y-axis limits of radar plot - r

I have used the following example for my question:
http://www.cmap.polytechnique.fr/~lepennec/R/Radar/RadarAndParallelPlots.html
mtcarsscaled <- as.data.frame(lapply(mtcars, ggplot2:::rescale01))
mtcarsscaled$model <- rownames(mtcars)
mtcarsmelted <- reshape2::melt(mtcarsscaled)
coord_radar <- function (theta = "x", start = 0, direction = 1)
{
theta <- match.arg(theta, c("x", "y"))
r <- if (theta == "x")
"y"
else "x"
ggproto("CordRadar", CoordPolar, theta = theta, r = r, start = start,
direction = sign(direction),
is_linear = function(coord) TRUE)
}
plot <- ggplot(mtcarsmelted, aes(x = variable, y = value)) +
geom_polygon(aes(group = model, color = model), fill = NA, size = 2, show.legend = FALSE) +
geom_line(aes(group = model, color = model), size = 2) +
theme(strip.text.x = element_text(size = rel(0.8)),
axis.text.x = element_text(size = rel(0.8)),
axis.ticks.y = element_blank(),
axis.text.y = element_blank()) +
xlab("") + ylab("") +
guides(color = guide_legend(ncol=2)) +
coord_radar()
print(plot)
How can I define limits for the y axis? Currently, the lowest value will be in the middle of the radar plot and zero will not be indicated. I would like zero to be in the middle rather than the middle/center of the plot to be the lowest value.
Any help is much appreciated!

I figured out it simply worked with
scale_y_continuous(limits=c(0,10), breaks=c(1,2,3,4,5,6,7,8,9,10))
... but I had to change the values into as.numeric beforehand.

Related

How to remove zig-zag pattern in marginal distribution plot of integer values in R?

I am including marginal distribution plots on a scatterplot of a continuous and integer variable. However, in the integer variable maringal distribution plot (y-axis) there is this zig-zag pattern that shows up because the y-values are all integers. Is there any way to increase the "width" (not sure that's the right term) of the bins/values the function calculates the distribution density over?
The goal is to get rid of that zig-zag pattern that develops because the y-values are integers.
library(GlmSimulatoR)
library(ggplot2)
library(patchwork)
### Create right-skewed dataset that has one continous variable and one integer variable
set.seed(123)
df1 <- data.frame(matrix(ncol = 2, nrow = 1000))
x <- c("int","cont")
colnames(df1) <- x
df1$int <- round(rgamma(1000, shape = 1, scale = 1),0)
df1$cont <- round(rgamma(1000, shape = 1, scale = 1),1)
p1 <- ggplot(data = df1, aes(x = cont, y = int)) +
geom_point(shape = 21, size = 2, color = "black", fill = "black", stroke = 1, alpha = 0.4) +
xlab("Continuous Value") +
ylab("Integer Value") +
theme_bw() +
theme(panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 16, color = "black"),
axis.text.y = element_text(size = 16, color = "black"))
dens1 <- ggplot(df1, aes(x = cont)) +
geom_density(alpha = 0.4) +
theme_void() +
theme(legend.position = "none")
dens2 <- ggplot(df1, aes(x = int)) +
geom_density(alpha = 0.4) +
theme_void() +
theme(legend.position = "none") +
coord_flip()
dens1 + plot_spacer() + p1 + dens2 +
plot_layout(ncol = 2, nrow = 2, widths = c(6,1), heights = c(1,6))
From ?geom_density:
adjust: A multiplicate [sic] bandwidth adjustment. This makes it possible
to adjust the bandwidth while still using the a bandwidth
estimator. For example, ‘adjust = 1/2’ means use half of the
default bandwidth.
So as a start try e.g. geom_density(..., adjust = 2) (bandwidth twice as wide as default) and go from there.

How can I make a discontinuous axis in R with ggplot2?

I have a dataframe (dat) with two columns 1) Month and 2) Value. I would like to highlight that the x-axis is not continuous in my boxplot by interrupting the x-axis with two angled lines on the x-axis that are empty between the angled lines.
Example Data and Boxplot
library(ggplot2)
set.seed(321)
dat <- data.frame(matrix(ncol = 2, nrow = 18))
x <- c("Month", "Value")
colnames(dat) <- x
dat$Month <- rep(c(1,2,3,10,11,12),3)
dat$Value <- rnorm(18,20,2)
ggplot(data = dat, aes(x = factor(Month), y = Value)) +
geom_boxplot() +
labs(x = "Month") +
theme_bw() +
theme(panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 14, color = "black"),
axis.text.y = element_text(size = 14, color = "black"))
The ideal figure would look something like below. How can I make this discontinuous axis in ggplot?
You could make use of the extended axis guides in the ggh4x package. Alas, you won't easily be able to create the "separators" without a hack similar to the one suggested by user Zhiqiang Wang
guide_axis_truncated accepts vectors to define lower and upper trunks. This also works for units, by the way, then you have to pass the vector inside the unit function (e.g., trunc_lower = unit(c(0,.45), "npc") !
library(ggplot2)
library(ggh4x)
set.seed(321)
dat <- data.frame(matrix(ncol = 2, nrow = 18))
x <- c("Month", "Value")
colnames(dat) <- x
dat$Month <- rep(c(1,2,3,10,11,12),3)
dat$Value <- rnorm(18,20,2)
# this is to make it slightly more programmatic
x1end <- 3.45
x2start <- 3.55
p <-
ggplot(data = dat, aes(x = factor(Month), y = Value)) +
geom_boxplot() +
labs(x = "Month") +
theme_classic() +
theme(axis.line = element_line(colour = "black"))
p +
guides(x = guide_axis_truncated(
trunc_lower = c(-Inf, x2start),
trunc_upper = c(x1end, Inf)
))
Created on 2021-11-01 by the reprex package (v2.0.1)
The below is taking user Zhiqiang Wang's hack a step further. You will see I am using simple trigonometry to calculate the segment coordinates. in order to make the angle actually look as it is defined in the function, you would need to set coord_equal.
# a simple function to help make the segments
add_separators <- function(x, y = 0, angle = 45, length = .1){
add_y <- length * sin(angle * pi/180)
add_x <- length * cos(angle * pi/180)
## making the list for your segments
myseg <- list(x = x - add_x, xend = x + add_x,
y = rep(y - add_y, length(x)), yend = rep(y + add_y, length(x)))
## this function returns an annotate layer with your segment coordinates
annotate("segment",
x = myseg$x, xend = myseg$xend,
y = myseg$y, yend = myseg$yend)
}
# you will need to set limits for correct positioning of your separators
# I chose 0.05 because this is the expand factor by default
y_sep <- min(dat$Value) -0.05*(min(dat$Value))
p +
guides(x = guide_axis_truncated(
trunc_lower = c(-Inf, x2start),
trunc_upper = c(x1end, Inf)
)) +
add_separators(x = c(x1end, x2start), y = y_sep, angle = 70) +
# you need to set expand to 0
scale_y_continuous(expand = c(0,0)) +
## to make the angle look like specified, you would need to use coord_equal()
coord_cartesian(clip = "off", ylim = c(y_sep, NA))
I think it is possible to get what you want. It may take some work.
Here is your graph:
library(ggplot2)
set.seed(321)
dat <- data.frame(matrix(ncol = 2, nrow = 18))
x <- c("Month", "Value")
colnames(dat) <- x
dat$Month <- rep(c(1,2,3,10,11,12),3)
dat$Value <- rnorm(18,20,2)
p <- ggplot(data = dat, aes(x = factor(Month), y = Value)) +
geom_boxplot() +
labs(x = "Month") +
theme_bw() +
theme(panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 14, color = "black"),
axis.text.y = element_text(size = 14, color = "black"))
Here is my effort:
p + annotate("segment", x = c(3.3, 3.5), xend = c(3.6, 3.8), y = c(14, 14), yend = c(15, 15))+
coord_cartesian(clip = "off", ylim = c(15, 25))
Get something like this:
If you want to go further, it may take several tries to get it right:
p + annotate("segment", x = c(3.3, 3.5), xend = c(3.6, 3.8), y = c(14, 14), yend = c(15, 15))+
annotate("segment", x = c(0, 3.65), xend = c(3.45, 7), y = c(14.55, 14.55), yend = c(14.55, 14.55)) +
coord_cartesian(clip = "off", ylim = c(15, 25)) +
theme_classic()+
theme(axis.line.x = element_blank())
Just replace axis with two new lines. This is a rough idea, it may take some time to make it perfect.
You could use facet_wrap. If you assign the first 3 months to one group, and the other months to another, then you can produce two plots that are side by side and use a single y axis.
It's not exactly what you want, but it will show the data effectively, and highlights the fact that the x axis is not continuous.
dat$group[dat$Month %in% c("1", "2", "3")] <- 1
dat$group[dat$Month %in% c("10", "11", "12")] <- 2
ggplot(data = dat, aes(x = factor(Month), y = Value)) +
geom_boxplot() +
labs(x = "Month") +
theme_bw() +
theme(panel.grid = element_blank(),
text = element_text(size = 16),
axis.text.x = element_text(size = 14, color = "black"),
axis.text.y = element_text(size = 14, color = "black")) +
facet_wrap(~group, scales = "free_x")
* Differences in the plot are likely due to using different versions of R where the set.seed gives different result

R Windrose percent label on figure

I am using the windrose function posted here: Wind rose with ggplot (R)?
I need to have the percents on the figure showing on the individual lines (rather than on the left side), but so far I have not been able to figure out how. (see figure below for depiction of goal)
Here is the code that makes the figure:
p.windrose <- ggplot(data = data,
aes(x = dir.binned,y = (..count..)/sum(..count..),
fill = spd.binned)) +
geom_bar()+
scale_y_continuous(breaks = ybreaks.prct,labels=percent)+
ylab("")+
scale_x_discrete(drop = FALSE,
labels = waiver()) +
xlab("")+
coord_polar(start = -((dirres/2)/360) * 2*pi) +
scale_fill_manual(name = "Wind Speed (m/s)",
values = spd.colors,
drop = FALSE)+
theme_bw(base_size = 12, base_family = "Helvetica")
I marked up the figure I have so far with what I am trying to do! It'd be neat if the labels either auto-picked the location with the least wind in that direction, or if it had a tag for the placement so that it could be changed.
I tried using geom_text, but I get an error saying that "aesthetics must be valid data columns".
Thanks for your help!
One of the things you could do is to make an extra data.frame that you use for the labels. Since the data isn't available from your question, I'll illustrate with mock data below:
library(ggplot2)
# Mock data
df <- data.frame(
x = 1:360,
y = runif(360, 0, 0.20)
)
labels <- data.frame(
x = 90,
y = scales::extended_breaks()(range(df$y))
)
ggplot(data = df,
aes(x = as.factor(x), y = y)) +
geom_point() +
geom_text(data = labels,
aes(label = scales::percent(y, 1))) +
scale_x_discrete(breaks = seq(0, 1, length.out = 9) * 360) +
coord_polar() +
theme(axis.ticks.y = element_blank(), # Disables default y-axis
axis.text.y = element_blank())
#teunbrand answer got me very close! I wanted to add the code I used to get everything just right in case anyone in the future has a similar problem.
# Create the labels:
x_location <- pi # x location of the labels
# Get the percentage
T_data <- data %>%
dplyr::group_by(dir.binned) %>%
dplyr::summarise(count= n()) %>%
dplyr::mutate(y = count/sum(count))
labels <- data.frame(x = x_location,
y = scales::extended_breaks()(range(T_data$y)))
# Create figure
p.windrose <- ggplot() +
geom_bar(data = data,
aes(x = dir.binned, y = (..count..)/sum(..count..),
fill = spd.binned))+
geom_text(data = labels,
aes(x=x, y=y, label = scales::percent(y, 1))) +
scale_y_continuous(breaks = waiver(),labels=NULL)+
scale_x_discrete(drop = FALSE,
labels = waiver()) +
ylab("")+xlab("")+
coord_polar(start = -((dirres/2)/360) * 2*pi) +
scale_fill_manual(name = "Wind Speed (m/s)",
values = spd.colors,
drop = FALSE)+
theme_bw(base_size = 12, base_family = "Helvetica") +
theme(axis.ticks.y = element_blank(), # Disables default y-axis
axis.text.y = element_blank())

r - column wise heatmap using ggplot2

I would really appreciate if anyone could guide me with the following challenge.
I am trying to build column wise heatmap. For each column, I want the lowest value to be green and highest value to be red. The current solution takes a matrix wide approach.
I saw the solution on Heat map per column with ggplot2. As you can see, I implemented the same code but I am not getting the desired result [picture below]
df <- data.frame(
F1 = c(0.66610194649319, 0.666123551800434,
0.666100611954119, 0.665991102703081,
0.665979885730484),
acc_of_pred = c(0.499541627510021, 0.49960260221954,
0.499646067768102, 0.499447308828986,
0.499379552967265),
expected_mean_return = c(2.59756065316356e-07, 2.59799087404167e-07,
2.86466725381146e-07, 2.37977452007967e-07,
2.94242908573705e-07),
win_loss_ratio = c(0.998168189343307, 0.998411671274781,
0.998585272507726, 0.997791676357902,
0.997521287688458),
corr_pearson = c(0.00161443345430616, -0.00248811119331013,
-0.00203407575954095, -0.00496817102369628,
-0.000140531627184482),
corr_spearman = c(0.00214838517340878, -0.000308343671725617,
0.00228492127281917, -0.000359577740835049,
0.000608090759428587),
roc_vec = c(0.517972308828151, 0.51743161463546,
0.518033230192484, 0.518033294993802,
0.517931553535524)
)
combo <- data.frame(combo = c("baseline_120", "baseline_20",
"baseline_60", "baseline_288",
"baseline_5760"))
df.scaled <- scale(df)
df.scaled <- cbind(df.scaled,combo)
df.melt <- melt(df.scaled, id.vars = "combo")
ggplot(df.melt, aes(combo, variable)) +
geom_tile(aes(fill = value), colour = "white") +
scale_fill_gradient(low = "green", high = "red") +
geom_text(aes(label=value)) +
theme_grey(base_size = 9) +
labs(x = "", y = "") + scale_x_discrete(expand = c(0, 0)) +
scale_y_discrete(expand = c(0, 0)) +
theme(legend.position = "none", axis.ticks = element_blank(),
axis.text.x = element_text(size = 9 * 0.8,
angle = 0, hjust = 0, colour = "grey50"))
You are nearly correct. The code you implemented is the same for plotting. But the person who asked the question did one step in data preparation, he added a scaling variable.
If you scale your variable before plotting it and using the scaled factor as fill argument it works (i just added the rescale in scale_fill_gradient in ggplot after calculating it):
df.melt <- melt(df.scaled, id.vars = "combo")
df.melt<- ddply(df.melt, .(combo), transform, rescale = rescale(value))
ggplot(df.melt, aes(combo, variable)) +
geom_tile(aes(fill = rescale), colour = "white") +
scale_fill_gradient( low= "green", high = "red") +
geom_text(aes(label=round(value,4))) +
theme_grey(base_size = 9) +
labs(x = "", y = "") + scale_x_discrete(expand = c(0, 0)) +
scale_y_discrete(expand = c(0, 0)) +
theme(legend.position = "none", axis.ticks = element_blank(),
axis.text.x = element_text(size = 9 * 0.8,
angle = 0, hjust = 0, colour = "grey50"))
giving the plot:

Closing the lines in a ggplot2 radar / spider chart

I need a flexible way to make radar / spider charts in ggplot2. From solutions I've found on github and the ggplot2 group, I've come this far:
library(ggplot2)
# Define a new coordinate system
coord_radar <- function(...) {
structure(coord_polar(...), class = c("radar", "polar", "coord"))
}
is.linear.radar <- function(coord) TRUE
# rescale all variables to lie between 0 and 1
scaled <- as.data.frame(lapply(mtcars, ggplot2:::rescale01))
scaled$model <- rownames(mtcars) # add model names as a variable
as.data.frame(melt(scaled,id.vars="model")) -> mtcarsm
ggplot(mtcarsm, aes(x = variable, y = value)) +
geom_path(aes(group = model)) +
coord_radar() + facet_wrap(~ model,ncol=4) +
theme(strip.text.x = element_text(size = rel(0.8)),
axis.text.x = element_text(size = rel(0.8)))
which works, except for the fact that lines are not closed.
I thougth that I would be able to do this:
mtcarsm <- rbind(mtcarsm,subset(mtcarsm,variable == names(scaled)[1]))
ggplot(mtcarsm, aes(x = variable, y = value)) +
geom_path(aes(group = model)) +
coord_radar() + facet_wrap(~ model,ncol=4) +
theme(strip.text.x = element_text(size = rel(0.8)),
axis.text.x = element_text(size = rel(0.8)))
in order to join the lines, but this does not work. Neither does this:
closes <- subset(mtcarsm,variable == names(scaled)[c(1,11)])
ggplot(mtcarsm, aes(x = variable, y = value)) +
geom_path(aes(group = model)) +
coord_radar() + facet_wrap(~ model,ncol=4) +
theme(strip.text.x = element_text(size = rel(0.8)),
axis.text.x = element_text(size = rel(0.8))) + geom_path(data=closes)
which does not solve the problem, and also produces lots of
"geom_path: Each group consist of only one observation. Do you need to
adjust the group aesthetic?"
messages. Som, how do I go about closing the lines?
/Fredrik
Using the new ggproto mechanism available in ggplot2 2.0.0, coord_radar can be defined as:
coord_radar <- function (theta = "x", start = 0, direction = 1)
{
theta <- match.arg(theta, c("x", "y"))
r <- if (theta == "x")
"y"
else "x"
ggproto("CoordRadar", CoordPolar, theta = theta, r = r, start = start,
direction = sign(direction),
is_linear = function(coord) TRUE)
}
Not sure if the syntax is perfect but it is working...
The codes here seem outdated for ggplot2: 2.0.0
Try my package zmisc: devtools:install_github("jerryzhujian9/ezmisc")
After you install it, you will be able to run:
df = mtcars
df$model = rownames(mtcars)
ez.radarmap(df, "model", stats="mean", lwd=1, angle=0, fontsize=0.6, facet=T, facetfontsize=1, color=id, linetype=NULL)
ez.radarmap(df, "model", stats="none", lwd=1, angle=0, fontsize=1.5, facet=F, facetfontsize=1, color=id, linetype=NULL)
if you are curious about what's inside, see my codes at github:
The main codes were adapted from http://www.cmap.polytechnique.fr/~lepennec/R/Radar/RadarAndParallelPlots.html
solution key factor
add duplicated mpg row after melt by rbind
inherit CoordPolar on ggproto
set is_linear = function() TRUE on ggproto
especially is_linear = function() TRUE is important,
since if not you will get plot like this...
with is_linear = function() TRUE settings you can get,
library(dplyr)
library(data.table)
library(ggplot2)
rm(list=ls())
scale_zero_to_one <-
function(x) {
r <- range(x, na.rm = TRUE)
min <- r[1]
max <- r[2]
(x - min) / (max - min)
}
scaled.data <-
mtcars %>%
lapply(scale_zero_to_one) %>%
as.data.frame %>%
mutate(car.name=rownames(mtcars))
plot.data <-
scaled.data %>%
melt(id.vars='car.name') %>%
rbind(subset(., variable == names(scaled.data)[1]))
# create new coord : inherit coord_polar
coord_radar <-
function(theta='x', start=0, direction=1){
# input parameter sanity check
match.arg(theta, c('x','y'))
ggproto(
NULL, CoordPolar,
theta=theta, r=ifelse(theta=='x','y','x'),
start=start, direction=sign(direction),
is_linear=function() TRUE)
}
plot.data %>%
ggplot(aes(x=variable, y=value, group=car.name, colour=car.name)) +
geom_path() +
geom_point(size=rel(0.9)) +
coord_radar() +
facet_wrap(~ car.name, nrow=4) +
theme_bw() +
theme(
axis.title.y = element_blank(),
axis.text.y = element_blank(),
axis.ticks.y = element_blank(),
axis.title.x = element_blank(),
legend.position = 'none') +
labs(title = "Cars' Status")
final result
Sorry, I was beeing stupid. This seems to work:
library(ggplot2)
# Define a new coordinate system
coord_radar <- function(...) {
structure(coord_polar(...), class = c("radar", "polar", "coord"))
}
is.linear.radar <- function(coord) TRUE
# rescale all variables to lie between 0 and 1
scaled <- as.data.frame(lapply(mtcars, ggplot2:::rescale01))
scaled$model <- rownames(mtcars) # add model names as a variable
as.data.frame(melt(scaled,id.vars="model")) -> mtcarsm
mtcarsm <- rbind(mtcarsm,subset(mtcarsm,variable == names(scaled)[1]))
ggplot(mtcarsm, aes(x = variable, y = value)) +
geom_path(aes(group = model)) +
coord_radar() + facet_wrap(~ model,ncol=4) +
theme(strip.text.x = element_text(size = rel(0.8)),
axis.text.x = element_text(size = rel(0.8)))
It turns out than geom_polygom still produces a polygon in the polar coordinates so that
# rescale all variables to lie between 0 and 1
scaled <- as.data.frame(lapply(mtcars, ggplot2:::rescale01))
scaled$model <- rownames(mtcars) # add model names as a variable
# melt the dataframe
mtcarsm <- reshape2::melt(scaled)
# plot it as using the polygon geometry in the polar coordinates
ggplot(mtcarsm, aes(x = variable, y = value)) +
geom_polygon(aes(group = model), color = "black", fill = NA, size = 1) +
coord_polar() + facet_wrap( ~ model) +
theme(strip.text.x = element_text(size = rel(0.8)),
axis.text.x = element_text(size = rel(0.8)),
axis.ticks.y = element_blank(),
axis.text.y = element_blank()) +
xlab("") + ylab("")
works perfectly...
Thank you guys for the help but it did not cover all of my needs. I used two series of data to be compared so I took the subset of mtcars for Mazda:
nobody mentioned about order of the x variable and ggplot2 sorts this variable for the plot but does not sort the data and it made my chart wrong at the first attempt. Apply sorting function for me it was dplyr::arrange(plot.data, x.variable.name)
I needed to annotate the chart with values and ggplot2::annotate() works fine but it was not included in the recent answers
the above code did not work fine for my data until adding ggplot2::geom_line
Finally this code chunk did my chart:
scaled <- as.data.frame(lapply(mtcars, ggplot2:::rescale01))
scaled$model <- rownames(mtcars)
mtcarsm <- scaled %>%
filter(grepl('Mazda', model)) %>%
gather(variable, value, mpg:carb) %>%
arrange(variable)
ggplot(mtcarsm, aes(x = variable, y = value)) +
geom_polygon(aes(group = model, color = model), fill = NA, size = 1) +
geom_line(aes(group = model, color = model), size = 1) +
annotate("text", x = mtcarsm$variable, y = (mtcarsm$value + 0.05), label = round(mtcarsm$value, 2), size = 3) +
theme(strip.text.x = element_text(size = rel(0.8)),
axis.text.x = element_text(size = rel(1.2)),
axis.ticks.y = element_blank(),
axis.text.y = element_blank()) +
xlab("") + ylab("") +
guides(color = guide_legend()) +
coord_radar()
Hopefully usefull for somebody

Resources