I'm trying to replicate the graph provided at https://www.chicagofed.org/research/data/cfnai/current-data since I will be needing graphs for data sets soon that look like this. I'm almost there, I can't seem to figure out how to change the x axis to the dates when using ggplot2. Specifically, I would like to change it to the dates in the Date column. I tried about a dozen ways and nothing is working. The data for this graph is under indexes on the website. Here's my code and the graph where dataSet is the data from the website:
library(ggplot2)
library(reshape2)
library(tidyverse)
library(lubridate)
df = data.frame(time = index(dataSet), melt(as.data.frame(dataSet)))
df
str(df)
df$data1.Date = as.Date(as.character(df$data1.Date))
str(df)
replicaPlot1 = ggplot(df, aes(x = time, y = value)) +
geom_area(aes(colour = variable, fill = variable)) +
stat_summary(fun = sum, geom = "line", size = 0.4) +
labs(title = "Chicago Fed National Activity Index (CFNAI) Current Data")
replicaPlot1 + scale_x_continuous(name = "time", breaks = waiver(), labels = waiver(), limits =
df$data1.Date)
replicaPlot1
Any sort of help on this would be very much appreciated!
G:\BOS\Common\R-Projects\Graphs\Replica of Chicago Fed National Acitivty index (PCA)\dataSet
Not sure what's your intention with data.frame(time = index(dataSet), melt(as.data.frame(dataSet))). When I download the data and read via readxl::read_excel I got a nice tibble with a date(time) column which after reshaping via tidyr::pivot_longer could easily be plotted and by making use of scale_x_datetime has a nicely formatted date axis:
Using just the first 20 rows of data try this:
library(ggplot2)
library(readxl)
library(tidyr)
df <- pivot_longer(df, -Date, names_to = "variable")
ggplot(df, aes(x = Date, y = value)) +
geom_area(aes(colour = variable, fill = variable)) +
stat_summary(fun = sum, geom = "line", size = 0.4) +
labs(title = "Chicago Fed National Activity Index (CFNAI) Current Data") +
scale_x_datetime(name = "time")
#> Warning: Removed 4 rows containing non-finite values (stat_summary).
#> Warning: Removed 4 rows containing missing values (position_stack).
Created on 2021-01-28 by the reprex package (v1.0.0)
DATA
# Data downloaded from https://www.chicagofed.org/~/media/publications/cfnai/cfnai-data-series-xlsx.xlsx?la=en
# df <- readxl::read_excel("cfnai-data-series-xlsx.xlsx")
# dput(head(df, 20))
df <- structure(list(Date = structure(c(
-87004800, -84412800, -81734400,
-79142400, -76464000, -73785600, -71193600, -68515200, -65923200,
-63244800, -60566400, -58060800, -55382400, -52790400, -50112000,
-47520000, -44841600, -42163200, -39571200, -36892800
), tzone = "UTC", class = c(
"POSIXct",
"POSIXt"
)), P_I = c(
-0.26, 0.16, -0.43, -0.09, -0.19, 0.58, -0.05,
0.21, 0.51, 0.33, -0.1, 0.12, 0.07, 0.04, 0.35, 0.04, -0.1, 0.14,
0.05, 0.11
), EU_H = c(
-0.06, -0.09, 0.01, 0.04, 0.1, 0.22, -0.04,
0, 0.32, 0.16, -0.2, 0.34, 0.06, 0.17, 0.17, 0.07, 0.12, 0.12,
0.15, 0.18
), C_H = c(
-0.01, 0.01, -0.05, 0.08, -0.07, -0.01,
0.12, -0.11, 0.1, 0.15, -0.04, 0.04, 0.17, -0.03, 0.05, 0.08,
0.09, 0.05, -0.06, 0.09
), SO_I = c(
-0.01, -0.07, -0.08, 0.02,
-0.16, 0.22, -0.08, -0.07, 0.38, 0.34, -0.13, -0.1, 0.08, -0.07,
0.06, 0.07, 0.12, -0.3, 0.35, 0.14
), CFNAI = c(
-0.34, 0.02, -0.55,
0.04, -0.32, 1, -0.05, 0.03, 1.32, 0.97, -0.46, 0.39, 0.38, 0.11,
0.63, 0.25, 0.22, 0.01, 0.49, 0.52
), CFNAI_MA3 = c(
NA, NA, -0.29,
-0.17, -0.28, 0.24, 0.21, 0.33, 0.43, 0.77, 0.61, 0.3, 0.1, 0.29,
0.37, 0.33, 0.37, 0.16, 0.24, 0.34
), DIFFUSION = c(
NA, NA, -0.17,
-0.14, -0.21, 0.16, 0.11, 0.17, 0.2, 0.5, 0.41, 0.28, 0.2, 0.32,
0.36, 0.32, 0.33, 0.25, 0.31, 0.47
)), row.names = c(NA, -20L), class = c(
"tbl_df",
"tbl", "data.frame"
))
I'm trying to create and print a list of data frames that are the result of the Mann-Whitney-Wilcoxon Test.
My code currently runs the Mann-Whitney-Wilcoxon Test on all the observations and compares the two data frames, ORATIOS and KFMARATIOS.
library(tidyverse)
library(devtools)
library(inspectdf)
library(readr)
library(broom)
library(knitr)
library(readxl)
library(skimr)
library(kableExtra)
list_ratio <- grep("RATIO",colnames(ORATIOS), value=TRUE)
MWU_pvalues <- unlist(Map(function(a,b) wilcox.test(a, b)$p.value, ORATIOS[list_ratio], KFMARATIOS[list_ratio]))
MWU_pvalues <- as.data.frame(MWU_pvalues) %>%
rename(`P VALUE` = MWU_pvalues)
MWU_pvalues <- tibble::rownames_to_column(MWU_pvalues, "RATIO") %>%
mutate(`Significance` = if_else(`P VALUE` > 0.05, "",
if_else(`P VALUE` <= 0.05 & `P VALUE` >= 0.01, "\\*",
if_else(`P VALUE` <= 0.01 & `P VALUE` >= 0.001, "**", "***"))))
kable(MWU_pvalues) %>%
kable_styling()
How would I create a for loop or lapply filtering on each year, running the above test, saving each result as a dataframe into a list of dataframes? I'd like to have each dataframe for each year printed using kable in my RMarkdown file.
Sample data:
ORATIOS:
structure(list(YEAR = c(2008, 2009, 2010, 2011, 2012, 2013, 2014,
2015, 2016, 2017, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015,
2016, 2017), FARM = c("D", "D", "D", "D", "D", "D", "D", "D",
"D", "D", "I", "I", "I", "I", "I", "I", "I", "I", "I", "I"),
`CURRENT RATIO` = c(0.568022785746452, 0.329854720020037,
0.832073159580644, 0.643108790851367, 25.1454874121908, 14.5975395062397,
5.12537888750377, 5.20160770260219, 7.64257374037806, 2.1580962424325,
1.31703632160198, 0.125166573684741, 0.0680923398879462,
0.100452384108057, 0.0998706900125819, 0.0907309088049343,
0.521537398114045, 0.773433351511582, 0.174099653043861,
0.0804425861373205), `WORKING CAPITAL TO GROSS FARMING INCOME` = c(-0.132573843177753,
-0.419436996986394, -0.031444400685141, -0.114022796397208,
1.22962822585944, 0.397841184148093, 0.239623650110705, 0.295681875030473,
0.502930206605254, 0.41862926754376, 0.0513905118422565,
-0.406448322702947, -0.343476652794216, -0.366684678854441,
-0.27321810774102, -0.306827980132377, -0.173010159020099,
-0.140768598200492, -0.367184395657858, -0.888263538055031
), `DEBT TO TOTAL ASSET RATIO` = c(0.0846892634197993, 0.102127561711337,
0.0750728145035032, 0.0797349374471145, 0.0122514875519798,
0.0162967044282012, 0.0165670856047258, 0.0188732833402721,
0.0150968780472965, 0.0275252089477482, 0.1123291162633,
0.151496340475165, 0.0960615511639704, 0.0985641068765839,
0.119816717131179, 0.121164074695269, 0.0970056997272376,
0.139114211255347, 0.0686657852466466, 0.17098484263781),
`DEBT TO FARM ASSET RATIO` = c(0.0935832744841849, 0.114259598684054,
0.0824723632268821, 0.08365143337564, 0.0129689938858425,
0.0191316764222117, 0.0216751963945452, 0.0225358439285237,
0.0167830935834987, 0.030821228954403, 0.140068283663094,
0.203393535891141, 0.133942894025292, 0.137887444914688,
0.17818477721901, 0.182143899668642, 0.141540075268137, 0.212926916788055,
0.0962721755129152, 0.172706971368876), `EQUITY TO ASSET RATIO` = c(0.915310736580201,
0.897872438288663, 0.924927185496497, 0.920265062552885,
0.98774851244802, 0.983703295571799, 0.983432914395274, 0.981126716659728,
0.984903121952704, 0.972474791052252, 0.8876708837367, 0.848503659524835,
0.90393844883603, 0.901435893123416, 0.880183282868821, 0.878835925304732,
0.902994300272762, 0.860885788744653, 0.931334214753353,
0.82901515736219), `DEBT TO EQUITY RATIO` = c(0.0925251502415636,
0.113743954437438, 0.0811661887343104, 0.0866434472975902,
0.0124034482437396, 0.0165666868267717, 0.0168461776723358,
0.0192363361631072, 0.0153282873318188, 0.0283042904566863,
0.126543652970169, 0.178545300040313, 0.106270013503315,
0.109341227289126, 0.13612700838927, 0.137868823072129, 0.107426702137473,
0.161594270778014, 0.0737284040024573, 0.206250562633691),
`RETURN ON FARM ASSETS` = c(0.0170145283510924, -0.00522377886147693,
0.0237250420249203, 0.00257743472229431, 0.0213365859181817,
0.0244609737360482, 0.0279373354305636, 0.0167869242322396,
0.0572363957452595, -0.00273821783417637, 0.0325678749005671,
-0.0532931806283685, 0.024215521265722, -0.0178636730481072,
0.0189254399688753, 0.00211416100547258, -0.00938005681041073,
0.0501921695586829, 0.0215269026374393, -0.0366154070757298
), `RETURN ON ASSETS` = c(0.0566608458884666, 0.0239054711694685,
0.0264084815850861, 0.00576204495548541, 0.179667366138176,
0.0246773695339781, 0.0246552659101915, 0.020526505137709,
0.0551370549195115, -5.05665725060606e-05, 0.0449112877923212,
-0.0284073208306705, 0.0249952584312144, -0.00283565027536605,
0.0360687362998932, 0.0080927754538142, -0.00331579015236834,
0.0457634829675583, 0.0229640648122328, -0.023016837706958
), `RETURN ON EQUITY` = c(0.0168221490501512, -0.00520020437367425,
0.023349291367177, 0.00266962346623839, 0.0204061503508897,
0.0211814836515069, 0.0217131742563291, 0.0143291246913213,
0.0522749822883451, -0.002514608130223, 0.0294232052511338,
-0.0467824450944562, 0.0192125442012039, -0.0141654371518756,
0.0144583817182496, 0.00160025611694793, -0.00711931632857772,
0.0380917883044123, 0.0164860113123938, -0.0437269454184399
), `FARM OPERATING PROFIT MARGIN RATIO` = c(0.113108456739495,
-0.0455472105804567, 0.199838203998892, 0.0234275923606582,
0.158472105656006, 0.183710042172317, 0.190582976791897,
0.124927655425634, 0.45847835351018, -0.0422031337055503,
0.122121670323183, -0.243017854350921, 0.11277681710057,
-0.0790679940692684, 0.076084143213901, 0.00890894198839937,
-0.0450368591167229, 0.204577659697265, 0.13619384495868,
-0.358538500350435), `ASSET TURNOVER RATIO` = c(0.0153974936379558,
-0.00466912018059027, 0.0215963943475807, 0.00245676120615052,
0.0201561446538819, 0.0208362952730876, 0.0213534502396742,
0.0140586870610039, 0.0514857932558134, -0.00244539301601691,
0.0261181226076402, -0.0396950758641658, 0.0173669574034299,
-0.0127692334904846, 0.0127260258857395, 0.00140636256526249,
-0.00642870206654449, 0.0327926792191383, 0.0153539864000432,
-0.0362503005370359), `OPERATING EXPENSE RATIO` = c(0.671535228245263,
0.773166498456329, 0.607985458258, 0.724432447012029, 0.67336000606662,
0.64796797949329, 0.589032574693052, 0.74988495257417, 0.461775664398759,
0.862141471389961, 0.672863504023624, 0.980455882037588,
0.669661413731221, 0.86690216270866, 0.670033358895902, 0.737005445439968,
0.783494244501376, 0.649760819934915, 0.706382908455109,
1.134948535946), `DEPRECIATION EXPENSE RATIO` = c(0.12660532789432,
0.132732814909818, 0.103826844188336, 0.144629676126728,
0.140059287930065, 0.157478624539652, 0.141620283491016,
0.0919194664659044, 0.0583370508964949, 0.133579109920113,
0.150646135557582, 0.183514628711121, 0.146236932328879,
0.16125312788589, 0.191531747619893, 0.197293862401247, 0.193527787561396,
0.0913809290148264, 0.0946887014018637, 0.145522583536315
), `INTEREST EXPENSE RATIO` = c(0.0887509871209225, 0.139647897214309,
0.0883494935547731, 0.107510284500585, 0.028108600347309,
0.0108433537947408, 0.0787641650240354, 0.0332679255342914,
0.0214089311945663, 0.0464825523954769, 0.0543686900956105,
0.0790473436022124, 0.0713248368393299, 0.0509127034747178,
0.0623507502703033, 0.0567917501703862, 0.068014827053951,
0.0542805913529945, 0.0627345451843474, 0.0780673808681226
), `NET FARM INCOME RATIO` = c(0.113108456739495, -0.0455472105804567,
0.199838203998892, 0.0234275923606582, 0.158472105656006,
0.183710042172317, 0.190582976791897, 0.124927655425634,
0.45847835351018, -0.0422031337055503, 0.122121670323183,
-0.243017854350921, 0.11277681710057, -0.0790679940692684,
0.076084143213901, 0.00890894198839937, -0.0450368591167229,
0.204577659697265, 0.13619384495868, -0.358538500350435)), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -20L))
KFMARATIOS:
structure(list(YEAR = c(2008, 2008, 2008, 2008, 2008, 2008, 2008,
2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008,
2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008,
2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008
), FARM = c(11407100, 11484600, 11485100, 11495100, 11801800,
11806400, 11820000, 11885400, 11886000, 11897200, 11897300, 12004500,
12004501, 12303001, 12340101, 12398300, 13050001, 13700201, 13705601,
14089100, 14110900, 14130000, 14130002, 14184100, 14192300, 14330302,
14388200, 14783200, 14786200, 15094200, 15096200, 15584200, 15586100,
15682100, 15683100, 15689100, 16507002, 16580000, 16598200, 16601300
), `CURRENT RATIO` = c(-3, 0, 4.57, 15.94, 2.22, 0, 368.69, 1.86,
9.1, 3.45, 2, 0, 1.58, 6.26, 1.97, 1.54, 0, 3.39, 313.09, 5.59,
5.4, 0, 3.6, 5.78, 3.18, 207.1, 2.36, 28.31, 3.4, 3.68, 0.37,
3.5, 5.6, 13.64, 7.05, 0, 2.23, 0.89, 4.4, 1.11), `WORKING CAPITAL TO GROSS FARMING INCOME` = c(0.783990044655886,
0.939342207539837, 0.468883358203084, 0.53708199556795, 0.429230789973027,
0.856616290636639, 0.46085746623408, 0.019246546772549, 1.04338230212655,
0.318770448161572, 0.398058372857175, 0.506978780306214, 0.263816960947357,
0.4960655740923, 0.101962576323424, 0.220623464476751, 1.12676140487953,
0.533690322762107, 0.685276501922026, 0.703540899065169, 0.660869855557338,
0.71777803486123, 0.319578323479609, 0.722736340214157, 0.286630301648443,
0.818610240507597, 0.184477489966846, 0.78148168000963, 0.357891811040315,
0.289159422203956, -0.125641128630768, 0.392321597654173, 0.561996673317676,
0.353452531903466, 0.683345718597063, 0.804567295215173, 0.307398272114796,
-0.375449779668313, 0.186702574682293, -0.55737251721071), `DEBT TO TOTAL ASSET RATIO` = c(0.02,
0.07, 0.27, 0.37, 0.36, 0, 0.07, 0.37, 0.05, 0.33, 0.42, 0.08,
0.24, 0.34, 0.36, 0.51, 0.01, 0.11, 0.1, 0.07, 0.08, 0.01, 0.32,
0.14, 0.4, 0.52, 0.39, 0.06, 0.21, 0.32, 0.43, 0.52, 0.29, 0.12,
0.17, 0.1, 0.15, 0.87, 0.12, 0.69), `DEBT TO FARM ASSET RATIO` = c(0.0210960466847519,
0.0662443993261916, 0.270051570315789, 0.373240578143398, 0.359031265562519,
0, 0.0678176279710153, 0.369000587598404, 0.04831743727994, 0.33065743433488,
0.41680939549244, 0.0851067276205844, 0.245359588845858, 0.337912727823456,
0.356607488633417, 0.508663012923272, 0.0126098421632802, 0.10665178903834,
0.105106247793806, 0.0698908293989529, 0.0818483764283224, 0.00750932570017385,
0.319501072718455, 0.136757510256717, 0.400840648545665, 0.516753083750126,
0.389587948103612, 0.0577299469460252, 0.206521419569117, 0.315261383020663,
0.43256943562472, 0.520491208048298, 0.290288373137576, 0.120229338185664,
0.173192986515349, 0.104536048245734, 0.151997186500475, 0.868552025800098,
0.123958600776313, 0.692195974317741), `EQUITY TO ASSET RATIO` = c(0.98536882817945,
0.944215770167283, 0.736537746555766, 0.729860554651407, 0.642228778874089,
1, 0.94228148558872, 0.630999412401596, 0.95168256272006, 0.66934256566512,
0.592693562701164, 0.914893272379416, 0.813956784138156, 0.688995447780108,
0.725420084109645, 0.545241148972386, 0.988536562104007, 0.900124825958172,
0.90344241855196, 0.930936390469265, 0.92060316189968, 0.992490674299826,
0.758518009863028, 0.881474617998699, 0.600468426703118, 0.553595877267449,
0.667405715763261, 0.942270053053975, 0.842757601135073, 0.708413078986436,
0.56743056437528, 0.533041296742996, 0.743304732269968, 0.88511363093375,
0.831970255984885, 0.904591907651469, 0.876296809602567, 0.131447974199902,
0.890119750534961, 0.307804025682259), `DEBT TO EQUITY RATIO` = c(0.02,
0.07, 0.37, 0.6, 0.56, 0, 0.07, 0.58, 0.05, 0.49, 0.72, 0.09,
0.32, 0.51, 0.55, 1.04, 0.01, 0.12, 0.12, 0.08, 0.09, 0.01, 0.47,
0.16, 0.67, 1.07, 0.64, 0.06, 0.26, 0.46, 0.76, 1.08, 0.41, 0.14,
0.21, 0.12, 0.18, 6.61, 0.14, 2.25), `RETURN ON FARM ASSETS` = c(0.374484329540697,
0.0498819566035984, 0.181954755022922, 0.193161758267218, 0.0473627311001023,
0.327305563029612, 0.603037930741254, -0.0156737997438482, 0.10397858597475,
0.10789191406389, 0.180771277730155, 0.150007797084, 0.174196776278552,
0.120122100767257, 0.298096858936563, 0.0517125227815447, 0.111597414809764,
0.185024421154621, 0.239979711875599, 0.0808784377916965, 0.201436668181771,
0.135024051506645, 0.251851638310215, 0.103285147847268, 0.14207589091784,
0.247675592658745, 0.100067311604358, 0.308209326567443, 0.154555623216289,
0.174464204907127, 0.00457531564104158, 0.098141499884622, 0.251116584438097,
0.153198476415449, 0.183688952743912, 0.0838032420725189, 0.169288085631256,
0.0279120898963428, 0.147329195543669, 0.034801030826966), `RETURN ON ASSETS` = c(0.260063898261748,
0.0581159003954688, 0.186586004612603, 0.144217266907855, 0.0471965084015535,
0.203276288956977, 0.522691591931166, -0.0156737997438482, 0.104160943214225,
0.110451790466256, 0.178360409188664, 0.150089138729099, 0.134029707705111,
0.120565772385725, 0.229528019076799, 0.0697390623585822, 0.10198296142804,
0.192570247620748, 0.245119340816501, 0.115758491252085, 0.195889106965538,
0.138158444053898, 0.231674956423303, 0.0966027636728098, 0.141766843553559,
0.215113054221126, 0.135495862386357, 0.314351616201071, 0.133076845003381,
0.168262801476855, 0.00457531564104158, 0.0986664889666124, 0.242490501823923,
0.152124266735103, 0.201716489655936, 0.0786665142081486, 0.162659186669921,
0.0279454048764536, 0.134992616527726, 0.034801030826966), `RETURN ON EQUITY` = c(0.263580248064511,
0.0444871419402714, 0.241012793134955, 0.191549228659637, 0.0734886226747657,
0.186089113513671, 0.544673844576945, -0.0248396423765173, 0.109257634896201,
0.161190875342999, 0.298045789765326, 0.163962072531003, 0.162274234481587,
0.160460729376603, 0.31640703656353, 0.0847926292565323, 0.102628180483108,
0.192493344561337, 0.244023637469295, 0.0858503015508329, 0.212255623707772,
0.13604566269794, 0.250952374400512, 0.101551944180348, 0.235835707060263,
0.386487527831846, 0.128000474163853, 0.327092350614891, 0.139632557156543,
0.227780755169442, 0.0080632167674627, 0.165179790324242, 0.298742298993181,
0.165391606109475, 0.214205739228479, 0.084552656304169, 0.157224605882577,
0.212343248849882, 0.146717984157146, 0.113062299136044), `FARM OPERATING PROFIT MARGIN RATIO` = c(0.55,
0.18, 0.29, 0.33, 0.12, 0.46, 0.24, -0.1, 0.14, 0.23, 0.2, 0.22,
0.44, 0.25, 0.33, 0.13, 0.36, 0.44, 0.33, 0.05, 0.32, 0.16, 0.52,
0.3, 0.24, 0.35, 0.2, 0.32, 0.38, 0.29, 0.02, 0.24, 0.36, 0.25,
0.4, 0.18, 0.32, -0.01, 0.08, -0.01), `ASSET TURNOVER RATIO` = c(0.64,
0.2, 0.55, 0.58, 0.29, 0.64, 1.88, 0.39, 0.31, 0.34, 0.72, 0.58,
0.38, 0.41, 0.96, 0.38, 0.26, 0.4, 0.62, 0.41, 0.55, 0.67, 0.53,
0.29, 0.51, 0.86, 0.38, 0.94, 0.4, 0.54, 0.65, 0.49, 0.7, 0.49,
0.41, 0.3, 0.47, 0.62, 0.87, 0.79), `OPERATING EXPENSE RATIO` = c(0.29,
0.57, 0.61, 0.52, 0.69, 0.48, 0.57, 0.89, 0.64, 0.57, 0.72, 0.62,
0.45, 0.55, 0.52, 0.69, 0.49, 0.43, 0.5, 0.75, 0.53, 0.69, 0.38,
0.54, 0.6, 0.54, 0.55, 0.56, 0.5, 0.57, 0.87, 0.61, 0.54, 0.63,
0.44, 0.61, 0.56, 0.82, 0.77, 0.83), `DEPRECIATION EXPENSE RATIO` = c(0.08,
0.16, 0.01, 0.05, 0.07, 0.02, 0.03, 0.09, 0.02, 0.06, 0.03, 0.1,
0.04, 0.08, 0.06, 0.1, 0.06, 0.05, 0.03, 0.04, 0.08, 0.09, 0.04,
0.06, 0.05, 0.01, 0.11, 0.05, 0.04, 0.06, 0.05, 0.08, 0.04, 0.03,
0.06, 0.08, 0.01, 0.1, 0.05, 0.04), `INTEREST EXPENSE RATIO` = c(0.01,
0, 0.03, 0.07, 0.08, 0, 0, 0.06, 0, 0.02, 0.04, 0.01, 0.02, 0.06,
0.03, 0.06, 0, 0, 0.03, 0.01, 0.02, 0, 0.06, 0.01, 0.05, 0, 0.07,
0, 0.04, 0.01, 0.08, 0.1, 0.04, 0.02, 0.03, 0.02, 0.04, 0.04,
0.01, 0.09), `NET FARM INCOME RATIO` = c(0.62, 0.27, 0.35, 0.36,
0.16, 0.5, 0.39, -0.04, 0.34, 0.35, 0.22, 0.28, 0.49, 0.31, 0.39,
0.15, 0.45, 0.51, 0.44, 0.2, 0.37, 0.21, 0.52, 0.39, 0.29, 0.45,
0.27, 0.39, 0.43, 0.36, 0.01, 0.21, 0.37, 0.32, 0.47, 0.28, 0.38,
0.05, 0.17, 0.05)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,
-40L))
My solution is kind of convuluted but I guess it is never easy to work with list columns,
nested_oratios <- ORATIOS %>%
group_by(YEAR) %>%
nest() %>%
mutate(fake_year = 2008) %>%
ungroup()
nested_kfmaratios <- KFMARATIOS %>%
group_by(YEAR) %>%
nest() %>%
mutate(fake_year = 2008) %>%
ungroup() %>%
select(-YEAR)
nested_comb <- nested_oratios %>%
left_join(nested_kfmaratios,by = c('fake_year'),suffix = c(".oratios", ".kfmaratios")) %>%
select(-fake_year)
logic_pipe <- function(a,b) {
a <- a %>% select(contains('RATIO'))
b <- b %>% select(contains('RATIO'))
MWU_pvalues <- map2(a,b,function(a,b) wilcox.test(a, b)$p.value) %>% unlist()
MWU_pvalues <- as.data.frame(MWU_pvalues) %>%
rename(`P VALUE` = MWU_pvalues)
MWU_pvalues <- tibble::rownames_to_column(MWU_pvalues, "RATIO") %>%
mutate(`Significance` = if_else(`P VALUE` > 0.05, "",
if_else(`P VALUE` <= 0.05 & `P VALUE` >= 0.01, "\\*",
if_else(`P VALUE` <= 0.01 & `P VALUE` >= 0.001, "**", "***"))))
return(MWU_pvalues %>% as_tibble())
}
nested_comb %>%
mutate(result = map2(.x = data.oratios ,.y =data.kfmaratios,logic_pipe))
Consider the apply family with mapply and by (object-oriented wrapper to tapply) that can subset your data by year and pass into a user-defined function. Note: unlist + Map can be replaced with mapply (the underlying function of Map, its wrapper). Below demonstrates with base R where transform replaces mutate and ifelse replaces if_else:
proc_df <- function(df) {
yr <- df$YEAR[1]
MWU_pvalues <- mapply(function(a,b) wilcox.test(a, b)$p.value,
subset(ORATIOS, YEAR==yr)[list_ratio], df[list_ratio])
final_df <- transform(data.frame(ratio = names(MWU_pvalues),
p_value = unname(MWU_pvalues)),
significance = ifelse(p_value > 0.05, "",
ifelse(p_value <= 0.05 & p_value >= 0.01, "*",
ifelse(p_value <= 0.01 & p_value >= 0.001, "**", "***")
)
)
)
return(final_df)
}
df_list <- by(KFMARATIOS, KFMARATIOS$YEAR, proc_df)
Output
df_list$`2008`
# ratio p_value significance
# 1 CURRENT RATIO 0.20349856
# 2 DEBT TO TOTAL ASSET RATIO 0.39154322
# 3 DEBT TO FARM ASSET RATIO 0.52264808
# 4 EQUITY TO ASSET RATIO 0.42276423
# 5 DEBT TO EQUITY RATIO 0.39162003
# 6 FARM OPERATING PROFIT MARGIN RATIO 0.11726414
# 7 ASSET TURNOVER RATIO 0.01957554 *
# 8 OPERATING EXPENSE RATIO 0.24893798
# 9 DEPRECIATION EXPENSE RATIO 0.02588258 *
# 10 INTEREST EXPENSE RATIO 0.10127823
# 11 NET FARM INCOME RATIO 0.06262773