Proving a theorem about parser combinators - isabelle

I've written some simple parser combinators (without backtracking etc.). Here are the important definitions for my problem.
type_synonym ('a, 's) parser = "'s list ⇒ ('a * 's list) option"
definition sequenceP :: "('a, 's) parser
⇒ ('b, 's) parser
⇒ ('b, 's) parser" (infixl ">>P" 60) where
"sequenceP p q ≡ λ i .
(case p i of
None ⇒ None
| Some v ⇒ q (snd v))"
definition consumerP :: "('a, 's) parser ⇒ bool" where
"consumerP p ≡ (∀ i . (case p i of
None ⇒ True |
Some v ⇒ length (snd v) ≤ length i))"
I do want to proof the following lemma.
lemma consumerPI: "consumerP p ⟹ consumerP q ⟹ consumerP (p >>P q)"
apply (unfold sequenceP_def)
apply (simp (no_asm) add:consumerP_def)
apply clarsimp
apply (case_tac "case p i of None ⇒ None | Some v ⇒ q (snd v)")
apply simp
apply clarsimp
apply (case_tac "p i")
apply simp
apply clarsimp
apply (unfold consumerP_def)
I arrive at this proof state, at which I fail to continue.
goal (1 subgoal):
1. ⋀i a b aa ba.
⟦∀i. case p i of None ⇒ True | Some v ⇒ length (snd v) ≤ length i;
∀i. case q i of None ⇒ True | Some v ⇒ length (snd v) ≤ length i; q ba = Some (a, b); p i = Some (aa, ba)⟧
⟹ length b ≤ length i
Can anybody give me a tip how to solve this goal?
Thanks in advance!

It turns out that if you just want to prove the lemma, without further insight, then
lemma consumerPI: "consumerP p ⟹ consumerP q ⟹ consumerP (p >>P q)"
by (smt consumerP_def le_trans option.case_eq_if sequenceP_def)
does the job.
If you want to have insight, you want to go for a structured proof. First identify some useful lemmas about consumerP, and then write a Isar proof that details the necessary steps.
lemma consumerPI[intro!]:
assumes "⋀ i x r . p i = Some (x,r) ⟹ length r ≤ length i"
shows "consumerP p"
unfolding consumerP_def by (auto split: option.split elim: assms)
lemma consumerPE[elim, consumes 1]:
assumes "consumerP p"
assumes "p i = Some (x,r)"
shows "length r ≤ length i"
using assms by (auto simp add: consumerP_def split: option.split_asm)
lemma consumerP_sequencePI: "consumerP p ⟹ consumerP q ⟹ consumerP (p >>P q)"
proof-
assume "consumerP p"
assume "consumerP q"
show "consumerP (p >>P q)"
proof(rule consumerPI)
fix i x r
assume "(p >>P q) i = Some (x, r)"
then obtain x' r' where "p i = Some (x', r')" and "q r' = Some (x,r)"
by (auto simp add: sequenceP_def split:option.split_asm)
from `consumerP q` and `q r' = Some (x, r)`
have "length r ≤ length r'" by (rule consumerPE)
also
from `consumerP p` and `p i = Some (x', r')`
have "length r' ≤ length i" by (rule consumerPE)
finally
show "length r ≤ length i".
qed
qed
In fact, for this definition you can very nicely use the inductive command, and get intro and elim rules for free:
inductive consumerP where
consumerPI: "(⋀ i x r . p i = Some (x,r) ⟹ length r ≤ length i) ⟹ consumerP p"
In the above proof, you can replace by (rule consumerPE) by by cases and it works.

Related

To prove a lemma of labeled transtion in Isabelle

The labeled transition of Isballe is defined below, which contains the prior node and the successor node, the set represents the condition.
type_synonym ('q,'a) LTS = "('q * 'a set * 'q) set"
After the LTS, we need to define a function of the reachable from Node a to Node b. The definition of LTS_is_reachable like:
inductive LTS_is_reachable :: "('q, 'a) LTS ⇒ ('q * 'q) set ⇒ 'q ⇒ 'a list ⇒ 'q ⇒ bool" for Δ and Δ' where
LTS_Empty[intro!]: "LTS_is_reachable Δ Δ' q [] q" |
LTS_Step1: "LTS_is_reachable Δ Δ' q l q'" if "(q, q'') ∈ Δ'" and "LTS_is_reachable Δ Δ' q'' l q'" |
LTS_Step2[intro!]: "LTS_is_reachable Δ Δ' q (a # w) q'" if "a ∈ σ" and "(q, σ, q'') ∈ Δ" and "LTS_is_reachable Δ Δ' q'' w q'"
where the LTS_empty denotes node q could arrive at self by empty list, LTS_Step1 denotes if there exists node q and p in Delta', then q could reach p no condition, and LTS_Step2 denotes that node q could reach node q'' by the alphbet sigma.
Finally, I try to prove a lemma
lemma removeFromAtoEndTrans:"LTS_is_reachable Δ (insert (ini, end) Δ') ini l end ⟹ l ≠ [] ⟹ ∀(q, σ, p) ∈ Δ. q ≠ ini ∧ q ≠ end ⟹ ∀(end, p) ∈ Δ'. p = end ⟹ LTS_is_reachable Δ Δ' ini l end"
This lemma said that if the list l isn't empty, we could remove ini-> end from Delta2. It obviously holds. Through the tool nitpick, it can not find any counter-examples. But I could think about any ideas to prove it. Any helps would be appreciated.

Topological filters in Isabelle

I'm studying topological filters in Filter.thy
theory Filter
imports Set_Interval Lifting_Set
begin
subsection ‹Filters›
text ‹
This definition also allows non-proper filters.
›
locale is_filter =
fixes F :: "('a ⇒ bool) ⇒ bool"
assumes True: "F (λx. True)"
assumes conj: "F (λx. P x) ⟹ F (λx. Q x) ⟹ F (λx. P x ∧ Q x)"
assumes mono: "∀x. P x ⟶ Q x ⟹ F (λx. P x) ⟹ F (λx. Q x)"
typedef 'a filter = "{F :: ('a ⇒ bool) ⇒ bool. is_filter F}"
proof
show "(λx. True) ∈ ?filter" by (auto intro: is_filter.intro)
qed
I don't get this definition. It's quite convoluted so I'll simplify it first
The expression
F (λx. P x) could be simplified to F P (using eta reduction of lambda calculus). The predicate 'a ⇒ bool is really just a set 'a set. Similarly ('a ⇒ bool) ⇒ bool should be 'a set set. Then we could rewrite the axioms as
assumes conj: "P ∈ F ∧ Q ∈ F ⟹ Q ∩ P ∈ F"
assumes mono: "P ⊆ Q ∧ P ∈ F ⟹ Q ∈ F"
Now my question is about the True axiom. It is equivalent to
assumes True: "UNIV ∈ F"
This does not match with the definitions of filters that I ever saw.
The axiom should be instead
assumes True: "{} ∉ F" (* the name True is not very fitting anymore *)
The statement UNIV ∈ F is unnecessary because it follows from axiom mono.
So what's up with this definition that Isabelle provides?
The link provided by Javier Diaz has lots of explanations.
Turns out this is a definition of improper filter. The axiom True is necessary and does not follow from mono. If this axiom was missing then F could be defined as
F P = False
or in set-theory notation, F could be an empty set and mono and conj would then be satisfied vacuously.

Isabelle structure proof

There is a set of some structures. I'm trying to prove that the cardinality of the set equals some number. Full theory is too long to post here. So here is a simplified one just to show the idea.
Let the objects (which I need to count) are sets containing natural numbers from 1 to n. The idea of the proof is as follows. I define a function which transforms sets to lists of 0 and 1. Here is the function and its inverse:
fun set_to_bitmap :: "nat set ⇒ nat ⇒ nat ⇒ nat list" where
"set_to_bitmap xs x 0 = []"
| "set_to_bitmap xs x (Suc n) =
(if x ∈ xs then Suc 0 else 0) # set_to_bitmap xs (Suc x) n"
fun bitmap_to_set :: "nat list ⇒ nat ⇒ nat set" where
"bitmap_to_set [] n = {}"
| "bitmap_to_set (x#xs) n =
(if x = Suc 0 then {n} else {}) ∪ bitmap_to_set xs (Suc n)"
value "set_to_bitmap {1,3,7,8} 1 8"
value "bitmap_to_set (set_to_bitmap {1,3,7,8} 1 8) 1"
Then I plan to prove that 1) a number of 0/1 lists with length n equals 2^^n,
2) the functions are bijections,
3) so the cardinality of the original set is 2^^n too.
Here are some auxiliary definitions and lemmas, which seems useful:
definition "valid_set xs n ≡ (∀a. a ∈ xs ⟶ 0 < a ∧ a ≤ n)"
definition "valid_bitmap ps n ≡ length ps = n ∧ set ps ⊆ {0, Suc 0}"
lemma length_set_to_bitmap:
"valid_set xs n ⟹
x = Suc 0 ⟹
length (set_to_bitmap xs x n) = n"
apply (induct xs x n rule: set_to_bitmap.induct)
apply simp
sorry
lemma bitmap_members:
"valid_set xs n ⟹
x = Suc 0 ⟹
set_to_bitmap xs x n = ps ⟹
set ps ⊆ {0, Suc 0}"
apply (induct xs x n arbitrary: ps rule: set_to_bitmap.induct)
apply simp
sorry
lemma valid_set_to_valid_bitmap:
"valid_set xs n ⟹
x = Suc 0 ⟹
set_to_bitmap xs x n = ps ⟹
valid_bitmap ps n"
unfolding valid_bitmap_def
using bitmap_members length_set_to_bitmap by auto
lemma valid_bitmap_to_valid_set:
"valid_bitmap ps n ⟹
x = Suc 0 ⟹
bitmap_to_set ps x = xs ⟹
valid_set xs n"
sorry
lemma set_to_bitmap_inj:
"valid_set xs n ⟹
valid_set xy n ⟹
x = Suc 0 ⟹
set_to_bitmap xs x n = ps ⟹
set_to_bitmap ys x n = qs ⟹
ps = qs ⟹
xs = ys"
sorry
lemma set_to_bitmap_surj:
"valid_bitmap ps n ⟹
x = Suc 0 ⟹
∃xs. set_to_bitmap xs x n = ps"
sorry
lemma bitmap_to_set_to_bitmap_id:
"valid_set xs n ⟹
x = Suc 0 ⟹
bitmap_to_set (set_to_bitmap xs x n) x = xs"
sorry
lemma set_to_bitmap_to_set_id:
"valid_bitmap ps n ⟹
x = Suc 0 ⟹
set_to_bitmap (bitmap_to_set ps x) x n = ps"
sorry
Here is a final lemma:
lemma valid_set_size:
"card {xs. valid_set xs n} = 2 ^^ n"
Does this approach seem valid? Are there any examples of such a proof? Could you suggest an idea on how to prove the lemmas? I'm stuck because the induction with set_to_bitmap.induct seems to be not applicable here.
In principle, that kind of approach does work: if you have a function f from a set A to a set B and an inverse function to it, you can prove bij_betw f A B (read: f is a bijection from A to B), and that then implies card A = card B.
However, there are a few comments that I have:
You should use bool lists instead of nat lists if you can only have 0 or 1 in them anyway.
It is usually better to use existing library functions than to define new ones yourself. Your two functions could be defined using library functions like this:
set_to_bitmap :: nat ⇒ nat ⇒ nat set ⇒ bool list
set_to_bitmap x n A = map (λi. i ∈ A) [x..<x+n]
bitmap_to_set :: nat ⇒ bool list ⇒ nat set
bitmap_to_set n xs = (λi. i + n) ` {i. i < length xs ∧ xs ! i}```
Side note: I would use upper-case letters for sets, not something like xs (which is usually used for lists).
Perhaps this is because you simplified your problem, but in its present form, valid_set A n is simply the same as A ⊆ {1..n} and the {A. valid_set A n} is simply Pow {1..n}. The cardinality of that is easy to show with results from the library:
lemma "card (Pow {1..(n::nat)}) = 2 ^ n"
by (simp add: card_Pow)`
As for your original questions: Your first few lemmas are provable, but for the induction to go through, you have to get rid of some of the unneeded assumptions first. The x = Suc 0 is the worst one – there is no way you can use induction if you have that as an assumption, because as soon as you do one induction step, you increase x by 1 and so you won't be able to apply your induction hypothesis. The following versions of your first three lemmas go through easily:
lemma length_set_to_bitmap:
"length (set_to_bitmap xs x n) = n"
by (induct xs x n rule: set_to_bitmap.induct) auto
lemma bitmap_members:
"set (set_to_bitmap xs x n) ⊆ {0, Suc 0}"
by (induct xs x n rule: set_to_bitmap.induct) auto
lemma valid_set_to_valid_bitmap: "valid_bitmap (set_to_bitmap xs x n) n"
unfolding valid_bitmap_def
using bitmap_members length_set_to_bitmap by auto
I also recommend not adding "abbreviations" like ps = set_to_bitmap xs x n as an assumption. It doesn't break anything, but it tends to complicate things needlessly.
The next lemma is a bit trickier. Due to your recursive definitions, you have to generalise the lemma first (valid_bitmap requires the set to be in the range from 1 to n, but once you make one induction step it has to be from 2 to n). The following works:
lemma valid_bitmap_to_valid_set_aux:
"bitmap_to_set ps x ⊆ {x..<x + length ps}"
by (induction ps x rule: bitmap_to_set.induct)
(auto simp: valid_bitmap_def valid_set_def)
lemma valid_bitmap_to_valid_set:
"valid_bitmap ps n ⟹ valid_set (bitmap_to_set ps 1) n"
using valid_bitmap_to_valid_set_aux unfolding valid_bitmap_def valid_set_def
by force
Injectivity and surjectivity (which is your ultimate goal) should follow from the fact that the two are inverse functions. Proving that will probably be doable with induction, but will require a few generalisations and auxiliary lemmas. It should be easier if you stick to the non-recursive definition using library functions that I sketched above.

What happens during function proofs

I am trying to proof a property of the icmp6 checksum function (sum 16bit integers, add carry, invert 16bit integer).
I defined the functions in isabelle. (I know my proofs are terrible)
But for some reason, isabelle can't proof something about the icmp_csum function, it wants to have.
When I replace the oops in the paste with done it produces thousands of lines that just says:
"linarith_split_limit exceeded (current value is 9)"
theory Scratch
imports Main Int List
begin
fun norm_helper :: "nat ⇒ nat" where
"norm_helper x = (let y = divide x 65536 in (y + x - y * 65536))"
lemma "x ≥ 65536 ⟹ norm_helper x < x" by simp
lemma h: "norm_helper x ≤ x" by simp
fun normalize :: "nat ⇒ nat" where
"normalize x = (if x ≥ 65536
then normalize (norm_helper x)
else x)"
inductive norm_to :: "nat ⇒ nat ⇒ bool" where
"(x < 65536) ⟹ norm_to x x"
| "norm_to y z ⟹ y = norm_helper x ⟹ norm_to x z"
lemma ne: "norm_to x y ⟹ y = normalize x"
apply (induct x y rule: norm_to.induct) by simp+
lemma i: "norm_to x y ⟹ x ≥ y"
apply (induct x y rule: norm_to.induct) by simp+
lemma l: "norm_to x y ⟹ y < 65536"
apply (induct x y rule: norm_to.induct) by simp+
lemma en: "y = normalize x ⟹ norm_to x y"
apply (induct x rule: normalize.induct)
proof -
fix x :: nat
assume 1: "(x ≥ 65536 ⟹ y = Scratch.normalize (norm_helper x) ⟹ norm_to (norm_helper x) y)"
assume 2: "y = Scratch.normalize x"
show "norm_to x y"
proof (cases "x ≥ 65536")
show "¬ 65536 ≤ x ⟹ norm_to x y"
using norm_to.intros(1)[of x] 2 by simp
{
assume s: "65536 ≤ x"
have d: "y = normalize (norm_helper x)" using 2 s by simp
show "65536 ≤ x ⟹ norm_to x y"
using 1 d norm_to.intros(2)[of "norm_helper x" y x]
by blast
}
qed
qed
lemma "normalize x ≤ x" using en i by simp
lemma n[simp]: "normalize x < 65536" using en l by blast
fun sum :: "nat list ⇒ nat" where
"sum [] = 0"
| "sum (x#xs) = x + sum xs"
fun csum :: "nat list ⇒ nat" where
"csum xs = normalize (sum xs)"
fun invert :: "nat ⇒ nat" where
"invert x = 65535 - x"
lemma c: "csum xs ≤ 65535" using n[of "sum xs"] by simp
lemma ic: "invert (csum xs) ≥ 0" using c[of xs] by blast
lemma asdf:
assumes "xs = ys"
shows "invert (csum xs) = invert (csum ys)"
using HOL.arg_cong[of "csum xs" "csum ys" invert,
OF HOL.arg_cong[of xs ys csum]] assms(1)
by blast
function icmp_csum :: "nat list ⇒ nat" where
"icmp_csum xs = invert (csum xs)"
apply simp
apply (rule asdf)
apply simp
oops
end
I have no idea why there is tracing output from linarith there, but given that your definition is neither recursive nor performs pattern matching, you can write it as a definition:
definition icmp_csum :: "nat list ⇒ nat" where
"icmp_csum xs = invert (csum xs)"
Another possibility is to change invert to a definition instead of a fun. (In general, if it's neither recursive nor performs pattern matching, definition is preferable because it has much less overhead than fun.)
NB, just import Main, not Main Int List.
Edit: An explanation from Tobias Nipkow on the mailing list:
This is a known issue. In the outdated LNCS 2283 you can find a discussion what to do about it in Section 3.5.3 Simplification and Recursive Functions. The gist: don't use "if", use pattern matching or "case". Or disable if_split.

Definition of Prime in Isabelle

I am following the Isabelle Tutorial. On page 25 it refers a definition of a prime number. I wrote it so:
definition prime :: "nat ⇒ bool" where "prime p ≡ 1 < p ∧ (∀m. m dvd p ⟶ m = 1 ∨ m = p)"
which is accepted by Isabelle. But when I try
value "prime (Suc 0)"
it gives the error
Wellsortedness error
(in code equation prime ?p ≡
ord_nat_inst.less_nat one_nat_inst.one_nat ?p ∧
(∀m. m dvd ?p ⟶
equal_nat_inst.equal_nat m one_nat_inst.one_nat ∨
equal_nat_inst.equal_nat m ?p),
with dependency "Pure.dummy_pattern" -> "prime"):
Type nat not of sort enum
No type arity nat :: enum
What am I doing wrong?
You have a universal quantifier in that definition. Isabelle cannot possibly evaluate a predicate involving a universal quantifier on a type with infinitely many values (in this case nat), and that is what this somewhat cryptic error message says: nat is not of sort enum. enum is a type class that essentially states that there is a computable finite list containing all the values of the type.
If you want to evalue your prime function with the code generator, you either need to change your definition to something executable or provide a code equation that shows that it is equivalent to something computable, e.g. like this:
lemma prime_code [code]:
"prime p = (1 < p ∧ (∀m∈{1..p}. m dvd p ⟶ m = 1 ∨ m = p))"
proof safe
assume p: "p > 1" "∀m∈{1..p}. m dvd p ⟶ m = 1 ∨ m = p"
show "prime p" unfolding prime_def
proof (intro conjI allI impI)
fix m assume m: "m dvd p"
with p have "m ≠ 0" by (intro notI) simp
moreover from p m have "m ≤ p" by (simp add: dvd_imp_le)
ultimately show "m = 1 ∨ m = p" using p m by auto
qed fact+
qed (auto simp: prime_def)
value "prime 5"
(* "True" :: "bool" *)
The reason why this is executable is that the universal quantifier is bounded; it ranges over the finite set {1..p}. (You don't need to check for divisibility by numbers greater than the supposed prime)

Resources