randomize observations by groups (blocks) - r

I have a data frame with I obsevations, and each observation belongs to one of g categories.
set.seed(9782)
I <- 500
g <- 10
library(dplyr)
anon_id <- function(n = 1, length = 12) {
randomString <- c(1:n)
for (i in 1:n)
{
randomString[i] <- paste(sample(c(0:9, letters, LETTERS),
length, replace = TRUE),
collapse = "")
}
return(randomString)
}
df <- data.frame(id = anon_id(n = I, length = 16),
group = sample(1:g, I, T))
I want to randomly assign each observation to one of J "urns", given some vector of probabilities p. That is the probability of being assign to urn J=1 is p[1]. The added complexity is that I want to do this block by block.
If I ignore the blocks, I can do this easily:
J <- 3
p <- c(0.25, 0.5, 0.25)
df1 <- df %>% mutate(urn = sample(x = c(1:J), size = I, replace = T, prob = p))
I thought about this method to do it by "block"
# Block randomization
randomize_block <- function(g) {
df1 <- df %>% filter(group==g)
size <- nrow(df1)
df1 <- df1 %>% mutate(urn = sample(x = c(1:J),
size = size,
replace = T,
prob = p))
return(df1)
}
df2 <- lapply(1:g, randomize_block)
df2 <- data.table::rbindlist(df2)
Is there a better way?

Not sure if this is better, but here is a base R technique with data.frame df, that has group name "group" as well as urn assignments 1:J with assignment probabilities in vector p of length J.
# get urn assignment
urnAssignment <- lapply(unique(df$group),
function(i) sample(1:J, nrow(df[group==i,]), replace =T, prob=p))
# get a list that collects position of observations
obsOrder <- lapply(unique(df$group),
function(i) which(df$group == i))
df$urnAssignment <- unlist(urnAssignment)[unlist(obsOrder)]

randomizr::block_ra does exactly what you want.
library(randomizr)
library(janitor) #just for the tabyl function
block_rand <- as.tibble(randomizr::block_ra(blocks = df$group, conditions = c("urn_1","urn_2","urn_3")))
df2 <- as.tibble(bind_cols(df, block_rand))
df2 %>% janitor::tabyl(group, value)

This does the trick using dplyr:
randomize <- function(data, groups=2, block_id = NULL, p=NULL, seed=9782) {
if(is.null(p)) p <- rep(1/groups, groups)
if(is.null(block_id)){
df1 <- data %>%
mutate(Treatment = sample(x = c(1:groups),
size = n(),
replace = T,
prob = p))
return(df1)
}else{
df1 <- data %>% group_by_(block_id) %>%
mutate(Treatment = sample(x = c(1:groups),
size = n(),
replace = T,
prob = p))
}
}
df1 <- randomize(data = df, groups = J, block_id = "group", p = p, seed = 9782)

Related

Calculate intersection of labels in matrix

I want to construct a matrix made up of indicator values, taking the value 1 if the labels have elements in common.
Ultimately, I want to create a database that reports whether two elements match
N <- 100
combinations <- c(outer(letters[1:5], letters[1:5], paste0))
set.seed(1)
data <- data.frame(
c_1 = sample(x=combinations,size = N,replace = T),
c_2 = sample(x=c(rep(NA,N/4),combinations),size = N,replace = T),
c_3 = sample(x=c(rep(NA,N/2),combinations),size = N,replace = T),
c_4 = sample(x=c(rep(NA,N/1),combinations),size = N,replace = T)) %>%
rowwise() %>%
mutate(c_all=list(c(c_1,c_2,c_3,c_4)[!is.na(c(c_1,c_2,c_3,c_4))]))
match_function <- function(x,y){
result <- ifelse(length(intersect(x,y)),1,0)
return(result)
}
outer(data$c_all, unlist(data$c_all)), match_function)

New column with random boolean values while controlling the ratio of TRUE/FALSE per category

In R I've got a dataset like this one:
df <- data.frame(
ID = c(1:30),
x1 = seq(0, 1, length.out = 30),
x2 = seq(100, 3000, length.out = 30),
category = gl(3, 10, labels = c("NEGATIVE", "NEUTRAL", "POSITIVE"))
)
Now I want to add a new column with randomized boolean values, but inside each category the proportion of TRUE and FALSE values should be the same (i.e. the randomizing process should generate the same count of true and false values, in the above data frame 5 TRUEs and 5 FALSEs in each of the 3 categories). How to do this?
You can sample a vector of "TRUE" and "FALSE" values without replacement so you have a randomized and balanced column in your data-frame.
sample(rep(c("TRUE","FALSE"),each=5),10,replace=FALSE)
Based on Yacine Hajji answer:
addRandomBool <- function(df, p){
n <- ceiling(nrow(df) * p)
df$bool <- sample(rep(c("TRUE","FALSE"), times = c(n, nrow(df) - n)))
df
}
Reduce(rbind, lapply(split(df, df$category), addRandomBool, p = 0.5))
where parametar p determines the proportion of TRUE.
This will sample within each group from a vector of 5 TRUE and 5 FALSE without replacement. It will assume that there are always 10 records per group.
library(dplyr)
library(tidyr)
df <- data.frame(
ID = c(1:30),
x1 = seq(0, 1, length.out = 30),
x2 = seq(100, 3000, length.out = 30),
category = gl(3, 10, labels = c("NEGATIVE", "NEUTRAL", "POSITIVE"))
)
set.seed(pi)
df %>%
group_by(category) %>%
nest() %>%
mutate(data = lapply(data,
function(df){ # Function to saple and assign the new_col
df$new_col <- sample(rep(c(FALSE, TRUE),
each = 5),
size = 10,
replace = FALSE)
df
})) %>%
unnest(cols = "data")
This next example is a little more generalized, but still assumes (approximately) even distribution of TRUE and FALSE within a group. But it can accomodate variable group sizes, and even groups with odd numbers of records (but will favor FALSE for odd numbers of records)
library(dplyr)
library(tidyr)
df <- data.frame(
ID = c(1:30),
x1 = seq(0, 1, length.out = 30),
x2 = seq(100, 3000, length.out = 30),
category = gl(3, 10, labels = c("NEGATIVE", "NEUTRAL", "POSITIVE"))
)
set.seed(pi)
df %>%
group_by(category) %>%
nest() %>%
mutate(data = lapply(data,
function(df){
df$new_col <- sample(rep(c(FALSE, TRUE),
length.out = nrow(df)),
size = nrow(df),
replace = FALSE)
df
})) %>%
unnest(cols = "data")
Maintaining Column Order
A couple of options to maintain the column order:
First, you can save the column order before you do your group_by - nest, and then use select to set the order when you're done.
set.seed(pi)
orig_col <- names(df) # original column order
df %>%
group_by(category) %>%
nest() %>%
mutate(data = lapply(data,
function(df){
df$new_col <- sample(rep(c(FALSE, TRUE),
length.out = nrow(df)),
size = nrow(df),
replace = FALSE)
df
})) %>%
unnest(cols = "data") %>%
select_at(c(orig_col, "new_col")) # Restore the column order
Or you can use a base R solution that doesn't change the column order in the first place
df <- split(df, df["category"])
df <- lapply(df,
function(df){
df$new_col <- sample(rep(c(FALSE, TRUE),
length.out = nrow(df)),
size = nrow(df),
replace = FALSE)
df
})
do.call("rbind", c(df, list(make.row.names = FALSE)))
There are likely a dozen other ways to do this, and probably more efficient ways that I'm not thinking of.

Efficiently fill 2D matrices by rows in a list in R

I have a list of 2D matrices. Each matrix is filled using the function fillMatrices. This function adds a number of individuals to each day 0 in a matrix and updates the columns a_M, b_M and c_M. The numbers of individuals come from an initial matrix ind. The code works but it is slow when the number of matrices within the list is large. For example with n = 10000:
user system elapsed
3.73 0.83 4.55
If possible, I would like to reduce the elapsed time to <= 1 sec and increase the n to 720000 matrices. So, I am looking for way to optimize only the section 3. Here is the code:
###############################################
###############################################
## Section 3
## Run the function "fillMatrices"
indexTime <- 1
dt_t_1 <- do.call(rbind, lapply(list_matrices, function(x) x[1,]))
dt_t <- fillMatrices(dt_t_1 = dt_t_1, species = c("a_M", "b_M", "c_M"), maxDuration = 5, matrixColumns = col_mat)
## Fill the matrices within the list
system.time(for(i in 1:n){
list_matrices[[i]][indexTime + 1,] <- dt_t[,i]
})
## test <- list_matrices[[1]]
The code of the section 1 is used to initialize the matrices and the function fillMatrices can be found in the section 2. In my example, the function is used to fill matrices for one species. In reality, the function is used for 3 species (i.e., is applied three times) by changing the argument species = c("a_M", "b_M", "c_M"). How can I speed up my code? Any advice would be much appreciated.
Here are the codes of sections 1 and 2:
rm(list=ls(all=TRUE))
library(ff)
library(dplyr)
set.seed(12345)
## Define the number of individuals
n <- 10000
###############################################
###############################################
## Section 1
## Build the list of 2D matrices
v_date <- as.vector(outer(c(paste(seq(0, 1, by = 1), "day", sep="_"), paste(seq(2, 5, by = 1), "days", sep="_")), c("a_M", "b_M", "c_M"), paste, sep="|"))
col_mat <- c("year", "day", "time", "ID", "died", v_date)
list_matrices <- list()
for(i in 1:n){
print(i)
list_matrices[[i]] <- ff(-999, dim=c(3650, length(col_mat)), dimnames=list(NULL, col_mat), vmode="double", overwrite = TRUE)
}
## test <- list_matrices[[1]]
## dim(list_matrices[[1]])
## Fill the first row of each matrix
for(i in 1:n){
print(i)
list_matrices[[i]][1,] <- c(1, 1, 1, i-1, 0, rep(0, length(v_date)))
}
## test <- list_matrices[[2]]
## Build the matrix "individual"
ind <- as.matrix(data.frame(year = rep(1, n), day = rep(1, n), time = rep(1, n), died = rep(0, n), ID = (seq(1, n, 1))- 1, a_M = sample(1:10, n, replace = T), b_M = sample(1:10, n, replace = T), c_M = sample(1:10, n, replace = T)))
## print(ind)
###############################################
###############################################
## Section 2
## Function to convert a data frame into a matrix
convertDFToMat <- function(x){
mat <- as.matrix(x[,-1])
ifelse(is(x[,1], "data.frame"), rownames(mat) <- pull(x[,1]), rownames(mat) <- x[,1])
## Convert character matrix into numeric matrix
mat <- apply(mat, 2, as.numeric)
return(mat)
}
## Define the function that is used to fill the matrices within the list
fillMatrices <- function(dt_t_1, species, maxDuration, matrixColumns){
## Format data
dt <- as.data.frame(dt_t_1) %>%
reshape::melt(id = c("ID")) %>%
arrange(ID) %>%
dplyr::mutate_all(as.character)
## summary(dt)
## Break out the variable "variable" into different columns, with one row for each individual-day
dt_reshape_filter_1 <- dt %>%
dplyr::filter(!variable %in% c("year", "day", "time", "ID", "died")) %>%
dplyr::mutate(day = variable %>% gsub(pattern = "\\_.*", replacement = "", x = .), col = variable %>% gsub(pattern = ".*\\|", replacement = "", x = .)) %>%
dplyr::select(-variable) %>%
tidyr::spread(col, value) %>%
dplyr::mutate_all(as.numeric) %>%
dplyr::arrange(ID, day)
## summary(dt_reshape_filter_1)
## Apply requested transformations and build the data frame
dt_transform <- dt_reshape_filter_1 %>%
dplyr::rename_at(vars(species), ~ c("a", "b", "c")) %>%
dplyr::mutate(day = day + 1) %>%
dplyr::filter(day < maxDuration + 1) %>%
dplyr::bind_rows(tibble(ID = ind[,c("ID")], day = 0, a = ind[,c("a_M")], b = ind[,c("b_M")])) %>%
dplyr::mutate(c = a + b) %>%
dplyr::rename_at(vars("a", "b", "c"), ~ species) %>%
dplyr::arrange(ID, day)
## summary(dt_transform)
## Take different columns of the data frame and gather them into a single column
dt_gather <- dt_transform %>%
tidyr::gather(variable, value, species) %>%
dplyr::mutate(day = if_else(day > 1, paste0(day, "_days"), paste0(day, "_day"))) %>%
tidyr::unite(variable, c("day", "variable"), sep = "|") %>%
dplyr::rename(var2 = ID) %>%
dplyr::mutate_all(as.character)
## summary(dt_gather)
## Add the other columns in the data frame and convert the resulting data frame into a matrix
dt_reshape_filter_2 <- dt %>%
dplyr::rename(var2 = ID) %>%
dplyr::filter(variable %in% c("year", "day", "time", "ID", "died")) %>%
tidyr::spread(variable, value) %>%
dplyr::arrange(as.numeric(var2)) %>%
dplyr::mutate(year = ind[,c("year")],
day = ind[,c("day")],
time = ind[,c("time")],
ID = ind[,c("ID")],
died = ind[,c("died")]) %>%
tidyr::gather(variable, value, c(year, day, time, ID, died)) %>%
dplyr::arrange(as.numeric(var2)) %>%
dplyr::mutate_all(as.character)
## summary(dt_reshape_filter_2)
## Build the output matrix
dt_bind <- bind_rows(dt_reshape_filter_2, dt_gather) %>%
tidyr::spread(var2, value) %>%
dplyr::arrange(match(variable, matrixColumns)) %>%
dplyr::select("variable", as.character(ind[,c("ID")]))
## summary(dt_bind)
dt_mat <- convertDFToMat(dt_bind)
## summary(dt_mat)
return(dt_mat)
}
Making a 3D array instead of a 2D list of matrices gives you more options
library(ff)
library(dplyr)
set.seed(12345)
## Define the number of individuals
n <- 10000L
n_row <- 3650L
#array way:
v_date <- as.vector(outer(c(paste(seq(0, 1, by = 1), "day", sep="_"), paste(seq(2, 5, by = 1), "days", sep="_")), c("a_M", "b_M", "c_M"), paste, sep="|"))
col_mat <- c("year", "day", "time", "ID", "died", v_date)
arr1 <- ff(-999L, dim = c(n_row, length(col_mat), n), dimnames = list(NULL, col_mat, NULL))
## Fill the first row of each matrix slice
arr1[1, , ] <- c(1L, 1L, 1L, NA, 0L, rep(0L, length(v_date)))
arr1[1, 4, ] <- seq_len(n)-1L
## Build the matrix "individual"
ind <- as.matrix(data.frame(year = rep(1L, n), day = rep(1L, n), time = rep(1L, n), died = rep(0L, n), ID = (seq(1L, n, 1L))- 1L, a_M = sample(1L:10L, n, replace = T), b_M = sample(1L:10L, n, replace = T), c_M = sample(1L:10L, n, replace = T)))
##fill the matrix
indexTime <- 1L
dt_t <- fillMatrices(dt_t_1 = t(arr1[1, ,]), species = c("a_M", "b_M", "c_M"), maxDuration = 5, matrixColumns = col_mat)
## reassign
system.time(
arr1[indexTime + 1, ,] <- dt_t
)
user system elapsed
0.05 0.70 0.7
# for comparison
#> system.time(for(i in 1:n){
#+ list_matrices[[i]][indexTime + 1,] <- dt_t[,i]
#+ })
# user system elapsed
# 4.75 1.08 5.90
As far as I can tell, it's giving me the same results as your original approach but does so a lot faster.

Diff-in-diff estimation with resampling from large dataset

I have a large dataset on which to perform a diff-in-diff estimation. Given the nature of the dataset my t-statistics denominators are inflated and coefficient are (surreptitiously) statistically significant.
I want to step-by-step reducing the number of element in the database, and for each step resample a large number of times and re-estimating each time interaction coefficient and standard errors.
Then I want to take all the averages estimates and standard error, and plot them on a graph, to show at what point (if any) they are not statistically different from zero.
My code follows with a toy example.
I am not sure this is the most efficient way to tackle the problem
I cannot retrieve and thus plot the confidence interval
I am not sure the sampling is representative given the existence of different groups.
Toy example (Creds Torres-Reyna - ‎2015)
library(foreign)
library(dplyr)
library(ggplot2)
df_0 <- NULL
for (i in 1:length(seq(5,nrow(mydata)-1,5))){
index <- seq(5,nrow(mydata),5)[i]
df_1 <- NULL
for (j in 1:10){
mydata_temp <- mydata[sample(nrow(mydata), index), ]
didreg = lm(y ~ treated + time + did, data = mydata_temp)
out <- summary(didreg)
new_line <- c(out$coefficients[,1][4], out$coefficients[,2][4], index)
new_line <- data.frame(t(new_line))
names(new_line) <- c("c","s","i")
df_1 <- rbind(df_1,new_line)
}
df_0 <- rbind(df_0,df_1)
}
df_0 <- df_0 %>% group_by(i) %>% summarise(coefficient <- mean(c, na.rm = T),
standard_error <- mean(s, na.rm = T))
names(df_0) <- c("i","c","s")
View(df_0)
Consider the following refactored code using base R functions: within, %in%, nested lapply, setNames, aggregate, and do.call. This approach avoids calling rbind in a loop and compactly re-writes code without constantly using $ column referencing.
library(foreign)
mydata = read.dta("http://dss.princeton.edu/training/Panel101.dta")
mydata <- within(mydata, {
time <- ifelse(year >= 1994, 1, 0)
treated <- ifelse(country %in% c("E", "F", "G"), 1, 0)
did <- time * treated
})
# OUTER LIST OF DATA FRAMES
df_0_list <- lapply(1:length(seq(5,nrow(mydata)-1,5)), function(i) {
index <- seq(5,nrow(mydata),5)[i]
# INNER LIST OF DATA FRAMES
df_1_list <- lapply(1:100, function(j) {
mydata_temp <- mydata[sample(nrow(mydata), index), ]
didreg <- lm(y ~ treated + time + did, data = mydata_temp)
out <- summary(didreg)
new_line <- c(out$coefficients[,1][4], out$coefficients[,2][4], index)
new_line <- setNames(data.frame(t(new_line)), c("c","s","i"))
})
# APPEND ALL INNER DFS
df <- do.call(rbind, df_1_list)
return(df)
})
# APPEND ALL OUTER DFS
df_0 <- do.call(rbind, df_0_list)
# AGGREGATE WITH NEW COLUMNS
df_0 <- within(aggregate(cbind(c, s) ~ i, df_0, function(x) mean(x, na.rm=TRUE)), {
upper = c + s
lower = c - s
})
# RUN PLOT
within(df_0, {
plot(i, c, ylim=c(min(c)-5000000000, max(c)+5000000000), type = "l",
cex.lab=0.75, cex.axis=0.75, cex.main=0.75, cex.sub=0.75)
polygon(c(i, rev(i)), c(lower, rev(upper)),
col = "grey75", border = FALSE)
lines(i, c, lwd = 2)
})
In the end I solved it like this:
Is this the most efficient way?
library(foreign)
library(dplyr)
mydata = read.dta("http://dss.princeton.edu/training/Panel101.dta")
mydata$time = ifelse(mydata$year >= 1994, 1, 0)
mydata$treated = ifelse(mydata$country == "E" |
mydata$country == "F" |
mydata$country == "G", 1, 0)
mydata$did = mydata$time * mydata$treated
df_0 <- NULL
for (i in 1:length(seq(5,nrow(mydata)-1,5))){
index <- seq(5,nrow(mydata),5)[i]
df_1 <- NULL
for (j in 1:100){
mydata_temp <- mydata[sample(nrow(mydata), index), ]
didreg = lm(y ~ treated + time + did, data = mydata_temp)
out <- summary(didreg)
new_line <- c(out$coefficients[,1][4], out$coefficients[,2][4], index)
new_line <- data.frame(t(new_line))
names(new_line) <- c("c","s","i")
df_1 <- rbind(df_1,new_line)
}
df_0 <- rbind(df_0,df_1)
}
df_0 <- df_0 %>% group_by(i) %>% summarise(c = mean(c, na.rm = T), s =
mean(s, na.rm = T))
df_0 <- df_0 %>% group_by(i) %>% mutate(upper = c+s, lower = c-s)
df <- df_0
plot(df$i, df$c, ylim=c(min(df_0$c)-5000000000, max(df_0$c)+5000000000), type = "l")
polygon(c(df$i,rev(df$i)),c(df$lower,rev(df$upper)),col = "grey75", border = FALSE)
lines(df$i, df$c, lwd = 2)

How can I extend tidyr::spread() while maintaining the order of column names?

How to expand when maintaining the rank of numbers when using the spread function?
library(tidyverse)
data.frame(time = paste0("t_", 1:100)) %>%
rowwise() %>%
mutate(rnd = sample(1:100, size=1)) %>%
spread(time, rnd)
The column names of the execution result of the code shown above are t_1, t_11, t_100, .....
I want to get column names in order of numbers(t_1, t_2, t_3, ...).
You can try two things:
(1) Make "time" a factor with levels matching the order you want:
data.frame(time = factor(paste0("t_", 1:100), levels = paste0("t_", 1:100))) %>%
rowwise() %>%
mutate(rnd = sample(1:100, size=1)) %>%
spread(time, rnd)
(2) Force the order using a select statement:
data.frame(time = paste0("t_", 1:100)) %>%
rowwise() %>%
mutate(rnd = sample(1:100, size=1)) %>%
spread(time, rnd) %>%
select(paste0("t_", 1:100))
Here is a new function that retains column order. Only one small change is needed (see annotation):
my_spread <- function (data, key, value, fill = NA, convert = FALSE, drop = TRUE,
sep = NULL) {
key_col <- tidyr:::col_name(substitute(key))
value_col <- tidyr:::col_name(substitute(value))
tbl_df(my_spread_(data, key_col, value_col, fill = fill, convert = convert,
drop = drop, sep = sep))
}
my_spread_ <- function (data, key_col, value_col, fill = NA, convert = FALSE,
drop = TRUE, sep = NULL) {
col <- data[key_col]
#col_id <- tidyr:::id(col, drop = drop) # Old line
col_id <- seq_len(nrow(data)) # New line 1
attr(col_id, 'n') <- nrow(data) # New line 2
col_labels <- tidyr:::split_labels(col, col_id, drop = drop)
rows <- data[setdiff(names(data), c(key_col, value_col))]
if (length(rows) == 0) {
row_id <- structure(1L, n = 1L)
row_labels <- as.data.frame(matrix(nrow = 1, ncol = 0))
}
else {
row_id <- id(rows, drop = drop)
row_labels <- tidyr:::split_labels(rows, row_id, drop = drop)
rownames(row_labels) <- NULL
}
overall <- tidyr:::id(list(col_id, row_id), drop = FALSE)
n <- attr(overall, "n")
if (anyDuplicated(overall)) {
groups <- split(seq_along(overall), overall)
groups <- groups[vapply(groups, length, integer(1)) >
1]
str <- vapply(
groups,
function(x) paste0("(", paste0(x, collapse = ", "), ")"), character(1)
)
stop("Duplicate identifiers for rows ", paste(str, collapse = ", "),
call. = FALSE)
}
if (length(overall) < n) {
overall <- match(seq_len(n), overall, nomatch = NA)
}
else {
overall <- order(overall)
}
value <- data[[value_col]]
ordered <- value[overall]
if (!is.na(fill)) {
ordered[is.na(ordered)] <- fill
}
if (convert && !is.character(ordered)) {
ordered <- as.character(ordered)
}
dim(ordered) <- c(attr(row_id, "n"), attr(col_id, "n"))
colnames(ordered) <- enc2utf8( tidyr:::col_names(col_labels, sep = sep))
ordered <- tidyr:::as_data_frame_matrix(ordered)
if (convert) {
ordered[] <- lapply(ordered, type.convert, as.is = TRUE)
}
tidyr:::append_df(row_labels, ordered)
}

Resources