DICOM why need overlay and how to read it - dicom

Just wondering why we need the overlay and when we will need it?
I have a Scout image with overlay, what do these dots mean and what do these numbers or fractions mean?
How these numbers are drawn on the image?

DICOM standard allows two specific types of overlays (graphics and ROI) along with the image and overlays are stored as 1-bit image in Overlay Data (60XX, 0050) attribute. A dataset can have up to 16 separate overpay planes (using the repeating groups encoding).
The overlay plane that represents region of interest (ROI) will have value of “R” for Overlay Type (60xx, 0040) attribute and ROI Area (60xx, 1301), ROI Mean (60xx,1302) and ROI Standard Deviation (60xx, 1303) can be used for the corresponding values of ROI. All bits representing ROI will have a value of 1 that represents the pixels under the boundaries of the actual image data.
Graphic Overlay will have value of “G” in Overlay Type (60xx, 0040) attribute and it is used for expressing reference marks (reference line), graphic annotation, or bitmap text etc. Again, all visible values in an overlay plane are set to 1.
The Overlay Rows (60xx, 0010) and Overlay Columns (60xx,0011) specifies the width and height of the overlay plane. Overlay Bits Allocated is always 1 and Overlay Bit Position is 0 (it was used in previous version and usage has been retired). Overlay Origin (60xx, 0050) is used to described the first overlay point with respect to the pixel in the image and 1\1 represents upper left pixel of the image.

Overlays can be used to display any data over an image. You could, for example, allow users to make annotations or graphics marks. You cannot mark the original data, so the overlay is stored in a separate layer.
In your case, the creator of the overlay should explain its meaning.

The meaning of the overlay is:
i.e. 2/16 -> Series number 2 and slice number 16

Related

Masking a low quality raster with polygons, getting weird overhang

I am pretty new to R, and have been attempting to use the mask function on a raster image of 250mx250m resolution. My problem is that for some reason I am getting overhang, as there are pixels which lie both inside and outside of the polygon. Is there a way to tighten the tolerance level of mask so that only the pixels within a certain percentage inside the polygon are accepted?
green is my polygon, blue is the resulting mask
I am guessing that you are using the rasterize function from the raster package.
The grid cells are rather large relative to the polygons you are using. rasterize uses the center of the cell to determine if it is covered. However, if you use argument getCover=TRUE you will get a value between 1 to 100 indicating the percentage of each cell that is covered. You could then use a threshold of your choice.
Source: Masking low quality raster with polygons in R gives weird overhang?

How to deal with arbitrary size for Laplacian Pyramid?

Recently I had much fun with the Laplacian Pyramid algorithm (http://persci.mit.edu/pub_pdfs/pyramid83.pdf). But one big problem is that the original paper is limited to 2^m+1*2^n+1 images. My question is: What is the best way to deal with arbitrary w*h instead? I can think of a couple of options:
Up sample the input to the next 2^m+1,2^n+1 up front
Pad even lines. How exactly? Wouldn't it shift the signal?
Shift even lines by half a sample? Wouldn't it loose half a sample?
Does anybody have experience with this? What is the most practical and efficient approach? Also any pointers to papers dealing with this would be very welcome.
One approach is to create an image with a width and height equal to the next 2^m+1,2^n+1, but instead of up-sampling the image to fill the expanded dimensions, just place it in the top-left corner and fill the empty space to the right and below with a constant value (the average value for the image is a good choice for this). Then encode in the normal way, storing the original image dimensions along with the pyramid. When decoding, decode and then crop to the original size.
This won't introduce any visual artifacts or degradation because you aren't stretching or offsetting the image in any way.
Because the empty space to the right and below the original image is a constant value, the high-pass bands at each level in the image pyramid will be all zero in this area. So if you are using a compression scheme like run length encoding to store each level this will be automatically taken care off and these areas will be compressed to almost nothing. If not then you can simply store the top-left (potentially non-zero) area of each level and then fill out the rest with zeros when decoding.
You could find the min and max x and y bounding rectangle of the non-zero values for each level and store this along with the level, cropped to include only non-zero values. The decoder could also be optimized so that areas of the image that are going to be cropped away are not actually decoded in the first place, by only processing the top-left of each level.
Here's an illustration of the technique:
Instead of just filling the lower-right area with a flat color, you could fill it with horizontally and vertically mirrored copies of the image to the right and below, and a copy mirrored in both directions to the bottom-right, like this:
This will avoid the discontinuities of the first technique, although there will be a discontinuity in dx (e.g. if the value was gradually increasing from left to right it will suddenly be decreasing). Choosing a mirror that keeps dx constant and ddx zero will avoid this second-order discontinuity by linearly extrapolating the values.
Another technique, which is similar to what some JPEG encoders do to pad out an image to a whole number of MCU blocks, is to take the last pixel value of each row and repeat it, and likewise for columns, with the bottom-right-most pixel of the image used to fill the bottom-right area:
This last technique could easily be modified to extrapolate the gradient of values or even the gradient of gradients instead of just repeating the same value for the remainder of the row or column.

Extract pixel coordinates in scilab

I have extracted edge using image processing then I selected pixel coordinate using xclick of extracted edge.Is this correct or there is need of reverse y axis coordinate?(Extracted edge is white on black background)
I want to automatically extracted pixel coordinates of extracted edge not by mouse selection.Is there is any command available in scilab?(I use canny edge detector and morphological filter to extract edge)
Please give me some suggestions
Thanks
1.) Whether to reverse the y coordinte or not, depends on the further processing. Any coordinate system can be used if you need only relative measurements and the true orientation of your features is not important (e.g. reversing top and bottom makes no difference if you simply want to count objects or droplets). Hovewer if you want to indicate your found features by plotting a dot, or a line, or a rectangle (e.g. with plot2d or xrect) or a number (e.g. with xnumb) over the image, then it's necessary to match the two coordinate sytems. I recommend this second option and to plot your result over the original image, since this is the easiest way to check your results.
2.) Automatic coordinate extraction can be made by the find function: it returns those indices of the matrix, where the expression is true.
IM=[0,0,0,1;0,0,0,1;0,1,1,1;1,1,0,0]; //edge image, edge = 1, background = 0
disp(IM,"Edge image");
[row,col]=find(IM==1); //row & column indices where IM = 1 (= edge)
disp([row',col'],"Egde coordinates (row, col)");
If your "Egde image" marks the edges not with 1 (or 255, pure white pixel) but with a relatively high number (bright pixel), then you can modify the logical expression of the find function to detect pixels with a value above a certain threshold:
[row,col]=find(IM>0.8); //if edges > a certain threshold, e.g. 0.8
EDIT: For your specific image:
Try the following code:
imagefile="d:\Attila\PROJECTS\Scilab\Stackoverflow\MORPHOLOGICAL_FILTERING.jpg";
//you have to modify this path!
I=imread(imagefile);
IM=imcrop(I,[170,100,950,370]); //discard the thick white border of the image
scf(0); clf(0);
ShowImage(IM,'cropped image');
threshold=100; //try different values between 0-255 (black - white)
[row,col]=find(IM>threshold);
imheight=size(IM,"r"); //image height
row=imheight-row+1; //reverse y axes coordinates (0 is at top)
plot2d(col,row,style=0); //plot over the image (zoom to see the dots)
scf(1); clf(1); //plot separate graph
plot2d(col,row,style=0);
If you play with the threshold parameter, you will see how the darker or whiter pixels are found.

How to calculate space between dicom slices for MPR?

Due to showing MPR view based on Dicoms. I've made a 3D array from series of dicom files. And I show it from Coronal and Sagittal sides.
My 3D array includes:
- z = count of dicoms
- c = column value for every dicoms
- r = Row value for every dicoms
But I have a problem. When there is some space between slices, image is made by this way doesn't show a correct view. Because I can not think of simulation distance between them!
I don't know how to calculate space between slices? I want to add extra space between slices. for example, If space between slices is 4. I have to add 4 time z inner slices.
I hope to arrive my mean.
Image Position (Patient) and Image Orientation (Patient) are the two only attributes you should ever used when computing distance between slices. For more details see here or here. For an actual implementation see here, this implementation also does take into account Frame Of Reference UID, as well as Gantry/Detector Tilt.
This question is the question #1 asked on comp.protocols.dicom.
Please see ImageJ bug
I believe the answer from #Matt is erroneous, let me clarify a few things here.
No: 'DICOM does not have an attribute called Spacing Between Slices'. That is very wrong (technically it does not even mean anything).
DICOM defines IODs which define the set of required attributes available in an SOP Class Instance. Let's consider two very common cases: CT Image Storage (legacy) and MR Image Storage (legacy). So we need to compare the set of attributes in between:
CT Image IOD Modules
MR Image IOD Modules
Now let's say we want to check that MR Image Storage support Spacing Between Slices, it is easy to jump to:
MR Image Module Attributes
However it is much harder to find this attribute for CT Image Storage: simply because this attribute does not exist (per standard). So the only time you would find such attribute would be within an extended SOP Class (some vendors may decide that Spacing Between Slices attribute make sense within their extended SOP Class Instance).
Mixing in the same answer both Spacing Between Slices and Slice Thickness (0018,0050) is very confusing for new users.
I agree that Slice Thickness is perfectly defined in the standard for both CT Image Storage and MR Image Storage since they both include Image Plane Module Attributes, however let's not exchange one for the other.
I found a nice summary of Slice Thickness vs Spacing Between Slices here (if you scroll to the section, you can even play the small demo) :
CT Physics: CT Reconstruction and Helical CT
In step and shoot CT the Slice Thickness and Spacing Between Slices are identical so there is no big issue here. However for helical CT those values are not the same and can vary in any direction (they are independent).
[…] Slice Thickness is determined by the detector width and pitch,
while reconstruction interval (=Spacing Between Slices) can be chosen
arbitrarily. […]
In conclusion to compute (safely!) the Spacing Between Slices (= Reconstruction Interval), it is much safer to use Image Orientation (Patient) and Image Position (Patient) since they are available in either MR Image Storage or CT Image Storage instances.
DICOM has an attribute called Spacing Between Slices (0018, 0088) that gives the distance between two adjacent slices (perpendicular to the image plane) and it also has an attribute called Slice Thickness (0018, 0050) that gives the thickness of the imaged slice (the image plane exists at the center of the slice, with half of the volume above the plane and half below). Image Position (Patient) (0020, 0032) and Image Orientation (Patient) (0020, 0037) are also useful attributes for computing spatial relationships between slices.
For a more detailed explanation, see section C.7.6.2 of part 3 of the DICOM standard. (p. 409)
WARNING: Please be aware that different vendors use the same dicom tags for addressing different things. For instance, the attribute Spacing Between Slices (0018, 0088) means two different things depending on the vendor. See this table to have a guide, and this thread for an explanation.
As discussed in the previous answers, it is not straightforward how to calculate space between DICOM slices. Let's phrase the question differently: How to store DICOM slices in a 3D volume, i.e. a list of equally spaced slices for rendering (guess you want to upload into a 3D texture).
This is because the actual position that a CT slice is captured might not be identical to the position selected by the radiologist. A dataset might have been configured to capture 1 mm slices, but the CT returns slices at position 0.0 mm, 0.997 mm, 2.010 mm, ...
If you use an attribute such as Spacing Between Slices to calculate the size of the 3D volume, you will obtain subtle rounding errors easily. Don't go there.
Rather it is essential to use Image Position (Patient) (0020, 0032) and then perform an optimization to figure our how the slices could be fit into an grid.
Typical problems in practice to consider:
Missing slices (interpolate? Gap?)
Out of step slices (hardware defect? data defect?)

Matlab Bwareaopen equivalent function in OpenCV

I'm trying to find similar or equivalent function of Matlabs "Bwareaopen" function in OpenCV?
In MatLab Bwareaopen(image,P) removes from a binary image all connected components (objects) that have fewer than P pixels.
In my 1 channel image I want to simply remove small regions that are not part of bigger ones? Is there any trivial way to solve this?
Take a look at the cvBlobsLib, it has functions to do what you want. In fact, the code example on the front page of that link does exactly what you want, I think.
Essentially, you can use CBlobResult to perform connected-component labeling on your binary image, and then call Filter to exclude blobs according to your criteria.
There is not such a function, but you can
1) find contours
2) Find contours area
3) filter all external contours with area less then threshhold
4) Create new black image
5) Draw left contours on it
6) Mask it with a original image
I had the same problem and came up with a function that uses connectedComponentsWithStats():
def bwareaopen(img, min_size, connectivity=8):
"""Remove small objects from binary image (approximation of
bwareaopen in Matlab for 2D images).
Args:
img: a binary image (dtype=uint8) to remove small objects from
min_size: minimum size (in pixels) for an object to remain in the image
connectivity: Pixel connectivity; either 4 (connected via edges) or 8 (connected via edges and corners).
Returns:
the binary image with small objects removed
"""
# Find all connected components (called here "labels")
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(
img, connectivity=connectivity)
# check size of all connected components (area in pixels)
for i in range(num_labels):
label_size = stats[i, cv2.CC_STAT_AREA]
# remove connected components smaller than min_size
if label_size < min_size:
img[labels == i] = 0
return img
For clarification regarding connectedComponentsWithStats(), see:
How to remove small connected objects using OpenCV
https://www.programcreek.com/python/example/89340/cv2.connectedComponentsWithStats
https://python.hotexamples.com/de/examples/cv2/-/connectedComponentsWithStats/python-connectedcomponentswithstats-function-examples.html
The closest OpenCV solution to your question is the morphological closing or opening.
Say you have white regions in your image that you need to remove. You can use morphological opening. Opening is erosion + dilation, in that order. Erosion is when the white regions in your image are shrunk. Dilation is (the opposite) where white regions in your image are enlarged. When you perform an opening operation, your small white region is eroded until it vanishes. Larger white features will not vanish but will be eroded from the boundary. The subsequent dilation step restores their original size. However, since the small element(s) vanished during the erosion step, they will not appear in the final image after dilation.
For example consider this image where we want to remove the small white regions but retain the 3 large white ellipses. Running the following code removes the white regions and displays the clean image
import cv2
im = cv2.imread('sample.png')
clean = cv2.morphologyEx(im, cv2.MORPH_OPEN, np.ones((10, 10)))
cv2.imshwo("Clean image", clean)
The clean image output would be like this.
The command above uses a square block of size 10 as the kernel. You can modify this to suit your requirement. You can even generate a more advanced kernel using the function getStructuringElement().
Note that if your image is inverted, i.e., with black noise on a white background, you simply need to use the morphological closing operation (cv2.MORPH_CLOSE method) instead of opening. This reverses the order of operation - first the image is eroded and then dilated.

Resources