Finding Sync of Columns in R - r

Data
v1 <- c(52.9799999999814, 53.4200000000128, 52.0899999999965, 57.9700000000012,
60.679999999993, 0.300000000017462, 1.76999999998952, 61.1900000000023,
58.9599999999919, 1.73000000001048, 0.269999999989523, 6.92000000001281,
60.5299999999988, 60.859999999986, 59.5599999999977, 61.0600000000268,
60.6299999999756, 60.9700000000012, 60.1600000000035, 60.4599999999919,
60.0900000000256)
v2 <- c(52.679999999993, 53.140000000014, 52.8899999999849, 57.6700000000128,
60.5199999999895, 2.04000000000815, 61.890000000014, 59.5699999999779,
2.05999999999767, 6.98000000001048, 60.7399999999907, 60.7799999999988,
59.7300000000105, 60.9100000000035, 60.3299999999872, 60.5500000000175,
60.6600000000035, 60.3499999999767, 60.7300000000105, 60.6700000000128,
60.3799999999756)
tv3 <- data.frame(v1,v2)
tv3$v5 <- tv3$v2 - tv3$v1
tv3$v5
[1] -0.30 -0.28 0.80 -0.30 -0.16 1.74 60.12 -1.62 -56.90 5.25 60.47 53.86 -0.80
[14] 0.05 0.77 -0.51 0.03 -0.62 0.57 0.21 0.29
So you see, the difference should remain smaller, if it is larger, like in this case, at particular row, it gets 60.
So basically if we remove the 0.30 row in just V1 and shift it one cell up, The difference wouldn't hike upto 60.
So the 0.30 is noise value and that's what I have to figure and put it in V3
My desired results are the following.
v1 v2 V3
52.98 52.68 0.3
53.42 53.14 0.27
52.09 52.89
57.97 57.67
60.68 60.52
1.77 2.04
61.19 61.89
58.96 59.57
1.73 2.06
6.92 6.98
60.53 60.74
60.86 60.78
59.56 59.73
61.06 60.91
60.63 60.33
60.97 60.55
60.16 60.66
60.46 60.35
60.09 60.73
So notice here that all the sequence of columns seem to be in sync with just a difference of few points.
May be my case requires implementation of Needleman-Wunsch Algo

Related

Problem with grouped psych::alpha within the do::dplyr/tidyverse and broom::tidy

I have survey data performed using the same questionnaire in different languages. I would like to write an elegant dplyr/tidyverse code for the reliability for each language, using psych::alpha within. Let's imagine, that the data frame (df) looks like that:
I want to calculate item and scale reliability for Q_1:Q_6, for each group indicated by the group_var variable and the code I wrote looks like this
require(tidyverse)
require(psych)
require(broom)
df %>%
select(group_var, Q_1:Q_6) %>%
as.data.frame() %>%
group_by(group_var) %>%
do(tidy(psych::alpha(c(Q_1:Q_6))))
but when I run the code, I got an error message:
Error in psych::alpha(c(Q_1:Q_6)) :
object 'Q_1' not found
What is wrong with the code?
Thanks in advance.
I don't think tidy works on psych::alpha(), using an example:
r4 <- sim.congeneric()
tidy(alpha(r4))
Error: No tidy method for objects of class psych
So tidy is out of question, unless there is a Best thing you can do is wrap them up in a list within a tibble:
library(dplyr)
library(tidyr)
library(purrr)
library(psych)
library(broom)
df = data.frame(group_var=sample(LETTERS[1:6],100,replace=TRUE),
matrix(sample(0:3,900,replace=TRUE),nrow=100))
colnames(df)[-1] = c(paste0("Q_",1:6), paste0("V_", 23:25))
res = df %>%
select(group_var, Q_1:Q_6) %>%
nest(data=Q_1:Q_6) %>%
mutate(alpha = map(data,
~alpha(.x,keys=c("Q_1","Q_2","Q_3","Q_4","Q_5","Q_6"))
))
res$alpha[[1]]
Reliability analysis
Call: alpha(x = .x, keys = c("Q_1", "Q_2", "Q_3", "Q_4", "Q_5", "Q_6"))
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
-0.37 -0.3 0.13 -0.04 -0.23 0.6 1.6 0.36 0.039
lower alpha upper 95% confidence boundaries
-1.54 -0.37 0.81
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
Q_1- -0.38 -0.38221 -0.143 -0.05854 -0.27652 0.61 0.028 -0.080
Q_2- -0.21 -0.19042 0.173 -0.03305 -0.15996 0.54 0.048 0.066
Q_3- -0.38 -0.26988 0.096 -0.04439 -0.21252 0.61 0.053 0.046
Q_4- -0.54 -0.41760 -0.064 -0.06261 -0.29458 0.68 0.045 -0.016
Q_5- -0.35 -0.26006 0.154 -0.04305 -0.20639 0.60 0.058 0.059
Q_6- 0.03 -0.00088 0.107 -0.00018 -0.00088 0.42 0.024 -0.016
Item statistics
n raw.r std.r r.cor r.drop mean sd
Q_1- 13 0.42 0.45 0.552 -0.062 0.77 1.01
Q_2- 13 0.38 0.33 -0.073 -0.162 1.85 1.14
Q_3- 13 0.39 0.38 0.083 -0.058 1.92 0.95
Q_4- 13 0.45 0.47 0.416 0.050 1.62 0.87
Q_5- 13 0.33 0.38 -0.039 -0.073 2.08 0.86
Q_6- 13 0.21 0.18 -0.137 -0.309 1.38 1.12
Non missing response frequency for each item
0 1 2 3 miss
Q_1 0.08 0.15 0.23 0.54 0
Q_2 0.38 0.23 0.23 0.15 0
Q_3 0.31 0.38 0.23 0.08 0
Q_4 0.15 0.38 0.38 0.08 0
Q_5 0.38 0.31 0.31 0.00 0
Q_6 0.15 0.38 0.15 0.31 0
A quick check seems tidystats might be able to do it, but I ran the example code and doesn't seem to work. So you can try it for yourself.

avoid nested for-loops for tricky operation R

I have to do an operation that involves two matrices, matrix #1 with data and matrix #2 with coefficients to multiply columns of matrix #1
matrix #1 is:
dim(dat)
[1] 612 2068
dat[1:6,1:8]
X0005 X0010 X0011 X0013 X0015 X0016 X0017 X0018
1 1.96 1.82 8.80 1.75 2.95 1.10 0.46 0.96
2 1.17 0.94 2.74 0.59 0.86 0.63 0.16 0.31
3 2.17 2.53 10.40 4.19 4.79 2.22 0.31 3.32
4 3.62 1.93 6.25 2.38 2.25 0.69 0.16 1.01
5 2.32 1.93 3.74 1.97 1.31 0.44 0.28 0.98
6 1.30 2.04 1.47 1.80 0.43 0.33 0.18 0.46
and matrix #2 is:
dim(lo)
[1] 2068 8
head(lo)
i1 i2 i3 i4 i5 i6
X0005 -0.11858852 0.10336788 0.62618771 0.08706041 -0.02733101 0.006287923
X0010 0.06405406 0.13692216 0.64813610 0.15750302 -0.13503956 0.139280709
X0011 -0.06789727 0.30473549 0.07727417 0.24907723 -0.05345123 0.141591330
X0013 0.20909664 0.01275553 0.21067894 0.12666704 -0.02836527 0.464548147
X0015 -0.07690560 0.18788859 -0.03551084 0.19120773 -0.10196578 0.234037820
X0016 -0.06442454 0.34993481 -0.04057001 0.20258195 -0.09318325 0.130669546
i7 i8
X0005 0.08571777 0.031531478
X0010 0.31170850 -0.003127279
X0011 0.52527759 -0.065002026
X0013 0.27858049 -0.032178156
X0015 0.50693977 -0.058003429
X0016 0.53162596 -0.052091767
I want to multiply each column of matrix#1 by its correspondent coefficient of matrix#2 first column, and sum up all resulting columns. Then repeat the operation but with coefficients of matrix#2 second column, then third column, and so on...
The result is then a matrix with 8 columns, which are lineal combinations of data in matrix#1
My attempt includes nested for-loops. it works, but takes about 30' to execute. Is there any way to avoid these loops and reduce computational effort?
here is my attempt:
r=nrow(dat)
n=ncol(dat)
m=ncol(lo)
eme<-matrix(NA,r,m)
for (i in(1:m)){
SC<-matrix(NA,r,n)
for (j in(1:n)){
nom<-rownames(lo)
x<-dat[ , colnames(dat) == nom[j]]
SC[,j]<-x*lo[j,i]
SC1<-rowSums(SC)
}
eme[,i]<-SC1
}
Thanks for your help
It looks like you are just doing matrix - vector multiplication. In R, use the%*% operator, so all the looping is delegated to a fortran routine. I think it equates to the following
apply(lo, 2, function(x) dat %*% x)
Your code could be improved by moving the nom <- assignment outside the loops since it recalculates the same thing every iteration. Also, what is the point of SC1 being computed during each iteration?

how can I do vector integral in R? [duplicate]

This question already has answers here:
Calculate the Area under a Curve
(7 answers)
Closed 7 years ago.
I want to integrate a one dimensional vector in R, How should I do that?
Let's say I have:
d=hist(p, breaks=100, plot=FALSE)$density
where p is a sample like:
p=rnorm(1e5)
How can I calculate an integral over d?
If we assume that the values in d correspond to the y values of a function then we can calculate the integral by using a discrete approximation. We can for example use the trapezium rule or Simpsons rule for this purpose. We then also need to input the stepsize that corresponds to the discrete interval on the x-axis in order to "approximate the area under the curve".
Discrete integration functions defined below:
p=rnorm(1e5)
d=hist(p,breaks=100,plot=FALSE)$density
discreteIntegrationTrapeziumRule <- function(v,lower=1,upper=length(v),stepsize=1)
{
if(upper > length(v))
upper=length(v)
if(lower < 1)
lower=1
integrand <- v[lower:upper]
l <- length(integrand)
stepsize*(0.5*integrand[1]+sum(integrand[2:(l-1)])+0.5*v[l])
}
discreteIntegrationSimpsonRule <- function(v,lower=1,upper=length(v),stepsize=1)
{
if(upper > length(v))
upper=length(v)
if(lower < 1)
lower=1
integrand <- v[lower:upper]
l <- length(integrand)
a = seq(from=2,to=l-1,by=2);
b = seq(from=3,to=l-1,by=2)
(stepsize/3)*(integrand[1]+4*sum(integrand[a])+2*sum(integrand[b])+integrand[l])
}
As an example, let's approximate the complete area under the curve while assuming discrete x steps of size 1 and then do the same for the second half of d while we assume x-steps of size 0.2.
> plot(1:length(d),d) # stepsize one on x-axis
> resultTrapeziumRule <- discreteIntegrationTrapeziumRule(d) # integrate over complete interval, assume x-stepsize = 1
> resultSimpsonRule <- discreteIntegrationSimpsonRule(d) # integrate over complete interval, assume x-stepsize = 1
> resultTrapeziumRule
[1] 9.9999
> resultSimpsonRule
[1] 10.00247
> plot(seq(from=-10,to=(-10+(length(d)*0.2)-0.2),by=0.2),d) # stepsize 0.2 on x-axis
> resultTrapziumRule <- discreteIntegrationTrapeziumRule(d,ceiling(length(d)/2),length(d),0.2) # integrate over second part of vector, x-stepsize=0.2
> resultSimpsonRule <- discreteIntegrationSimpsonRule(d,ceiling(length(d)/2),length(d),0.2) # integrate over second part of vector, x-stepsize=0.2
> resultTrapziumRule
[1] 1.15478
> resultSimpsonRule
[1] 1.11678
In general, the Simpson rule offers better approximations of the integral. The more y-values you have (and the smaller the x-axis stepsize), the better your approximations will become.
Small EDIT for clarity:
In this particular case the stepsize should obviously be 0.1. The complete area under the density curve is then (approximately) equal to 1, as expected.
> d=hist(p,breaks=100,plot=FALSE)$density
> hist(p,breaks=100,plot=FALSE)$mids # stepsize = 0.1
[1] -4.75 -4.65 -4.55 -4.45 -4.35 -4.25 -4.15 -4.05 -3.95 -3.85 -3.75 -3.65 -3.55 -3.45 -3.35 -3.25 -3.15 -3.05 -2.95 -2.85 -2.75 -2.65 -2.55
[24] -2.45 -2.35 -2.25 -2.15 -2.05 -1.95 -1.85 -1.75 -1.65 -1.55 -1.45 -1.35 -1.25 -1.15 -1.05 -0.95 -0.85 -0.75 -0.65 -0.55 -0.45 -0.35 -0.25
[47] -0.15 -0.05 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95 2.05
[70] 2.15 2.25 2.35 2.45 2.55 2.65 2.75 2.85 2.95 3.05 3.15 3.25 3.35 3.45 3.55 3.65 3.75 3.85 3.95 4.05 4.15
> resultTrapeziumRule <- discreteIntegrationTrapeziumRule(d,stepsize=0.1)
> resultTrapeziumRule
[1] 0.999985

How to efficiently grow large data in R

The product of one simulation is a large data.frame, with fixed columns and rows. I ran several hundreds of simulations, with each result stored in a separate RData file (for efficient reading).
Now I want to gather all those files together and create statistics for each field of this data.frame into the "cells" structure which is basically a list of vectors with . This is how I do it:
#colscount, rowscount - number of columns and rows from each simulation
#simcount - number of simulation.
#colnames - names of columns of simulation's data frame.
#simfilenames - vector with filenames with each simulation
cells<-as.list(rep(NA, colscount))
for(i in 1:colscount)
{
cells[[i]]<-as.list(rep(NA,rowscount))
for(j in 1:rows)
{
cells[[i]][[j]]<-rep(NA,simcount)
}
}
names(cells)<-colnames
addcells<-function(simnr)
# This function reads and appends simdata to "simnr" position in each cell in the "cells" structure
{
simdata<readRDS(simfilenames[[simnr]])
for(i in 1:colscount)
{
for(j in 1:rowscount)
{
if (!is.na(simdata[j,i]))
{
cells[[i]][[j]][simnr]<-simdata[j,i]
}
}
}
}
library(plyr)
a_ply(1:simcount,1,addcells)
The problem is, that this the
> system.time(dane<-readRDS(path.cat(args$rdatapath,pliki[[simnr]]))$dane)
user system elapsed
0.088 0.004 0.093
While
? system.time(addcells(1))
user system elapsed
147.328 0.296 147.644
I would expect both commands to have comparable execution times (or at least the latter be max 10 x slower). I guess I am doing something very inefficient there, but what? The whole cells data structure is rather big, it takes around 1GB of memory.
I need to transpose data in this way, because later I do many descriptive statistics on the results (like computing means, sd, quantiles, and maybe histograms), so it is important, that the data for each cell is stored as a (single-dimensional) vector.
Here is profiling output:
> summaryRprof('/tmp/temp/rprof.out')
$by.self
self.time self.pct total.time total.pct
"[.data.frame" 71.98 47.20 129.52 84.93
"names" 11.98 7.86 11.98 7.86
"length" 10.84 7.11 10.84 7.11
"addcells" 10.66 6.99 151.52 99.36
".subset" 10.62 6.96 10.62 6.96
"[" 9.68 6.35 139.20 91.28
"match" 6.06 3.97 11.36 7.45
"sys.call" 4.68 3.07 4.68 3.07
"%in%" 4.50 2.95 15.86 10.40
"all" 4.28 2.81 4.28 2.81
"==" 2.34 1.53 2.34 1.53
".subset2" 1.28 0.84 1.28 0.84
"is.na" 1.06 0.70 1.06 0.70
"nargs" 0.62 0.41 0.62 0.41
"gc" 0.54 0.35 0.54 0.35
"!" 0.42 0.28 0.42 0.28
"dim" 0.34 0.22 0.34 0.22
".Call" 0.12 0.08 0.12 0.08
"readRDS" 0.10 0.07 0.12 0.08
"cat" 0.10 0.07 0.10 0.07
"readLines" 0.04 0.03 0.04 0.03
"strsplit" 0.04 0.03 0.04 0.03
"addParaBreaks" 0.02 0.01 0.04 0.03
It looks that indexing the list structure takes a lot of time. But I can't make it array, because not all cells are numeric, and R doesn't easily support hash map...

Passing an expression to a nested grouping in data.table

I have a data.table object similar to this one
library(data.table)
c <- data.table(CO = c(10000,10000,10000,20000,20000,20000,20000),
SH = c(1427,1333,1333,1000,1000,300,350),
PRC = c(6.5,6.125,6.2,0.75,0.5,3,3.5),
DAT = c(0.5,-0.5,0,-0.1,NA_real_,0.2,0.5),
MM = c("A","A","A","A","A","B","B"))
and I am trying to perform calculations using nested grouping, passing an expression as an argument. Here is a simplified version of what I have:
setkey(c,MM)
mycalc <- quote({nobscc <- length(DAT[complete.cases(DAT)]);
list(MKTCAP = tail(SH,n=1)*tail(PRC,n=1),
SQSUM = ifelse(nobscc>=2, sum(DAT^2,na.rm=TRUE), NA_real_),
COVCOMP = ifelse(nobscc >= 2, head(DAT,n=1), NA_real_),
NOBS = nobscc)})
myresults <- c[,.SD[,{setkey=CO; eval(mycalc)},by=CO],by=MM]
which produces
MM CO MKTCAP SQSUM COVCOMP NOBS
[1,] A 10000 8264.6 0.50 0.5 3
[2,] A 20000 500.0 NA NA 1
[3,] B 20000 1225.0 0.29 0.2 2
In the example above I have two elements of the list which use the ifelse construct (in the actual code there are 3), all doing the same test : if the number of observations is greater than 2, then a certain calculation (which is different for each element of the list, and each could be written as a function) is to be performed, otherwise I want the value of the these elements to be NA. Another thing these elements have in common is that they use one and the same column of my data.table: the one called DAT.
So my question is: is there any way I can do the ifelse test only once, and if it is FALSE, pass the value NA to the respective elements of the list, and if TRUE, evaluate a different expression for each of the elements of the list?
NOTE: My goal is to reduce the system.time (system and elapsed). If this modification will not reduce time and calculations, bearing in mind I have 72 million observations, that's an acceptable answer. I also welcome suggestions to change other parts of the code.
EDIT: Results of summaryRprof()
$by.total
total.time total.pct self.time self.pct
"system.time" 18.94 99.79 0.00 0.00
".Call" 18.92 99.68 0.10 0.53
"[" 18.92 99.68 0.04 0.21
"[.data.table" 18.92 99.68 0.02 0.11
"eval" 18.80 99.05 0.24 1.26
"ifelse" 18.30 96.42 0.46 2.42
"lm" 17.70 93.26 0.58 3.06
"sapply" 8.06 42.47 0.36 1.90
"model.frame" 7.74 40.78 0.16 0.84
"model.frame.default" 7.58 39.94 0.98 5.16
"lapply" 6.62 34.88 0.70 3.69
"FUN" 4.24 22.34 1.10 5.80
"model.matrix" 4.04 21.29 0.02 0.11
"model.matrix.default" 4.02 21.18 0.26 1.37
"match" 3.66 19.28 0.86 4.53
".getXlevels" 3.12 16.44 0.12 0.63
"na.omit" 2.40 12.64 0.24 1.26
"%in%" 2.30 12.12 0.34 1.79
"simplify2array" 2.24 11.80 0.12 0.63
"na.omit.data.frame" 2.16 11.38 0.14 0.74
"[.data.frame" 2.12 11.17 1.18 6.22
"deparse" 1.80 9.48 0.66 3.48
"unique" 1.80 9.48 0.54 2.85
"[[" 1.52 8.01 0.12 0.63
"[[.data.frame" 1.40 7.38 0.54 2.85
".deparseOpts" 1.34 7.06 0.96 5.06
"paste" 1.32 6.95 0.16 0.84
"lm.fit" 1.20 6.32 0.64 3.37
"mode" 1.14 6.01 0.14 0.74
"unlist" 1.12 5.90 0.56 2.95
Instead of forming and operating on data subsets like this:
setkey(c,MM)
myresults <- c[, .SD[,{setkey=CO; eval(mycalc)},by=CO], by=MM]
You could try doing this:
setkeyv(c, c("MM", "CO"))
myresults <- c[, eval(mycalc), by=key(c)]
This should speed up your code, since it avoids all of the nested subsetting of .SD objects, each of which requires its own call to [.data.table.
On your original question, I doubt the ifelse evaluations are taking much time, but if you want to avoid them, you could take them out of mycalc and use := to overwrite the desired values with NA:
mycalc <- quote(list(MKTCAP = tail(SH,n=1)*tail(PRC,n=1),
SQSUM = sum(DAT^2,na.rm=TRUE),
COVCOMP = head(DAT,n=1),
NOBS = length(DAT[complete.cases(DAT)])))
setkeyv(c, c("MM", "CO"))
myresults <- c[, eval(mycalc), by=key(c)]
myresults[NOBS<2, c("SQSUM", "COVCOMP"):=NA_real_]
## Or, alternatively
# myresults[NOBS<2, SQSUM:=NA_real_]
# myresults[NOBS<2, COVCOMP:=NA_real_]

Resources