Efficiently multiplying matrix with transpose using cuBlas - linear-algebra

Is there an efficient way of using cuBlas when multiplying a large dense matrix with its transpose? Specifically, is there any function that makes use of the fact that the resulting matrix is symmetric therefore reducing the number of multiplications by a factor of ~2.

The standard BLAS API ?syrk is what you need.
C = alpha * A * A^T + beta * C
For cuBlas, the API name is cublas<t>syrk. Please refer to cuBlas document for more detail
http://docs.nvidia.com/cuda/cublas/index.html#cublas-lt-t-gt-syrk

Related

Fast matrix determinant calculation with specific structure

I have a k*k squared matrix with diagonal elements x>0 and all other elements y>0. The values of k, x, y are all subject to change.
Now I need the determinant of this matrix. I know there won't be a closed-form formula for it, but is there a way to calculate it faster than the commonly used LU-decomposition which takes O(K^3) time complexity (considering its special structure)?
(I am using R as my coding language, and the built-in det() function in R uses the LU-decomposition.)

Is there any way in R to speed up this matrix product: A' * B * A (B positive semidefinite)?

I wonder whether this operation (in R)
t(A) %*% B %*% A
where B is a positive semidefinite matrix, can be simplified via any algebraic trick in order to make it faster (beyond crossprod(A,B)%*%A, Rcpp)
If you want an algebraic trick all you have is that B is positive-semidefinite, i.e. you can find its square root/eigenvalue decomposition.
How you use that fact depends on what you are actually doing.
For instance, maybe you could work with A in the eigenbasis of B whereby the matrix multiplication you want becomes much more simple. Or perhaps only a few of the eigenvalues of B are significant and you can exclude most of the eigenvectors in your representation of the square root of B.

Diagonalize a matrix to compute matrix power?

I am trying to calculate P^100 where P is my transition matrix. I want to do this by diagonalizing P so that way we have P = Q*D*Q^-1.
Of course, if I can get P to be of this form, then I can easily calculate P^100 = Q*D^100*Q^-1 (where * denotes matrix multiplication).
I discovered that if you just do P^5 that all you'll get in return is a matrix where each of your entries of P were raised to the 5th power, rather than the fifth power of the matrix (P*P*P*P*P).
I found a question on here that asks how to check if a matrix is diagonalizable but not how to explicitly construct the diagonalization of a matrix. In MATLAB it's super easy but well, I'm using R and not MATLAB.
The eigen() function will compute eigenvalues and eigenvectors for you (the matrix of eigenvectors is Q in your expression, diag() of the eigenvalues is D).
You could also use the %^% operator in the expm package, or functions from other packages described in the answers to this question.
The advantages of using someone else's code are that it's already been tested and debugged, and may use faster or more robust algorithms (e.g., it's often more efficient to compute the matrix power by composing powers of two of the matrix rather than doing the eigenvector computations). The advantage of writing your own method is that you'll understand it better.

Apply a transformation matrix over time

I have an initial frame and a bounding box around some information. I have a transformation matrix T, for which I want to use to transform this bounding box.
I could easily apply the transformation and draw it in the output frame, but I would like to apply the transformation over a sequence of x frames, can anyone suggest a way to do this?
Aly
Building on #egor-n comment, you could compute R = T^{1/x} and compute your bounding box on frame i+1 from the one at frame i by
B_{i+1} = R * B_{i}
with B_{0} your initial bounding box. Depending on the precise form of T, we could discuss how to compute R.
There are methods for affine transforms - to make decomposition of affine transform matrix to product of translation, rotation, scaling and shear matrices, and linear interpolation of parameters of every matrix (for example, rotation angle for R and so on). Example
But for homography matrix there is no single solution, as described here, so one can find some "good" approximation (look at complex math in that article). Probably, some limitations for possible transforms could simplify the problem.
Here's something a little different you could try. Let M be the matrix representing the final transformation. You could try interpolating between I (the identity matrix, with 1's on the diagonal and 0's elsewhere) using the formula
M(t) = exp(t * ln(M))
where t is time from 0 to 1, M(0) = I, M(1) = M, exp is the exponential function for matrices given by the usual infinite series, and ln is the similar natural logarithm function for matrices given by the usual infinite series.
The correctness of the formula depends on the type of transformation represented by M and the type of transformations allowed in intermediate steps. The formula should work for rigid motions. For other types of transformations, various bad things might happen, including divergence of the logarithm series. Other formulas can be used in other cases; let me know if you're using transformations other than rigid motions and I can give some other formulas.
The exponential and logarithm functions may be available in a matrix library. If not, they can be easily implemented as partial sums of infinite series.
The above method should give the same result as some quaternion methods in the case of rotations. The quaternion methods are probably faster when they're available.
UPDATE
I see you mention elsewhere that your transformation is a homography (perspectivity), so the method I suggested above for rigid motions won't work. Instead you could use a different, but related method outlined in ftp://ftp.cs.huji.ac.il/users/aristo/papers/SYGRAPH2005/sig05.pdf. It goes as follows: represent your transformation by a matrix in one higher dimension. Scale the matrix so that its determinant is equal to 1. Call the resulting matrix G. You want to interpolate from the identity matrix I to G, going through perspectivities.
In what follows, let M^T be the transpose of M. Let the function expp be defined by
expp(M) = exp(-M^T) * exp(M+M^T)
You need to find the inverse of that function at G; in other words you need to solve the equation
expp(M) = G
where G is your transformation matrix with determinant 1. Call the result M = logp(G). That equation can be solved by standard numerical techniques, or you can use Matlab or other math software. It's somewhat time-consuming and complicated to do, but you only have to do it once.
Then you calculate the series of transformations by
G(t) = expp(t * logp(G))
where t varies from 0 to 1 in steps of 1/k, where k is the number of frames you want.
You could parameterize the transform over some number of frames by adding a variable with a domain greater than zero but less than 1.
Let t be the frame number
Let T be the total number of frames
Let P be the original location and orientation of the object
Let theta be the total rotation angle
and translation be the vector [x,y]'
The transform in 2D becomes:
T(P|t) = R(t)*P +(t*[x,y]')/T
where R(t) = {{Cos((theta*t)/T),-Sin((theta*t)/T)},{Sin((theta*t)/T),Cos((theta*t)/T)}}
So that at frame t_n you apply the transform T(t) to the position of the object at time t_0 = 0 (which is equivalent to no transform)

Decompose complex matrix transformation into a series of simple transformations?

I wonder if it is possible (and if it is then how) to re-present an arbitrary M3 matrix transformation as a sequence of simpler transformations (such as translate, scale, skew, rotate)
In other words: how to calculate MTranslate, MScale, MRotate, MSkew matrices from the MComplex so that the following equation would be true:
MComplex = MTranslate * MScale * MRotate * MSkew (or in an other order)
Singular Value Decomposition (see also this blog and this PDF). It turns an arbitrary matrix into a composition of 3 matrices: orthogonal + diagonal + orthogonal. The orthogonal matrices are rotation matrices; the diagonal matrix represents skewing along the primary axes = scaling.
The translation throws a monkey wrench into the game, but what you should do is take out the translation part of the matrix so you have a 3x3 matrix, run SVD on that to give you the rotation+skewing, then add the translation part back in. That way you'll have a rotation + scale + rotation + translate composition of 4 matrices. It's probably possible to do this in 3 matrices (rotation + scaling along some set of axes + translation) but I'm not sure exactly how... maybe a QR decomposition (Q = orthogonal = rotation, but I'm not sure if the R is skew-only or has a rotational part.)
Yes, but the solution will not be unique. Also you should rather put translation at the end (the order of the rest doesn't matter)
For any given square matrix A there exists infinitely many matrices B and C so that A = B*C. Choose any invertible matrix B (which means that B^-1 exists or det(B) != 0) and now C = B^-1*A.
So for your solution first decompose MC into MT and MS*MR*MSk*I, choosing MT to be some invertible transposition matrix. Then decompose the rest into MS and MR*MSk*I so that MS is arbitrary scaling matrix. And so on...
Now if at the end of the fun I is an identity matrix (with 1 on diagonal, 0 elsewhere) you're good. If it is not, start over, but choose different matrices ;-)
In fact, using the method above symbolically you can create set of equations that will yield you a parametrized formulas for all of these matrices.
How useful these decompositions would be for you, well - that's another story.
If you type this into Mathematica or Maxima they'll compute this for you in no time.

Resources