How to concatenate multiple columns with a coma between them - r

I have the following data frame in r
ID COL.1 COL.2 COL.3 COL.4
1 a b
2 v b b
3 x a n h
4 t
I am new to R and I don't understand how to call the data fram in order to have this at the end, another problem is that i have more than 100 columns
stream <- c("1,a,b","2,v,b,b","3,x,a,n,h","4,t")
another problem is that I have more than 100 columns .

Try this
Reduce(function(...)paste(...,sep=","), df)
Where df is your data.frame

This might be what you're looking for, even though it's not elegant.
my_df <- data.frame(ID = seq(1, 4, by = 1),
COL.1 = c("a", "v", "x", "t"),
COL.2 = c("b", "b", "a", NULL),
COL.3 = c(NULL, "b", "n", NULL),
COL.4 = c(NULL, NULL, "h", NULL))
stream <- substring(paste(my_df$ID,
my_df$COL.1,
my_df$COL.2,
my_df$COL.3,
my_df$COL.4,
sep =","), 3)
stream <- gsub(",NA", "", stream)
stream <- gsub("NA,", "", stream)

Related

Calculating a rolling return

I have a data frame with 3 columns. What I want to do is to calculate the product of the return over a selected month rolling period for each monthly period (or said another way, each row) (where available). This is the basic structure of the data.
set.seed = 100
assets <- c("A", "B", "C", "D", "E", "F", "G", "H", "I")
FileDate <- seq(as.Date("2011-12-30"), as.Date("2019-01-31"), by="months")
df <- merge(x = assets, y = FileDate, all.x = TRUE)
df$return <- runif(774, min=0, max=1)
What it should end with is a dataframe where a new column is added with the selected period cumulative return for that time frame. For example, I have shown below a four month return. The calculation of the 4-month return on 03/30/2012 from the data would be:
((1+0.81/100)(1+0.715/100)(1+0.27/100)*(1+0.80/100)-1)*100
This would be repeated for each value under the X column.
I ended up utilizing the mutate function there you can set the lag width. in the end version I wanted
library(dplyr)
library(zoo)
# Create Test Dataframe
set.seed = 100
assets <- c("A", "B", "C", "D", "E", "F", "G", "H", "I")
FileDate <- seq(as.Date("2011-12-30"), as.Date("2019-01-31"), by="months")
df <- merge(x = assets, y = FileDate, all.x = TRUE)
df$performance <- runif(774, min=0, max=1)
This particular code creates a 5 month average on a rolling basis. If you sort by column X you can see and recreate it in excel.
df <- df %>%
group_by(x) %>%
mutate(x_mean = rollmean(performance, 5, fill = NA, align = 'right'))
I also found a way to create a lag so I could take the 4 prior values to the observation and calculate the mean:
df2 = df %>%
mutate(perf.4.previous = rollapply(data = perf.1.previous, width = 4, FUN =
mean, align = "right", fill = NA, na.rm = T))

Exchange data.table columns with most prevalent value of columns

I have data
test = data.table(
a = c(1,1,3,4,5,6),
b = c("a", "be", "a", "c", "d", "c"),
c = rep(1, 6)
)
I wish to take the unique values of column a, store it in another data.table, and afterwards fill in the remaining columns with the most prevalent values of those remaining columns, such that my resulting data.table would be:
test2 = data.table(a = c(1,3,4,5,6), b = "a", c = 1)
Column be has equal amounts of "a" and "c", but it doesn't matter which is chosen in those cases.
Attempt so far:
test2 = unique(test, by = "a")
test2[, c("b", "c") := lapply(.SD, FUN = function(x){test2[, .N, by = x][order(-N)][1,1]}), .SDcols = c("b", "c")]
EDIT: I would preferrably like a generic solution that is compatible with a function where I specify the column to be "uniqued", and the rest of the columns are with the single most prevalent value. Hence my use of lapply and .SD =)
EDIT2: as #MichaelChirico points out, how do we keep the class. With the following data.table some of the solutions does not work, although solution of #chinsoon12 does work:
test = data.table(a = c(1,1,3,4,5,6),
b = c("a", "be", "a", "c", "d", "c"),
c = rep(1, 6),
d = as.Date("2019-01-01"))
Another option:
dtmode <- function(x) x[which.max(rowid(x))]
test[, .(A=unique(A), B=dtmode(B), C=dtmode(C))]
data:
test = data.table(
A = c(1,1,3,4,5,6),
B = c("a", "be", "a", "c", "d", "c"),
C = rep(1, 6)
)
Not a clean way to do this but it works.
test = data.frame(a = c(1,1,3,4,5,6), b = c("a", "be", "a", "c", "d", "c"), c = rep(1, 6))
a = unique(test$a)
b = tail(names(sort(table(test$b))), 1)
c = tail(names(sort(table(test$c))), 1)
test2 = cbind(a,b,c)
Output is like this:
> test2
a b c
[1,] "1" "c" "1"
[2,] "3" "c" "1"
[3,] "4" "c" "1"
[4,] "5" "c" "1"
[5,] "6" "c" "1"
>
#EmreKiratli is very close to what I would do:
test[ , c(
list(a = unique(a)),
lapply(.SD, function(x) as(tail(names(sort(table(x))), 1L), class(x)))
), .SDcols = !'a']
The as(., class(x)) part is because names in R are always character, so we have to convert back to the original class of x.
You might like this better in magrittr form since it's many nested functions:
library(magrittr)
test[ , c(
list(a = unique(a)),
lapply(.SD, function(x) {
table(x) %>% sort %>% names %>% tail(1L) %>% as(class(x))
})
), .SDcols = !'a']
I was able to make an OK solution, but if somebody can do it more elegantly, for example not going through the step of storting a list in refLevel below, please let me know! I'm very interested in learning data.table properly!
#solution:
test = data.table(a = c(1,1,3,4,5,6), b = c("a", "be", "a", "c", "d", "c"), c = rep(1, 6))
test2 = unique(test, by="a")
funPrev = function(x){unlist(as.data.table(x)[, .N, by=x][order(-N)][1,1], use.names = F)}
refLevel = lapply(test[, c("b", "c")], funPrev)
test2[, c("b", "c") := refLevel]
...and using a function (if anybody see any un-necessary step, please let me know):
genData = function(dt, var_unique, vars_prev){
data = copy(dt)
data = unique(data, by = var_unique)
funPrev = function(x){unlist(as.data.table(x)[, .N, by=x][order(-N)][1,1], use.names = F)}
refLevel = lapply(dt[, .SD, .SDcols = vars_prev], funPrev)
data[, (vars_prev) := refLevel]
return(data)
}
test2 = genData(test, "a", c("b", "c"))
Here's another variant which one might find less sophisticated, yet more readable. It's essentially chinsoon12's rowid approach generalized for any number of columns. Also the classes are kept.
test = data.table(a = c(1,1,3,4,5,6),
b = c("a", "be", "a", "c", "d", "c"),
c = rep(1, 6),
d = as.Date("2019-01-01"))
test2 = unique(test, by = "a")
for (col in setdiff(names(test2), "a")) test2[[col]] = test2[[col]][which.max(rowid(test2[[col]]))]

convert all factor columns to character in a data.frame without affecting non-factor columns

For example I have a data.frame with both integer column and factor columns.
data <- data.frame(
a = 1:5,
b = factor(c("a", "b", "c", "d", "e")),
c = factor(c("f", "g", "h", "i", "j")))`
And I want to convert b and c factor columns into character, with keeping column a as integer.
I tried the follwing code :
sapply(data, function(x) {if_else(is.factor(x), as.character(x), x)})
Instead of getting the result, it throws an error:
Error: true must be length 1 (length of condition), not 5
I knew this can be done by mutate_if function in dplyr. But I still wonder why my code does not work for this case.
Thank you very much for any suggestions!
You can try:
library(tidyverse)
d <- data.frame(a = 1:5,
b = factor(c("a", "b", "c", "d", "e")),
c = factor(c("f", "g", "h", "i", "j")))
d %>% glimpse()
Observations: 5
Variables: 3
$ a <int> 1, 2, 3, 4, 5
$ b <fctr> a, b, c, d, e
$ c <fctr> f, g, h, i, j
d %>%
mutate_if(is.factor, as.character) %>%
glimpse()
Observations: 5
Variables: 3
$ a <int> 1, 2, 3, 4, 5
$ b <chr> "a", "b", "c", "d", "e"
$ c <chr> "f", "g", "h", "i", "j"
Using base R you can try
d[] <- lapply(d, function(x) if(is.factor(x)) as.character(x) else x)
For those who would like to use base R and preserve the data frame structure, rather than the list from lapply:
factor_to_characters = function(x)
{
factor_cols = sapply(x, is.factor)
x[factor_cols] = lapply(x[factor_cols], as.character)
x
}
Test it out:
> class(iris[, "Species"])
[1] "factor"
>
> i2 = factor_to_character(iris)
> class(i2[, "Species"])
[1] "character"

How to combine two data frames by equal elements

I have two data frames containing the names of genetic elements. I want another data frame with the elements in common in both data frames.
Example:
data.a data.b
Column Column
1 a c
2 b e
3 c l
4 d a
I want this result:
data.c
Column
1 a
2 c
This is just an example. The data frame data.b has more elements than data.a.
The %in% operator lets you find which elements are in both.
data.c = data.frame(Column = data.a$Column[data.a$Column %in% data.b$Column])
data.c
Column
1 a
2 c
a <- data.frame(a = c("a","b","c","d"))
a
b <- data.frame(b = c("c","d","e","f"))
b
c <- data.frame(c = a[a$a %in% b$b,])
c
The merge function allows you control the type of join you want.
df1 <- data.frame(a = c("a", "b", "c", "d"))
df2 <- data.frame(a = c("c", "e", "l", "a"))
merge(x=df1, y=df2, by.x="a", by.y="a", all = FALSE)
library(dplyr)
data.a <- data_frame(a = c("a", "b", "c", "d"))
data.b <- data_frame(a = c("c", "e", "l", "a"))
data.c <- data.a %>% inner_join(data.b)

subseting a data frame under a specific condition

How can i get rows of a data frame that has a same value in a element of that comparing with another data frame ?
I have written this but it didn't work.
# example of two data frame
df1 <- data.frame(V1 = c("a", "g", "h", "l", "n", "e"), V2 = c("b", "n", "i", "m", "i", "f"), stringsAsFactors = F)
df2 <- data.frame(V1 = c("a", "c", "f","h"), V2 = c("b", "d", "e","z"), stringsAsFactors = F)
# finding joint values in each element of two data frames
res1<-intersect(df1$V1,df2$V1)
res2<-intersect(df1$V2,df2$V2)
res3<-intersect(df1$V1,df2$V2)
res4<-intersect(df1$V1,df2$V2)
# Getting rows that has joint value at least in one element of df1
ress1<-df1[apply(df1, MARGIN = 1, function(x) all(x== res1)), ]
ress2<-df1[apply(df1, MARGIN = 1, function(x) all(x== res2)), ]
ress3<-df1[apply(df1, MARGIN = 1, function(x) all(x== res3)), ]
ress4<-df1[apply(df1, MARGIN = 1, function(x) all(x== res4)), ]
# Getting rows that has joint value at least in one element of df2
resss1<-df2[apply(df2, MARGIN = 1, function(x) all(x== res1)), ]
resss2<-df2[apply(df2, MARGIN = 1, function(x) all(x== res2)), ]
resss3<-df2[apply(df2, MARGIN = 1, function(x) all(x== res3)), ]
resss4<-df2[apply(df2, MARGIN = 1, function(x) all(x== res4)), ]
# then combine above results
final.res<-rbind(ress1,ress2,ress3,ress4,resss1,resss2,resss3,resss4)
My favorite result is:
a b
h z
h i
f e
e f
This should work
#Import data
df1 <- data.frame(V1 = c("a", "g", "h", "l", "n", "e"), V2 = c("b", "n", "i", "m", "i", "f"), stringsAsFactors = F)
df2 <- data.frame(V1 = c("a", "c", "f","h"), V2 = c("b", "d", "e","z"), stringsAsFactors = F)
# Get the intersects
vals <- intersect(c(df1$V1, df1$V2), c(df2$V1, df2$V2))
#Get the subsets and rbind them
full <- rbind(
subset(df1, df1$V1 %in% vals),
subset(df1, df1$V2 %in% vals),
subset(df2, df2$V1 %in% vals),
subset(df2, df2$V2 %in% vals)
)
#Remove duplicates
full <- full[!duplicated(full),]

Resources