanks for your help.

sjp.lmer, by default, plots the random effects of a model. However, it plots random effects (BLUPs) with confidence intervals, using the arm:se.ranef function. This function causes the first error message you get:
arm::se.ranef(FA)
> Error in array(NA, c(J, K)) : 'dims' cannot be of length 0
Then, the se.ranef functions calls the lme4::ranef function with argument condVar = TRUE, which is not yet implemented for specific conditions (like yours) in lme4. Hence you get the additional warning
In ranef.merMod(object, condVar = TRUE) :
conditional variances not currently available via ranef when there are multiple terms per factor
If you are especially interested in plotting the random effects, you could use the lme4-implemented dotplot-function:
lattice::dotplot(ranef(FA))
If you are interested in any other plot type (fixed effects, marginal effects, predictions, ...), see ?sjp.lmer or some examples at his page.
Edit
If you don't mind installing from GitHub (devtools::install_github("sjPlot/devel"), I have committed a small update, so you can use show.ci = FALSE to avoid computing confidence intervals for random effects:
sjp.lmer(FA, type = "re", show.ci = F, sort.est = "(Intercept)")

Related

how to plot multiple boxplots from emmeans output

How can I plot with ggplot2 multiple boxplots (in the same figure) to illustrate my model's pairwise comparisons?
my model and pairwise comparisons with emmeans:
mod1 <- lmer(CONT_Y ~ MY_GROUP * YEAR + (1|ID), data = dfModels)
group <- emmeans(mod1,~ MY_GROUP|YEAR)
year <- emmeans(mod1,~YEAR|MY_GROUP)
my_pairs <- data.frame(group_p) %>% full_join(data.frame(year_p))
my_pairs
contrast YEAR MY_GROUP estimate SE df t.ratio p.value
1 L1 - L2 2020 <NA> -0.91 0.53 60 -1.73 0.09
2 L1 - L2 2021 <NA> -0.31 0.53 60 -0.59 0.56
3 YEAR2020 - YEAR2021 <NA> G1 -1.14 0.53 60 -2.16 0.03
4 YEAR2020 - YEAR2021 <NA> G2 -0.54 0.53 60 -1.02 0.31
Desired output: something like this
How can I plot these tests with multiple boxplots in ggplot2 ?
data (and more details on the model and on how I obtained the above effects here):
data <- structure(list(PARTICIPANTS = c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L,
7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L,
10L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L,
14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L, 17L,
17L, 17L, 17L, 18L, 18L, 18L, 18L, 19L, 19L, 19L, 19L, 20L, 20L,
20L, 20L, 21L, 21L, 21L, 21L), CONT_Y = c(19.44, 20.07, 19.21,
16.35, 11.37, 12.82, 19.42, 18.94, 19.59, 20.01, 19.7, 17.92,
18.78, 19.21, 19.27, 18.46, 19.52, 20.02, 16.19, 19.97, 13.83,
15.93, 14.79, 21.55, 18.8, 19.42, 19.27, 19.37, 17.14, 14.45,
17.63, 20.01, 20.28, 17.93, 19.36, 20.15, 16.06, 17.04, 19.16,
20.1, 16.44, 18.39, 18.01, 19.05, 18.04, 19.69, 19.61, 16.88,
19.02, 20.42, 18.27, 18.43, 18.08, 17.1, 19.98, 19.43, 19.71,
19.93, 20.11, 18.41, 20.31, 20.1, 20.38, 20.29, 13.6, 18.92,
19.05, 19.13, 17.75, 19.15, 20.19, 18.3, 19.43, 19.8, 19.83,
19.53, 16.14, 21.14, 17.37, 18.73, 16.51, 17.51, 17.06, 19.42
), CATEGORIES = structure(c(1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L,
1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L), .Label = c("A",
"B"), class = "factor"), MY_GROUP = structure(c(1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L
), .Label = c("G1", "G2"), class = "factor")), row.names = c(NA,
-84L), class = c("tbl_df", "tbl", "data.frame"))
### rename column:
data <- data %>% rename(., YEAR = CATEGORIES)

Overlay of forest plot from ZINB model

I want an overlay of a forest plot from the ZINB models of full and the subset of data using the sjPlot package. As you may know, the ZINB model produces two models: one for the count model and one for the zero-inflated model. plot_model works fine when employing the ZINB model from either full or a subset of data meaning producing a plot for both models (count and zero models), but when I overlay using plot_models then only one plot is produced for the count model. I am looking for the count and zero-inflated model plots from the full and sub-model for both the full and the subset of data. any help would be much appreciated
library(sjPlot)
library(sjlabelled)
library(sjmisc)
library(ggplot2)
library(MASS)
library(pscl)
library(boot)
zinb_all_uni <- zeroinfl(ivdays~age,
link="logit",
dist = "negbin",
data=caterpillor)
summary(zinb_all_uni)
plot_model(zinb_all_uni, type="est")
zinb_full_adj <- zeroinfl(ivdays~age+sex+edu,
link="logit",
dist = "negbin",
data=caterpillor)
summary(zinb_full_adj)
plot_model(zinb_full_adj, type="est", terms = c("count_ageb", "count_agec", "zero_ageb", "zero_agec"))
############ second model#######
Zinb_uni_sub <- zeroinfl(ivdays~age,
link="logit",
dist = "negbin",
data=subset(caterpillor, country=="eng"))
summary(zinb_uni_sub)
plot_model(zinb_uni_sub, type="est")
zinb_adj_sub <- zeroinfl(ivdays~age+sex+edu,
link="logit",
dist = "negbin",
data=subset(caterpillor, country=="eng"))
summary(zinb_adj_sub)
plot_model(zinb_adj_sub, type="est", terms = c("count_ageb", "count_agec", "zero_ageb", "zero_agec"))
### overlying plots from both models
plot_models(zinb_all_uni, Zinb_uni_sub)
plot_models(zinb_full_adj, zinb_adj_sub)
DATA:
caterpillor=structure(list(id = 1:100,
age = structure(c(1L, 1L, 2L, 1L,
2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 3L, 3L, 3L,
1L, 1L, 2L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 2L, 2L,
2L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L,
2L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 3L,
3L, 3L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 2L, 1L,
2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 3L, 3L, 3L),
.Label = c("a", "b", "c"), class = "factor"),
sex = structure(c(2L,
1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L,
2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L,
2L, 1L, 1L),
.Label = c("F", "M"), class = "factor"),
country = structure(c(1L,
1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 3L, 3L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L,
3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 3L, 3L,
2L, 2L, 2L),
.Label = c("eng", "scot", "wale"), class = "factor"),
edu = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L),
.Label = c("x", "y", "z"), class = "factor"),
lungfunction = c(45L,
23L, 25L, 45L, 70L, 69L, 90L, 50L, 62L, 45L, 23L, 25L, 45L,
70L, 69L, 90L, 50L, 62L, 45L, 23L, 25L, 45L, 70L, 69L, 90L,
50L, 62L, 45L, 23L, 25L, 45L, 70L, 69L, 90L, 50L, 62L, 45L,
23L, 25L, 45L, 70L, 69L, 90L, 50L, 62L, 45L, 23L, 25L, 45L,
70L, 69L, 90L, 50L, 62L, 45L, 23L, 25L, 45L, 70L, 69L, 90L,
50L, 62L, 45L, 23L, 25L, 45L, 70L, 69L, 90L, 50L, 62L, 45L,
23L, 25L, 45L, 70L, 69L, 90L, 50L, 62L, 25L, 45L, 70L, 69L,
90L, 50L, 62L, 25L, 45L, 70L, 69L, 90L, 50L, 62L, 25L, 45L,
70L, 69L, 90L),
ivdays = c(15L, 26L, 36L, 34L, 2L, 4L, 5L,
8L, 9L, 15L, 26L, 36L, 34L, 2L, 4L, 5L, 8L, 9L, 15L, 26L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 5L, 8L, 9L, 36L, 34L, 2L, 4L, 5L, 8L,
9L, 36L, 34L, 2L, 4L, 5L),
no2_quintile = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L),
.Label = c("q1", "q2",
"q3", "q4", "q5"), class = "factor")),
class = "data.frame", row.names = c(NA,
-100L))
but when i overlay plots i get only one plot
Code below, basic points:
when I run into trouble with automated machinery like plot_model I usually prefer to use machinery like broom::tidy() (for coefficients) or the ggeffects or emmeans packages (for predictions) and build my own ggplot — for me, it's easier than trying to figure out what the more automated tool is doing
broom doesn't have a tidy() method for zeroinfl models, but a little googling finds one in the poissonreg package ...
... however, that tidy() method doesn't have machinery for constructing confidence intervals or back-transforming coefficients to a count-ratio or odds-ratio scale, so I had to implement my own below ...
library(broom)
library(poissonreg)
library(tidyverse) ## purrr::map_dfr, ggplot ...
theme_set(theme_bw())
library(colorspace)
mod_list <- list(all_uni = zinb_all_uni, uni_sub = Zinb_uni_sub,
full_adj = zinb_full_adj, adj_sub = zinb_adj_sub)
tidy(zinb_all_uni, type = "all")
coefs <- (mod_list
|> map_dfr(tidy, type = "all",
.id = "model")
## construct CIs
|> mutate(conf.low = qnorm(0.025, estimate, std.error),
conf.high = qnorm(0.975, estimate, std.error))
|> filter(term != "(Intercept)") ## usually don't want this
## cosmetic (strip results down to the components we actually need)
|> select(model, term, type, estimate, conf.low, conf.high)
## back-transform
|> mutate(across(c(estimate, conf.low, conf.high), exp))
)
ggplot(coefs, aes(x = estimate, y = term, colour = model)) +
geom_pointrange(aes(xmin = conf.low, xmax = conf.high),
position = position_dodge(width = 0.5)) +
## separate count-ratio and odds-ratio (conditional/zero) plots
facet_wrap(~type, scale = "free") +
scale_color_discrete_qualitative() ## cosmetic
If you only want to see the age-related coefficients you can add
|> filter(stringr::str_detect(term, "^age"))
to the end of the pipeline that defines coefs.

merging plots from 2 models from sjplot

I need two models' plots combined into one graph, as seen in the image below. model 1 estimate's top line and model 2 estimates's bottom line.
I create the graph using one model, but I'm not sure how to incorporate an estimate from another model.
library(sjPlot)
library(sjlabelled)
library(sjmisc)
library(ggplot2)
library(MASS)
library(pscl)
library(boot)
zinb <- zeroinfl(ivdays~age,
link="logit",
dist = "negbin",
data=caterpillor)
summary(zinb)
plot_model(zinb, type="est")
zinb <- zeroinfl(ivdays~age+sex+edu,
link="logit",
dist = "negbin",
data=caterpillor)
summary(zinb)
plot_model(zinb, type="est", terms = c("count_ageb", "count_agec", "zero_ageb", "zero_agec"))
############ second model#######
zinb_sub <- zeroinfl(ivdays~age,
link="logit",
dist = "negbin",
data=subset(caterpillor, country=="eng"))
summary(zinb_sub)
plot_model(zinb_sub, type="est")
zinb_sub2 <- zeroinfl(ivdays~age+sex+edu,
link="logit",
dist = "negbin",
data=subset(caterpillor, country=="eng"))
summary(zinb_sub2)
plot_model(zinb_sub2, type="est", terms = c("count_ageb", "count_agec", "zero_ageb", "zero_agec"))
Data:
caterpillor=structure(list(id = 1:100,
age = structure(c(1L, 1L, 2L, 1L,
2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 3L, 3L, 3L,
1L, 1L, 2L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 2L, 2L,
2L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L,
2L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 3L,
3L, 3L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 2L, 1L,
2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 3L, 3L, 3L),
.Label = c("a", "b", "c"), class = "factor"),
sex = structure(c(2L,
1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L,
2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L,
2L, 1L, 1L),
.Label = c("F", "M"), class = "factor"),
country = structure(c(1L,
1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 3L, 3L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L,
3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 3L, 3L,
2L, 2L, 2L),
.Label = c("eng", "scot", "wale"), class = "factor"),
edu = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L),
.Label = c("x", "y", "z"), class = "factor"),
lungfunction = c(45L,
23L, 25L, 45L, 70L, 69L, 90L, 50L, 62L, 45L, 23L, 25L, 45L,
70L, 69L, 90L, 50L, 62L, 45L, 23L, 25L, 45L, 70L, 69L, 90L,
50L, 62L, 45L, 23L, 25L, 45L, 70L, 69L, 90L, 50L, 62L, 45L,
23L, 25L, 45L, 70L, 69L, 90L, 50L, 62L, 45L, 23L, 25L, 45L,
70L, 69L, 90L, 50L, 62L, 45L, 23L, 25L, 45L, 70L, 69L, 90L,
50L, 62L, 45L, 23L, 25L, 45L, 70L, 69L, 90L, 50L, 62L, 45L,
23L, 25L, 45L, 70L, 69L, 90L, 50L, 62L, 25L, 45L, 70L, 69L,
90L, 50L, 62L, 25L, 45L, 70L, 69L, 90L, 50L, 62L, 25L, 45L,
70L, 69L, 90L),
ivdays = c(15L, 26L, 36L, 34L, 2L, 4L, 5L,
8L, 9L, 15L, 26L, 36L, 34L, 2L, 4L, 5L, 8L, 9L, 15L, 26L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 5L, 8L, 9L, 36L, 34L, 2L, 4L, 5L, 8L,
9L, 36L, 34L, 2L, 4L, 5L),
no2_quintile = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L),
.Label = c("q1", "q2",
"q3", "q4", "q5"), class = "factor")),
class = "data.frame", row.names = c(NA,
-100L))

[r]: Interpreting results of a glmer, retransforming estimates

EDIT:
I am currently writing my master thesis on the effect of a certain insecticide on bumble bee colonies. I was for example checking if damaged/diseased appearing bees were more prevalent in colonies that were exposed to the insecticide compared to the control.
The study design is hierarchical. 16 fields were paired according to landscape characteristics. In each pair one field was randomly assigned to be treated with the insecticide, while the other is the control field. In each field there are 2 boxes and in each box are 2 bumble bee hives. From each hive I have up to ten pupae per sex.
This is how my data looks like:
structure(list(pair = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L
), .Label = c("P01", "P02", "P03", "P04", "P05", "P10", "P11",
"P12"), class = "factor"), field = structure(c(6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L), .Label = c("VR02", "VR03",
"VR04", "VR05", "VR06", "VR07", "VR09", "VR12", "VR13", "VR14",
"VR16", "VR17", "VR18", "VR20", "VR21", "VR23"), class = "factor"),
treatment = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L), .Label = c("Clothianidin", "Control"), class = "factor"),
box.nested = c(11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24,
24, 24, 24, 24, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3,
3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 19, 19, 19, 19, 19, 19,
19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
26, 26, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14,
31, 31, 31, 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32,
32, 32, 32, 32, 15, 15, 15, 15, 15, 16, 16, 16, 18, 18, 18,
18, 18, 18, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18,
5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 21, 21, 21, 21, 21, 21, 21,
21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
22, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
10, 10, 10, 10, 10, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 30, 30, 30, 30, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30,
30, 30, 30, 30, 30, 30, 30, 30, 30), hive.nested = c(21L,
21L, 21L, 21L, 21L, 22L, 22L, 22L, 23L, 23L, 23L, 23L, 23L,
23L, 23L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 45L, 45L,
45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 46L, 46L, 48L,
48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 3L, 3L, 4L, 4L, 4L, 6L, 6L, 6L, 6L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 37L, 37L, 37L, 37L, 38L, 38L, 38L,
38L, 38L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L,
49L, 49L, 49L, 50L, 50L, 51L, 52L, 25L, 25L, 25L, 26L, 26L,
26L, 27L, 27L, 27L, 27L, 28L, 28L, 28L, 61L, 61L, 61L, 61L,
61L, 62L, 62L, 62L, 62L, 64L, 64L, 64L, 64L, 64L, 64L, 64L,
64L, 64L, 64L, 30L, 30L, 30L, 30L, 30L, 32L, 32L, 32L, 36L,
36L, 36L, 36L, 36L, 36L, 34L, 34L, 34L, 34L, 34L, 34L, 34L,
34L, 35L, 35L, 35L, 36L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 41L, 41L,
41L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 43L, 43L,
43L, 43L, 43L, 43L, 44L, 44L, 44L, 44L, 44L, 13L, 14L, 14L,
14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 16L, 16L, 16L, 16L, 16L, 16L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 19L, 20L, 20L, 20L, 20L, 17L, 17L, 17L, 17L,
17L, 17L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 19L,
19L, 19L, 19L, 20L, 20L, 20L, 20L, 20L, 53L, 53L, 53L, 53L,
54L, 54L, 54L, 54L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 56L,
56L, 56L, 60L, 60L, 60L, 60L, 57L, 57L, 57L, 57L, 57L, 57L,
57L, 58L, 58L, 58L, 58L, 58L, 58L, 59L, 59L, 59L, 59L, 59L,
59L, 59L, 59L, 60L, 60L, 60L, 60L, 60L, 60L), stage = structure(c(2L,
1L, 1L, 3L, 1L, 1L, 1L, 1L, 2L, 3L, 2L, 2L, 3L, 2L, 2L, 2L,
1L, 3L, 1L, 2L, 3L, 2L, 1L, 3L, 2L, 2L, 1L, 2L, 3L, 2L, 1L,
3L, 2L, 3L, 1L, 1L, 2L, 3L, 1L, 3L, 3L, 3L, 1L, 3L, 2L, 2L,
2L, 2L, 3L, 3L, 2L, 2L, 2L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 2L, 2L, 3L, 3L, 2L, 3L, 3L, 3L, 2L, 3L, 3L, 2L, 2L, 2L,
3L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 1L, 3L, 1L, 3L, 2L, 3L,
2L, 2L, 2L, 2L, 1L, 1L, 2L, 3L, 2L, 1L, 3L, 3L, 2L, 3L, 2L,
1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 3L, 2L, 3L, 2L,
2L, 2L, 1L, 3L, 2L, 2L, 2L, 1L, 3L, 1L, 3L, 2L, 3L, 3L, 1L,
2L, 2L, 2L, 3L, 2L, 2L, 2L, 3L, 2L, 2L, 2L, 3L, 1L, 2L, 1L,
3L, 1L, 2L, 1L, 1L, 3L, 3L, 3L, 2L, 1L, 3L, 1L, 3L, 2L, 2L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 1L, 3L, 3L,
3L, 3L, 3L, 3L, 2L, 1L, 2L, 2L, 2L, 3L, 3L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 1L, 2L, 1L, 1L, 2L, 3L,
3L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 3L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 3L, 2L, 2L, 3L, 3L, 3L, 1L, 2L, 2L, 2L, 1L,
2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 3L, 3L, 3L, 1L, 2L,
3L, 2L, 1L, 2L, 3L, 1L, 2L, 2L, 1L, 1L, 3L), .Label = c("1",
"2", "3"), class = "factor"), condition = structure(c(2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L,
2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L,
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L), .Label = c("d",
"h"), class = "factor"), sex = structure(c(2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("f", "m", "q"
), class = "factor"), diseased = c(0, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0,
1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0,
1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0,
0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0)), .Names = c("pair",
"field", "treatment", "box.nested", "hive.nested", "stage", "condition",
"sex", "diseased"), class = "data.frame", row.names = c(5L, 7L,
8L, 9L, 10L, 14L, 15L, 16L, 21L, 23L, 24L, 26L, 28L, 29L, 30L,
31L, 32L, 33L, 34L, 37L, 38L, 39L, 40L, 42L, 45L, 47L, 48L, 49L,
50L, 51L, 52L, 53L, 54L, 55L, 58L, 60L, 66L, 67L, 68L, 72L, 73L,
74L, 77L, 83L, 85L, 87L, 90L, 92L, 95L, 97L, 100L, 104L, 108L,
115L, 117L, 123L, 125L, 133L, 134L, 137L, 144L, 155L, 156L, 157L,
158L, 159L, 160L, 161L, 162L, 163L, 164L, 166L, 169L, 170L, 172L,
175L, 178L, 179L, 180L, 184L, 185L, 189L, 190L, 191L, 192L, 193L,
194L, 195L, 196L, 197L, 199L, 201L, 202L, 203L, 205L, 206L, 207L,
211L, 212L, 213L, 215L, 217L, 221L, 222L, 224L, 226L, 230L, 244L,
247L, 255L, 258L, 262L, 271L, 272L, 274L, 280L, 281L, 284L, 285L,
288L, 289L, 295L, 296L, 297L, 299L, 300L, 305L, 308L, 309L, 312L,
314L, 326L, 327L, 328L, 329L, 330L, 331L, 332L, 333L, 334L, 335L,
356L, 359L, 362L, 364L, 366L, 375L, 378L, 381L, 388L, 389L, 390L,
391L, 392L, 393L, 404L, 405L, 406L, 407L, 408L, 409L, 410L, 412L,
417L, 418L, 420L, 424L, 425L, 426L, 427L, 428L, 429L, 430L, 431L,
432L, 433L, 435L, 436L, 438L, 439L, 440L, 441L, 442L, 443L, 444L,
446L, 447L, 450L, 453L, 454L, 455L, 456L, 458L, 459L, 461L, 462L,
465L, 466L, 468L, 475L, 476L, 477L, 478L, 479L, 480L, 481L, 482L,
483L, 484L, 485L, 486L, 487L, 490L, 491L, 494L, 495L, 496L, 500L,
501L, 508L, 518L, 519L, 521L, 522L, 524L, 525L, 526L, 527L, 528L,
529L, 530L, 531L, 532L, 533L, 534L, 535L, 538L, 540L, 542L, 543L,
544L, 548L, 549L, 551L, 552L, 553L, 554L, 555L, 556L, 557L, 559L,
560L, 563L, 568L, 569L, 571L, 572L, 576L, 577L, 578L, 579L, 580L,
581L, 582L, 583L, 584L, 585L, 587L, 588L, 590L, 594L, 595L, 596L,
600L, 603L, 604L, 605L, 606L, 607L, 608L, 609L, 616L, 618L, 620L,
622L, 626L, 628L, 631L, 632L, 635L, 636L, 638L, 639L, 641L, 646L,
647L, 651L, 652L, 653L, 654L, 655L, 656L, 658L, 659L, 660L, 661L,
663L, 666L, 667L, 668L, 669L, 670L, 673L, 675L, 676L, 678L, 679L,
680L, 681L, 682L, 684L, 685L, 686L, 687L, 688L, 689L, 690L))
I have run binomial glmer models from the lme4 package to test whether the presence of disease/damage signs in bumble bee colonies is affected by the insecticide.
damage.prev <- glmer(diseased ~ treatment + sex + stage
+ (1|pair/field/box.nested/hive.nested)
,data=df.cocoons.white,
family=binomial)
I have been trying to get estimates and confidence intervals. Thanks to #Benjamin
I got a little closer to the solution, but the estimates sill seem too high.
That's how I tried to get a data.frame of CIs and estimates:
fixed <- fixef(damage.prev)
wald <-confint(damage.prev,method="Wald")
estCloth.damage.ratio <- exp(fixed[1])
estCont.damage.ratio <- exp(fixed[1] + fixed[2])
lwrCloth.damage.ratio <- exp(wald[1,1])
lwrCont.damage.ratio <- exp(wald[1,1] + wald[2,1])
uprCloth.damage.ratio <- exp(wald[1,2])
uprCont.damage.ratio <- exp(wald[1,2] + wald[2,2])
estCloth.damage <- estCloth.damage.ratio/ (1+estCloth.damage.ratio)
estCont.damage <- estCont.damage.ratio / (1+ estCont.damage.ratio)
lwrCloth.damage <- lwrCloth.damage.ratio/ (1+ lwrCloth.damage.ratio)
lwrCont.damage <- lwrCont.damage.ratio /(1+ lwrCont.damage.ratio)
uprCloth.damage <- uprCloth.damage.ratio /(1+uprCloth.damage.ratio)
uprCont.damage <- uprCont.damage.ratio /(1+uprCont.damage.ratio )
treat.damage <- data.frame(Treatment,Estimate,lwr,upr)
What still confuses me are the high estimates of beyond 94%, yet
sum(df.cocoons.white$diseased)/length(df.cocoons.white$diseased)
gives me less than 70%. Doesn't seem realistic. Any idea what might be wrong?
Your model is using a logit transformation.
The way I look at generalized linear models is that they really aren't any different than simple linear regression. In simple linear regression, your response variable is continuous on (theoretically) the entire real number line (-Inf, Inf).
In logistic regression, your response is a proportion, which is continuous on the interval [0, 1]. The odds calculates (p / (1-p)) which is continuous over the interval of [0, inf). The log odds log(p / (1-p)) is continuous over the interval (-Inf, Inf).
This complete transformation (log(p / (1-p))) is referred to as the logit transformation and is pretty standard in logistic regression.
The results of your glmer model, which is a random effects version of logistic regression, uses the same transformation and so the estimated coefficients are on the scale of (-Inf, Inf). If you want odds ratios, you can exponentiate the coefficients, which will give you the odds measured on a scale of (0, Inf), with 1.0 being the null value.

3 Factor Nested ANOVA in R

I am trying to replicate a 3 Factor nested ANOVA anlaysis in a paper: Underwood, AJ (1993) The Mechanics of spatially replicated sampling programmes to detect environmental impacts in a variable world.
The data for the example (from Table 3, Underwood 1993) can be produced by:
dat <-
structure(list(B = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L
), .Label = c("A", "B"), class = "factor"), C = structure(c(2L,
2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("C", "I"), class = "factor"),
Times = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L), .Label = c("1", "2", "3", "4"), class = "factor"),
Locations = c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L,
1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L,
3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L,
2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L,
1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L,
3L), X = c(59L, 51L, 45L, 46L, 40L, 32L, 39L, 32L, 25L, 51L,
44L, 37L, 55L, 47L, 41L, 31L, 38L, 45L, 41L, 47L, 55L, 43L,
36L, 29L, 23L, 30L, 37L, 57L, 50L, 43L, 36L, 44L, 51L, 39L,
29L, 23L, 38L, 44L, 52L, 31L, 38L, 45L, 42L, 35L, 28L, 52L,
44L, 37L, 51L, 43L, 37L, 38L, 31L, 24L, 60L, 52L, 46L, 30L,
37L, 44L, 41L, 34L, 27L, 53L, 46L, 39L, 40L, 34L, 26L, 21L,
27L, 35L), Times.unique = structure(c(5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("A_1", "A_2", "A_3",
"A_4", "B_1", "B_2", "B_3", "B_4"), class = "factor")), .Names = c("B",
"C", "Times", "Locations", "Y", "Times.unique"), row.names = c(NA,
-72L), class = "data.frame")
dat
The data frame dat has 4 factors:
B - has two levels "A" and "B" (before v after)
Times - 8 levels, 4 within before "B" and 4 within after "A", coded as 1:4 within each. note that variable Times.unique is the same thing but with a unique code for each time (before and after)
Locations - has three levels, all measured every time both before and after
C - has two levels control (C) and (I). note: two locations are control and one is impact
While I am clear on how to analyse such a design using mixed models (lmer), I would like to replicate his example exactly so that I can run some simulations to compare his method.
In particular I am attempting to replicate the SS values presented in table 4 under column "a". He fits a design that has SS and df values for the following terms:
B -> SS = 66.13, df = 1
Times(B) -> SS = 280.64, df = 6
Locations -> SS = 283.86, df = 2
B x Locations -> SS = 29.26, df = 2
Times(B) x Locations-> SS = 575.45, df = 12
Residual -> SS = 2420.00, df = 48
Total -> SS = 6208.34, df = 71
I assume the Times(B) term represents Times nested within the Before/After treatment "B". For this example he ignores that Locations are from control and impact treatments and leaves out factor C altogether.
I have tried all possible combinations I can think of to reproduce this nested anova, using both unique Times coding and Times coded as 1:4 within B (before and after). I have tried using %in%, / and Error() arguments, as well as Anova from car to change the type of SS calculated. Examples of the %in% and / nested fits include:
aov(Y~B+Locations+Times%in%B+B:Locations+Times%in%B:Locations, data=dat)
aov(Y~B+Locations+B/Times+B:Locations+B/Times:Locations, data=dat)
I seem to be unable to replicate Underwood's SS values exactly, particularly for the two interaction terms. A friend let me fit the model in statistix, where the SS values can be reproduced exactly, so it is possible to obtain the above SS values for this model.
Can anyone help me fit this model in R? I wish to embed it in a larger simulation and really need to be able to run the model in R, such that the Underwood 1993 SS values are reproduced exactly?
Your problem is that dat$Locations is an integer, when it should be a factor (three unique locations). One hint is that your ANOVA line thinks Locations takes up only 1 df, while Underwood gives it 2.
Simply add the line:
dat$Locations = factor(dat$Locations)
And then your line of code reproduces the Underwood results perfectly:
aov(Y~B+Locations+B/Times+B:Locations+B/Times:Locations, data=dat)
#Call:
# aov(formula = Y ~ B + Locations + B/Times + B:Locations + B/Times:Locations,
# data = dat)
#
#Terms:
# B Locations B:Times B:Locations B:Locations:Times
#Sum of Squares 66.1250 2836.8611 280.6389 29.2500 575.4444
#Deg. of Freedom 1 2 6 2 12
# Residuals
#Sum of Squares 2420.0000
#Deg. of Freedom 48

Resources