I am trying to run the following example from the Bokeh docs in a Jupyter notebook as opposed to through the Bokeh server, however I can't figure out what to change in order for this to work? Right now I simply get a blank output. I feel like it should be easy and I'm just missing something...Here is the code from the Bokeh docs.
import numpy as np
from bokeh.models import BoxSelectTool, LassoSelectTool, Paragraph
from bokeh.plotting import figure, hplot, vplot
# create three normal population samples with different parameters
x1 = np.random.normal(loc=5.0, size=400) * 100
y1 = np.random.normal(loc=10.0, size=400) * 10
x2 = np.random.normal(loc=5.0, size=800) * 50
y2 = np.random.normal(loc=5.0, size=800) * 10
x3 = np.random.normal(loc=55.0, size=200) * 10
y3 = np.random.normal(loc=4.0, size=200) * 10
x = np.concatenate((x1, x2, x3))
y = np.concatenate((y1, y2, y3))
TOOLS="pan,wheel_zoom,box_select,lasso_select"
# create the scatter plot
p = figure(tools=TOOLS, plot_width=600, plot_height=600, title=None, min_border=10, min_border_left=50)
r = p.scatter(x, y, size=3, color="#3A5785", alpha=0.6)
p.select(BoxSelectTool).select_every_mousemove = False
p.select(LassoSelectTool).select_every_mousemove = False
# create the horizontal histogram
hhist, hedges = np.histogram(x, bins=20)
hzeros = np.zeros(len(hedges)-1)
hmax = max(hhist)*1.1
LINE_ARGS = dict(color="#3A5785", line_color=None)
ph = figure(toolbar_location=None, plot_width=p.plot_width, plot_height=200, x_range=p.x_range,
y_range=(-hmax, hmax), title=None, min_border=10, min_border_left=50)
ph.xgrid.grid_line_color = None
ph.quad(bottom=0, left=hedges[:-1], right=hedges[1:], top=hhist, color="white", line_color="#3A5785")
hh1 = ph.quad(bottom=0, left=hedges[:-1], right=hedges[1:], top=hzeros, alpha=0.5, **LINE_ARGS)
hh2 = ph.quad(bottom=0, left=hedges[:-1], right=hedges[1:], top=hzeros, alpha=0.1, **LINE_ARGS)
# create the vertical histogram
vhist, vedges = np.histogram(y, bins=20)
vzeros = np.zeros(len(vedges)-1)
vmax = max(vhist)*1.1
th = 42 # need to adjust for toolbar height, unfortunately
pv = figure(toolbar_location=None, plot_width=200, plot_height=p.plot_height+th-10, x_range=(-vmax, vmax),
y_range=p.y_range, title=None, min_border=10, min_border_top=th)
pv.ygrid.grid_line_color = None
pv.xaxis.major_label_orientation = -3.14/2
pv.quad(left=0, bottom=vedges[:-1], top=vedges[1:], right=vhist, color="white", line_color="#3A5785")
vh1 = pv.quad(left=0, bottom=vedges[:-1], top=vedges[1:], right=vzeros, alpha=0.5, **LINE_ARGS)
vh2 = pv.quad(left=0, bottom=vedges[:-1], top=vedges[1:], right=vzeros, alpha=0.1, **LINE_ARGS)
pv.min_border_top = 80
pv.min_border_left = 0
ph.min_border_top = 10
ph.min_border_right = 10
p.min_border_right = 10
layout = vplot(hplot(p, pv), hplot(ph, Paragraph(width=200)), width=800, height=800)
def update(attr, old, new):
inds = np.array(new['1d']['indices'])
if len(inds) == 0 or len(inds) == len(x):
hhist1, hhist2 = hzeros, hzeros
vhist1, vhist2 = vzeros, vzeros
else:
neg_inds = np.ones_like(x, dtype=np.bool)
neg_inds[inds] = False
hhist1, _ = np.histogram(x[inds], bins=hedges)
vhist1, _ = np.histogram(y[inds], bins=vedges)
hhist2, _ = np.histogram(x[neg_inds], bins=hedges)
vhist2, _ = np.histogram(y[neg_inds], bins=vedges)
hh1.data_source.data["top"] = hhist1
hh2.data_source.data["top"] = -hhist2
vh1.data_source.data["right"] = vhist1
vh2.data_source.data["right"] = -vhist2
r.data_source.on_change('selected', update)
Thanks in advance!
You have to run the output_notebook command first to set notebook operation (https://docs.bokeh.org/en/latest/docs/user_guide/notebook.html), then use the show command
tl;dr
from bokeh.io import output_notebook, show
output_notebook()
... make plots and stuff ...
show(plots)
Related
I want to plot the learning curve (loss & accuracy plot) for my gan? I try different solution but still can't plot the learning curve for my gan. I tried to use fit and history function but I get error and can't plot loss & accuracy curve. If anyone can help?
I run my code in google colab. Since I only train the discriminator I tried to use fit & history function in the definition of discriminator & gan but still get error
from tensorflow.keras.layers import Dense, Conv2DTranspose, LeakyReLU, Reshape, BatchNormalization, Activation, Conv2D
from tensorflow.keras.models import Model, Sequential
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.keras.layers import Conv2D, Flatten, Dropout
from tensorflow.keras import optimizers
import tensorflow as tf
def image_generator():
generator = Sequential()
generator.add(Dense(256*4*4, input_shape = (100,)))
#generator.add(BatchNormalization())
generator.add(LeakyReLU())
generator.add(Reshape((4,4,256)))
generator.add(Conv2DTranspose(128,kernel_size=3, strides=2, padding = "same"))
#generator.add(BatchNormalization())
generator.add(LeakyReLU(alpha=0.2))
generator.add(Conv2DTranspose(128,kernel_size=3, strides=2, padding = "same"))
#generator.add(BatchNormalization())
generator.add(LeakyReLU(alpha=0.2))
generator.add(Conv2DTranspose(128,kernel_size=3, strides=2, padding = "same"))
#generator.add(BatchNormalization())
generator.add(LeakyReLU(alpha=0.2))
generator.add(Conv2D(3,kernel_size=3, padding = "same", activation='tanh'))
return(generator)
model_generator = image_generator()
model_generator.summary()
# Define input data
def generate_data_entry(n_samples):
X = np.random.randn(100 * n_samples)
X = X.reshape(n_samples, 100)
return X
def create_data_fake(model_generator, n_samples):
input = generate_data_entry(n_samples)
X = model_generator.predict(input)
y = np.zeros((n_samples, 1))
return X,y
number_samples = 4
X,_ = create_data_fake(model_generator, number_samples)
# Visualize results
for i in range(number_samples):
plt.subplot(2, 2, 1 + i)
plt.axis('off')
plt.imshow(X[i])
def images_discriminator():
discriminator = Sequential()
discriminator.add(Conv2D(64, kernel_size=3, padding = "same", input_shape = (32,32,3)))
discriminator.add(LeakyReLU(alpha=0.2))
#discriminator.add(Dropout(0.2))
discriminator.add(Conv2D(128, kernel_size=3,strides=(2,2), padding = "same"))
discriminator.add(LeakyReLU(alpha=0.2))
#discriminator.add(Dropout(0.2))
discriminator.add(Conv2D(128, kernel_size=3,strides=(2,2), padding = "same"))
discriminator.add(LeakyReLU(alpha=0.2))
#discriminator.add(Dropout(0.2))
discriminator.add(Conv2D(256, kernel_size=3, strides=(2,2), padding = "same"))
discriminator.add(LeakyReLU(alpha=0.2))
#discriminator.add(Dropout(0.2))
discriminator.add(Flatten())
discriminator.add(Dropout(0.4))
discriminator.add(Dense(1, activation='sigmoid'))
opt = tf.keras.optimizers.Adam(learning_rate=0.0002 ,beta_1=0.5)
discriminator.compile(loss='binary_crossentropy', optimizer= opt , metrics = ['accuracy'])
return(discriminator)
model_discriminator = images_discriminator()
model_discriminator.summary()
from tensorflow.keras.datasets import cifar10
import random
import tensorflow as tf
import numpy as np
from tensorflow.keras import backend
import pandas as pd
import matplotlib.pyplot as plt
import keras
%matplotlib inline
(Xtrain, Ytrain), (testx, testy) = cifar10.load_data()
def load_images():
(Xtrain, Ytrain), (testx, testy) = cifar10.load_data()
# we stayed with the dogs
indice = np.where(Ytrain == 0)
indice = indice[0]
Xtrain = Xtrain[indice, :,:,:]
# Normalize the data
X = Xtrain.astype('float32')
X = (X - 127.5) / 127.5
return X
print(load_images().shape)
def load_data_reales(dataset, n_samples):
ix = np.random.randint(0, dataset.shape[0], n_samples)
X = dataset[ix]
y = np.ones((n_samples, 1))
return X,y
def load_data_fake(n_samples):
X = np.random.rand(32 * 32 * 3 * n_samples)
X = -1 + X * 2
X = X.reshape((n_samples, 32,32,3))
y = np.zeros((n_samples, 1))
return X,y
def train_discriminator(model, dataset, n_iterations=20, batch = 128):
medium_batch = int(batch/2)
for i in range(n_iterations):
X_real, y_real = load_data_reales(dataset, medium_batch)
los_real, acc_real = model.train_on_batch(X_real, y_real)
X_fake, y_fake = load_data_fake(medium_batch)
los_fake, acc_fake = model.train_on_batch(X_fake, y_fake)
print(str(i+1) + ' Real:' + str(acc_real*100) + ', Fake:' + str(acc_fake*100))
dataset = load_images()
train_discriminator(model_discriminator, dataset)
def my_loss_function(x_real,x_fake):
la=tf.keras.losses.BinaryCrossentropy()
my_loss_function = la(x_real, x_fake)
return my_loss_function
def create_gan(discriminator, generator):
discriminator.trainable=False
gan = Sequential()
gan.add(generator)
gan.add(discriminator)
opt = tf.keras.optimizers.Adam(learning_rate=0.0002,beta_1=0.5)
return gan
gan = create_gan(model_discriminator,model_generator)
gan.summary()
def show_images_generated(data_fake, epoch):
now = datetime.now()
now = now.strftime("%Y%m%d_%H%M%S")
# we make the data go from 0 to 1
data_fake = (data_fake + 1) / 2.0
for i in range(10):
plt.imshow(data_fake[i])
plt.axis('off')
name = str(epoch) + '_generated_image_' + str(i) + '.png'
plt.savefig(name, bbox_inches='tight')
plt.close()
def evaluate_and_save(model_generator, epoch, medium_dataset):
# We save the model
now = datetime.now()
now = now.strftime("%Y%m%d_%H%M%S")
name = str(epoch) + '_' + str(now)+"_model_generator_" + '.h5'
model_generator.save(name)
# We generate new data
X_real,Y_real = load_data_reales(dataset, medium_dataset)
X_fake, Y_fake = create_data_fake(model_generator,medium_dataset)
# We evaluate the model
_, acc_real = model_discriminator.evaluate(X_real, Y_real)
_, acc_fake = model_discriminator.evaluate(X_fake, Y_fake)
print('Acc Real:' + str(acc_real*100) + '% Acc Fake:' + str(acc_fake*100)+'%')
def training(data, model_generator, model_discriminator, epochs, n_batch, beginning = 0):
dimension_batch = int(data.shape[0]/n_batch)
medium_dataset = int(n_batch/2)
# We iterate over the epochs
for epoch in range(beginning, beginning + epochs):
# We iterate over all batches
for batch in range(n_batch):
# We load all the real data
X_real,Y_real = load_data_reales(dataset, medium_dataset)
# We train the discriminator withEnrenamos discriminator with data reales
cost_discriminator_real, _ = model_discriminator.train_on_batch(X_real, Y_real)
X_fake, Y_fake = create_data_fake(model_generator,medium_dataset)
cost_discriminator_fake, _ = model_discriminator.train_on_batch(X_fake, Y_fake)
# We generate input images for the GAN
X_gan = generate_data_entry(medium_dataset)
Y_gan = np.ones((medium_dataset, 1))
# We train the GAN with fake data
cost_gan = gan.train_on_batch(X_gan, Y_gan)
# Every 10 epochs we show the results and cost
if (epoch+1) % 10 == 0:
evaluate_and_save(model_generator,epoch = epoch, medium_dataset= medium_dataset)
show_images_generated(X_fake, epoch = epoch)
training(dataset, model_generator, model_discriminator, epochs = 10, n_batch=128, beginning = 0)
X_fake, _ = create_data_fake(n_samples=49, model_generator=model_generator)
X_fake = (X_fake+1)/2
for i in range(49):
plt.subplot(7,7,i+1)
plt.axis('off')
plt.imshow(X_fake[i])
# We generate new data
X_real1,Y_real1 = load_data_reales(dataset, int(15))
X_fake1, Y_fake1 = create_data_fake(model_generator,int(15))
# We evaluate the model
_, acc_real = model_discriminator.evaluate(X_real1, Y_real1)
_, acc_fake = model_discriminator.evaluate(X_fake1, Y_fake1)
print('Acc Real:' + str(acc_real*100) + '% Acc Fake:' + str(acc_fake*100)+'%')
I have created a fit via the Gamma_3P distribution with alpha, beta and gamma.
The Problem is, that the output y values(red) does not match the distribution(blue).
Thank you in advance for Help.
Code Following:
#test numpy plot
from reliability.Distributions import Gamma_Distribution
from reliability.Fitters import Fit_Gamma_3P
import matplotlib.pyplot as plt
x_min = 0
x_max = 10000
alpha_G = 1827.9715783463666
beta_G = 0.5175119001035541
gamma_G = 0.9999
Gamma_fit_created = Gamma_Distribution(alpha=alpha_G,beta=beta_G, gamma=gamma_G)
y_values = Gamma_fit_created.SF(xmin = x_min, xmax = x_max, label='fit function',color='green', show_plot = False)
#since the output array is 200 values within the limits, I adapted the x values
x_steps = (x_max - x_min)/len(y_values)
x_values = np.arange(x_min, x_max,x_steps)
x_values_plot = x_values[1:]
y_values_plot = y_values[1:]
plt.plot(x_values_plot, y_values_plot, label='fit function created sf 2',color='red')
Gamma_fit_created.SF(xmin = x_min, xmax = x_max, label='fit function correct',color='blue')
plt.xlim(0,10000)
plt.ylim(0,1)
#plt.plot(Gamma_fit_created.SF(xmin = 0, xmax = 10000, label='fit function created sf',color='blue'))
plt.legend()
plt.show()
Code
This is my ouput. The functions should be the same, but they are differenasdas
I'm attempting to get a r visualization running in PowerBI. It runs fine in R, but for some reason it never finishes loading in PowerBI (no error message, just the timeout screen after 5 minutes). After some experimenting, I've noticed that if I remove one plotly overlay from the create and save widget section, it will load fine. It doesn't matter which one.
I am new to R and powerBi, so any advice on a workaround would be really appreciated.
source('./r_files/flatten_HTML.r')
############### Library Declarations ###############
libraryRequireInstall("ggplot2");
libraryRequireInstall("plotly");
####################################################
################### Actual code ####################
# plot histogram of risk density using monte carlo output
x = Values[,1]; #grab first column of dataframe as dataframe
# create CDF function and overlay onto histogram
cdf = ecdf(x);
# calculate mean cordinates to draw a mean line for selected data
meancordinates = function(xdata) {
v = sum(xdata)
meanxcord = v/length(xdata)
meancord = list(meanxcord = meanxcord, meanycord = cdf(meanxcord))
return(meancord)
};
mean = meancordinates(x);
# calculate median cordinates to draw a median line for selected data
mediancordinates = function(xdata) {
medianxcord = median(xdata)
mediancord = list(medianxcord = medianxcord, medianycord = cdf(medianxcord))
return(mediancord)
};
median = mediancordinates(x)
# calculate the 80% cordinates to draw a 80% line for selected data
eightycordinates = function(xdata) {
eightyxcord = x[which(abs(cdf(xdata)-0.80) == min(abs(cdf(xdata)-0.80)))]
eightycord = list(eightyxcord = eightyxcord, eightyycord = cdf(eightyxcord))
return(eightycord);
}
eighty = eightycordinates(x);
####################################################
############# Create and save widget ###############
p = plot_ly(x = x, type = "histogram", histnorm = "probability density", name = "Histogram")
p = p %>% add_segments(
x = median$medianxcord, xend = median$medianxcord,
y = 0, yend = median$medianycord,
name = "Median")
p = p %>% add_segments(
x = eighty$eightyxcord, xend = eighty$eightyxcord,
y = 0, yend = eighty$eightyycord,
name = "80%")
p = p %>% add_segments(
x = mean$meanxcord, xend = mean$meanxcord,
y = 0, yend = mean$meanycord,
name = "Mean")
p = p %>% add_lines(x = x, y = cdf(x), name = "CDF");
internalSaveWidget(p, 'out.html');
####################################################
Looking for custom zticklabels and fontsize too on the z-axis. Most notably the intuitive approach of using zticks([-(R+r),0,R+r],["-R-r","0","R+r"],fontsize=16) does not work. I am using Julia 4.3.0 because this is an older project which I cannot fully convert to a newer version at this time. The commented lines below include additional commands I tried which were unsuccessful.
My final goal here is to get the -0.8, 0, 0.8 values on the z-axis to instead say "-r", and "0" and "r" respectively.
using PyPlot
colormapp = "nipy_spectral"
R = 1.6;
r = 0.8;
N = 256;
dx = 2*pi/(N-1);
y = zeros(N,1); # y = phi (col) toroidal
x = y.'; # x = theta (row) poloidal
for ix = 2:N; y[ix] = (ix-1)*dx; x[ix] = (ix-1)*dx; end
cosxsqr = cos(x) .+ 0.0*y;
sinxsqr = sin(x) .+ 0.0*y;
sinysqr = 0.0*x .+ sin(y);
cosysqr = 0.0*x .+ cos(y);
Rrcosxsqr = R+r*cosxsqr;
rRrcosx = r*Rrcosxsqr[:];
Xsqr = Rrcosxsqr.*cosysqr;
Ysqr = Rrcosxsqr.*sinysqr;
Zsqr = r*sinxsqr;
figure(98)
clf()
pmeshtor = pcolormesh(x,y,Zsqr+r,cmap=colormapp);
cb = colorbar();
colorvals = Zsqr+r;
colorvals = colorvals/maximum(colorvals[:])
ax = figure(99)
clf()
srf = surf(Xsqr,Ysqr,Zsqr,cstride=10,rstride=10,facecolors=get_cmap(colormapp).o((colorvals)))
cb = colorbar(pmeshtor,ticks=[0,0.8,1.6])
cb[:ax][:set_yticklabels](["-r","0","r"], fontsize=16)
xlabel("x",fontsize=16)
ylabel("y",fontsize=16)
zlabel("z",fontsize=16)
xlim([-(R+r)-0.3,R+r+0.3])
ylim([-(R+r)-0.3,R+r+0.3])
zlim([-(R+r)-0.3,R+r+0.3])
xticks([-(R+r),0,R+r],["-R-r","0","R+r"],fontsize=16)
yticks([-(R+r),0,R+r],["-R-r","0","R+r"],fontsize=16)
zticks([-r,0,r])
#zticklabels([-r,0,r],["-r","0","r"])
#setp(ax[:get_zticklabels](),fontsize=16);
#setp(ax[:set_zticklabels](["-r","0","r"]))#,fontsize=16);
Here is the resulting image.
The commented command
setp(ax[:set_zticklabels](["-r","0","r"]),fontsize=16);
does work, but only if insert missing projection option as follows in Fig 99
figure(99)
ax = subplot(111, projection="3d")
I am attempting to get a matplotlib plotting function to be able to produce a graph with the x-axis set as a time axis. However, when I attempt to plot some values against UNIX times, I encounter the error ValueError: year is out of range. What is going wrong and how can it be addressed?
import os
import time
import matplotlib.dates
import matplotlib.pyplot
import shijian
def main():
data = [
[1484611200.0, 844.4333],
[1484524800.0, 783.3373],
[1484438400.0, 774.194 ],
[1484352000.0, 769.2299]
]
save_graph_matplotlib(
values = data,
line = True,
line_width = 0.5,
title_axis_x = "time",
title_axis_y = "value",
#time_axis_x = True
)
def save_graph_matplotlib(
values = None,
title = None,
title_axis_x = None,
title_axis_y = None,
filename = None,
directory = ".",
overwrite = True,
color = "black",
LaTeX = False,
markers = True,
marker_size = 1,
aspect = None,
line = False,
line_style = "-",
line_width = 0.2,
font_size = 20,
scientific_notation = False,
time_axis_x = False
):
# 1D or 2D data
if isinstance(values[0], list):
x = [element[0] for element in values]
y = [element[1] for element in values]
else:
x = range(0, len(values))
y = values
matplotlib.pyplot.ioff()
if LaTeX is True:
matplotlib.pyplot.rc("text", usetex = True)
matplotlib.pyplot.rc("font", family = "serif")
if filename is None:
if title is None:
filename = "graph.png"
else:
filename = shijian.propose_filename(
filename = title + ".png",
overwrite = overwrite
)
else:
filename = shijian.propose_filename(
filename = filename,
overwrite = overwrite
)
figure = matplotlib.pyplot.figure()
if title is not None:
figure.suptitle(
title,
fontsize = font_size
)
if markers is True:
matplotlib.pyplot.scatter(
x,
y,
s = marker_size,
c = color,
edgecolors = "none",
)
if line is True:
matplotlib.pyplot.plot(
x,
y,
line_style,
c = color,
linewidth = line_width
)
# Turn on or off axes scientific notation.
if scientific_notation is False:
matplotlib.pyplot.gca().get_xaxis().\
get_major_formatter().set_scientific(False)
matplotlib.pyplot.gca().get_yaxis().\
get_major_formatter().set_scientific(False)
# Set axes titles.
if title_axis_x is not None:
matplotlib.pyplot.xlabel(title_axis_x, fontsize = font_size)
if title_axis_y is not None:
matplotlib.pyplot.ylabel(title_axis_y, fontsize = font_size)
# Set axes font size.
matplotlib.pyplot.xticks(fontsize = font_size)
matplotlib.pyplot.yticks(fontsize = font_size)
# Set or do not set axis x as time.
if time_axis_x:
time_formatter = matplotlib.dates.DateFormatter("%Y-%m-%d")
matplotlib.pyplot.axes().xaxis_date()
matplotlib.pyplot.axes().xaxis.set_major_formatter(time_formatter)
matplotlib.pyplot.xticks(rotation = -90)
# Set the aspect ratio.
if aspect is None:
matplotlib.pyplot.axes().set_aspect(
1 / matplotlib.pyplot.axes().get_data_ratio()
)
else:
matplotlib.pyplot.axes().set_aspect(aspect)
if not os.path.exists(directory):
os.makedirs(directory)
matplotlib.pyplot.savefig(
directory + "/" + filename,
dpi = 700
)
matplotlib.pyplot.close()
if __name__ == "__main__":
main()
You need to convert your timestamp-like x data to a python datetime object, which can then be used in matplotlib and be understood by the matplotlib.dates.DateFormatter.
This can be done using the datetime.datetime.fromtimestamp() method.
import datetime
import matplotlib.dates
import matplotlib.pyplot as plt
data = [
[1484611200.0, 844.4333],
[1484524800.0, 783.3373],
[1484438400.0, 774.194 ],
[1484352000.0, 769.2299]
]
x = [datetime.datetime.fromtimestamp(element[0]) for element in data]
y = [element[1] for element in data]
plt.plot( x, y, ls="-", c= "b", linewidth = 2 )
plt.xlabel("Dates")
time_formatter = matplotlib.dates.DateFormatter("%Y-%m-%d")
plt.axes().xaxis.set_major_formatter(time_formatter)
plt.axes().xaxis_date() # this is not actually necessary
plt.show()
Whilst not directly addressing the text of the question, the error mentioned in the title can also occur when one attempts to plot data on an existing axis whose timeline units don't match those of the plot data (e.g. seconds vs datetime).