How to lag a matrix in R - r

I want to know the command in R to lag a matrix.
I have defined x as:
> (x <- matrix(1:50, 10, 5))
[,1] [,2] [,3] [,4] [,5]
[1,] 1 11 21 31 41
[2,] 2 12 22 32 42
[3,] 3 13 23 33 43
[4,] 4 14 24 34 44
[5,] 5 15 25 35 45
[6,] 6 16 26 36 46
[7,] 7 17 27 37 47
[8,] 8 18 28 38 48
[9,] 9 19 29 39 49
[10,] 10 20 30 40 50
I want create l.x:
[,1] [,2] [,3] [,4] [,5]
[1,] NA NA NA NA NA
[2,] 1 11 21 31 41
[3,] 2 12 22 32 42
[4,] 3 13 23 33 43
[5,] 4 14 24 34 44
[6,] 5 15 25 35 45
[7,] 6 16 26 36 46
[8,] 7 17 27 37 47
[9,] 8 18 28 38 48
[10,] 9 19 29 39 49

lag will coerce your object to a time-series (ts class to be specific) and only shifts the time index. It does not change the underlying data.
You need to manually lag the matrix yourself by adding rows of NA at the beginning and removing the same number of rows at the end. Here's an example of a function that does just that:
lagmatrix <- function(x, k) {
# ensure 'x' is a matrix
stopifnot(is.matrix(x))
if (k == 0)
return(x)
na <- matrix(NA, nrow=abs(k), ncol=ncol(x))
if (k > 0) {
nr <- nrow(x)
# prepend NA and remove rows from end
rbind(na, x[-((nr-k):nr),])
} else {
# append NA and remove rows from beginning
rbind(x[-1:k,], na)
}
}
Or you can use a lag function that does what you expect. For example, xts::lag.xts.
> xts::lag.xts(x)
[,1] [,2] [,3] [,4] [,5]
[1,] NA NA NA NA NA
[2,] 1 11 21 31 41
[3,] 2 12 22 32 42
[4,] 3 13 23 33 43
[5,] 4 14 24 34 44
[6,] 5 15 25 35 45
[7,] 6 16 26 36 46
[8,] 7 17 27 37 47
[9,] 8 18 28 38 48
[10,] 9 19 29 39 49
> is.matrix(xts::lag.xts(x))
[1] TRUE

Here is one manual method in base R with head and rbind:
rbind(NA, head(x, 9))
[,1] [,2] [,3] [,4] [,5]
[1,] NA NA NA NA NA
[2,] 1 11 21 31 41
[3,] 2 12 22 32 42
[4,] 3 13 23 33 43
[5,] 4 14 24 34 44
[6,] 5 15 25 35 45
[7,] 6 16 26 36 46
[8,] 7 17 27 37 47
[9,] 8 18 28 38 48
[10,] 9 19 29 39 49
More generally, as noted by #akrun, head(., -1) will work for any sized matrix:
rbind(NA, head(x, -1))

We can use apply
library(dplyr)
apply(x, 2, lag)
# [,1] [,2] [,3] [,4] [,5]
# [1,] NA NA NA NA NA
# [2,] 1 11 21 31 41
# [3,] 2 12 22 32 42
# [4,] 3 13 23 33 43
# [5,] 4 14 24 34 44
# [6,] 5 15 25 35 45
# [7,] 6 16 26 36 46
# [8,] 7 17 27 37 47
# [9,] 8 18 28 38 48
#[10,] 9 19 29 39 49
0r
rbind(NA, x[-nrow(x),])
# [,1] [,2] [,3] [,4] [,5]
# [1,] NA NA NA NA NA
# [2,] 1 11 21 31 41
# [3,] 2 12 22 32 42
# [4,] 3 13 23 33 43
# [5,] 4 14 24 34 44
# [6,] 5 15 25 35 45
# [7,] 6 16 26 36 46
# [8,] 7 17 27 37 47
# [9,] 8 18 28 38 48
#[10,] 9 19 29 39 49

Below is a pure dplyr solution without the need for apply. Only annoyance here is that it needs to be converted to a data.frame to work.
library(dplyr)
x %>% as.data.frame %>% mutate_each( funs(lag))

Related

How to apply a function between the elements of 2 lists in R?

Imagine that you have these variables:
> a <- list(matrix(1:25, 5, 5, byrow = TRUE), matrix(31:55, 5, 5, byrow = TRUE))
> b <- list(rep(1, 5), rep(2, 5))
> a
[[1]]
[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
[3,] 11 12 13 14 15
[4,] 16 17 18 19 20
[5,] 21 22 23 24 25
[[2]]
[,1] [,2] [,3] [,4] [,5]
[1,] 31 32 33 34 35
[2,] 36 37 38 39 40
[3,] 41 42 43 44 45
[4,] 46 47 48 49 50
[5,] 51 52 53 54 55
> b
[[1]]
[1] 1 1 1 1 1
[[2]]
[1] 2 2 2 2 2
I want to end up with something like this:
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 1 2 3 4 5
[3,] 6 7 8 9 10
[4,] 11 12 13 14 15
[5,] 16 17 18 19 20
[6,] 21 22 23 24 25
[,1] [,2] [,3] [,4] [,5]
[1,] 2 2 2 2 2
[2,] 31 32 33 34 35
[3,] 36 37 38 39 40
[4,] 41 42 43 44 45
[5,] 46 47 48 49 50
[6,] 51 52 53 54 55
So, it is like having a Python zip-like function and then apply rbind.
Any idea?
An option is Map from base R
Map(rbind, b, a)
Or you can try:
lapply(1:length(a),function(i)rbind(b[[i]],a[[i]]))
Assuming length(a) == length(b)
One option is to use the purrr package.
library(purrr)
map2(b, a, rbind)

R: transpose a series to a matrix with ignoring remains

Matlab can do this task. I cannot get it right so far by using matrix(), t(), and reShape().
My intention is to transpose a series to a matrix of fixed 10 rows and the number of column varies based on the length of the data series. If these are some remains left, they can be discarded.
For example:
Row #1 1 2 3 4
Row #2 5 6 7 8
Row #3 9 10 11 12
Row #4 13 14 15 16
Row #5 17 18 19 20
Row #6 21 22 23 24
Row #7 25 26 27 28
Row #8 29 30 31 32
Row #9 33 34 35 36
Row #10 37 38 39 40
If there are any remains left (i.e, 41~49), these data can be just discarded.
Any suggestions?
This is what I think you are asking for. A vector of arbitrary length and data. To be turned into a matrix with nrow 10 and ncol based on data length.
#your series of arbitrary length
data = 1:49
#calculate number of columns based on length
col = as.integer(length(data)/10)
#max index
maxIndx = 10*col
#create and transpose matrix
yourMtx = t(matrix(data[0:maxIndx],col,10))
#your matrix
> [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
[4,] 13 14 15 16
[5,] 17 18 19 20
[6,] 21 22 23 24
[7,] 25 26 27 28
[8,] 29 30 31 32
[9,] 33 34 35 36
[10,] 37 38 39 40
#create reverse matrix
revMtx = yourMtx[,rev(seq_len(ncol(yourMtx)))]
#reverse matrix
> [,1] [,2] [,3] [,4]
[1,] 4 3 2 1
[2,] 8 7 6 5
[3,] 12 11 10 9
[4,] 16 15 14 13
[5,] 20 19 18 17
[6,] 24 23 22 21
[7,] 28 27 26 25
[8,] 32 31 30 29
[9,] 36 35 34 33
[10,] 40 39 38 37
If I understand your question correctly, this looks to be an approach you could use.
# generate my series
myseries <- 1:49
# specify number of columns and rows
ncols <- 4
nrows <- 10
# create a matrix with the first ncols*nrows elements and fill by row
mymatrix <- matrix(myseries[1:(ncols*nrows)],
ncol = ncols, nrow = nrows, byrow = TRUE)
mymatrix
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
[4,] 13 14 15 16
[5,] 17 18 19 20
[6,] 21 22 23 24
[7,] 25 26 27 28
[8,] 29 30 31 32
[9,] 33 34 35 36
[10,] 37 38 39 40

How could I build a function that extracts the diagonal block matrices of a larger one in R

How could I build a function that extracts the diagonal blocks matrices of a larger one? The problem is as follows. The function takes a centred matrix as argument, computes the full error covariance matrix and extracts the blocks on the leading diagonal? I tried the following, but not working.
err_cov <- function(x){
m <- nrow(x)
n <- ncol(x)
#compute the full error covariance matrix as the inner product
#of vec(x) and its transpose. Note that, omega is a mnxmn matrix
vec <- as.vector(x)
omega <- vec%*%t(vec)
sigmas <- list()
for(i in 0:n-1){
#here the blocks have to be m nxn matrices along the
#leading diagonal
for (j in 1:m)
sigmas[[j]] <- omega[(n*i+1):n*(i+1), (n*i+1):n*(i+1)]
}
return(sigmas)
}
So, for instance for
A
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> B<-as.vector(A)
> B
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> C<-B%*%t(B)
> C
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,] 1 2 3 4 5 6 7 8 9 10 11 12
[2,] 2 4 6 8 10 12 14 16 18 20 22 24
[3,] 3 6 9 12 15 18 21 24 27 30 33 36
[4,] 4 8 12 16 20 24 28 32 36 40 44 48
[5,] 5 10 15 20 25 30 35 40 45 50 55 60
[6,] 6 12 18 24 30 36 42 48 54 60 66 72
[7,] 7 14 21 28 35 42 49 56 63 70 77 84
[8,] 8 16 24 32 40 48 56 64 72 80 88 96
[9,] 9 18 27 36 45 54 63 72 81 90 99 108
[10,] 10 20 30 40 50 60 70 80 90 100 110 120
[11,] 11 22 33 44 55 66 77 88 99 110 121 132
[12,] 12 24 36 48 60 72 84 96 108 120 132 144
The function should return:
> C1
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9
> C2
[,1] [,2] [,3]
[1,] 16 20 24
[2,] 20 25 30
[3,] 24 30 36
> C3
[,1] [,2] [,3]
[1,] 49 56 63
[2,] 56 64 72
[3,] 63 72 81
> C4
[,1] [,2] [,3]
[1,] 100 110 120
[2,] 110 121 132
[3,] 120 132 144
Thanks for answering.
I think a clearer solution is to reset the dimensions and then let R do the index calculations for you:
err_cov <- function(x){
m <- nrow(x)
n <- ncol(x)
#compute the full error covariance matrix as the inner product
#of vec(x) and its transpose
vec <- as.vector(x)
omega <- tcrossprod(vec)
dim(omega) <- c(n,m,n,m)
sigmas <- list()
for (j in 1:m)
sigmas[[j]] <- omega[,j,,j]
return(sigmas)
}
Here is an example:
> x
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> tcrossprod(vec)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 3 4 5 6
[2,] 2 4 6 8 10 12
[3,] 3 6 9 12 15 18
[4,] 4 8 12 16 20 24
[5,] 5 10 15 20 25 30
[6,] 6 12 18 24 30 36
> err_cov(x)
[[1]]
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9
[[2]]
[,1] [,2] [,3]
[1,] 16 20 24
[2,] 20 25 30
[3,] 24 30 36

Exclude specific columns from a matrix

I have a list of numbers (example bellow):
[[178]]
NULL
[[179]]
[1] 179 66
[[180]]
[1] 180 67
[[181]]
[1] 181 123
[[182]]
[1] 182
This list contains columns (179, 66, 180, 67, 181, 123) I want to exclude from a matrix.
I tried commands bellow, but they didn't work:
MyMatrix[, !(unlist(MyList))]
MyMatrix[, -(unlist(MyList))]
MyMatrix[, !unlist(MyList)]
MyMatrix[, -unlist(MyList)]
My question: what is a right way to exclude specific columns from a matrix?
Here's my small replication of your problem.
listOfColumns<-list(NULL, c(2,3), 5, NULL)
listOfColumns #print for viewing
#output
#[[1]]
#NULL
#[[2]]
#[1] 2 3
#[[3]]
#[1] 5
#[[4]]
#NULL
MyMatrix<-matrix(1:50, nrow=10, ncol=5)
MyMatrix #print for viewing
#output
# [,1] [,2] [,3] [,4] [,5]
#[1,] 1 11 21 31 41
#[2,] 2 12 22 32 42
#[3,] 3 13 23 33 43
#[4,] 4 14 24 34 44
#[5,] 5 15 25 35 45
#[6,] 6 16 26 36 46
#[7,] 7 17 27 37 47
#[8,] 8 18 28 38 48
#[9,] 9 19 29 39 49
#[10,] 10 20 30 40 50
First, the way you're going to want to subset your matrix so that you omit the given column numbers is to do
MyMatrix[-columnNumbers]
In R, negative numbers used to subset correspond to entries that should be omitted.
The following call output's what you want
MyMatrix[,-unlist(listOfNumbers)]
#output
# [,1] [,2]
# [1,] 1 31
# [2,] 2 32
# [3,] 3 33
# [4,] 4 34
# [5,] 5 35
# [6,] 6 36
# [7,] 7 37
# [8,] 8 38
# [9,] 9 39
# [10,] 10 40
If you want to keep this result for later use, you'll need to store it (As David Robinson got at)
MySmallerMatrix<-MyMatrix[,-unlist(listOfNumbers)]

R reverse some rows in a matrix

I have a 60 column matrix, and I want to reverse the some of its rows.
I came across the following two ways to do this:
#rtr is an integer vectors with the indices of the rows I want to reverse
matrix[rtr,]<-matrix[rtr,(ncol(matrix):1]
and
matrix[rtr,]<-rev(mat[rtr,])
Are these two implementations expected to produce the same result, or
are there some differences between them?
Thanks in advance
This seems to be a pretty easy thing to test
mm <- matrix(1:(6*7), ncol=6)
m2 <- m1 <- mm
rtr<-c(1,6,7)
m1[rtr,]<-m1[rtr, ncol(m1):1]
# [,1] [,2] [,3] [,4] [,5] [,6]
# [1,] 36 29 22 15 8 1
# [2,] 2 9 16 23 30 37
# [3,] 3 10 17 24 31 38
# [4,] 4 11 18 25 32 39
# [5,] 5 12 19 26 33 40
# [6,] 41 34 27 20 13 6
# [7,] 42 35 28 21 14 7
m2[rtr,]<-rev(m2[rtr,])
# [,1] [,2] [,3] [,4] [,5] [,6]
# [1,] 42 35 28 21 14 7
# [2,] 2 9 16 23 30 37
# [3,] 3 10 17 24 31 38
# [4,] 4 11 18 25 32 39
# [5,] 5 12 19 26 33 40
# [6,] 41 34 27 20 13 6
# [7,] 36 29 22 15 8 1
We can see they produce different output. The latter changes the order of the rows as well rather than just reversing them "in place"

Resources