How to hide warning messages from self-written function in R? - r

I am running an ordinary R script in which I have a self-written function. The function makes use of rm() which often produces warnings I do not want to appear in console output. Any of these solutions:
hiding warnings from rm usage from this particular self-written function,
hiding warnings from all usages of rm (globally for an R session)
would satisfy me.
foo.function <- function(){
rm(foo.object)
print("foo")
}
foo.function()
# [1] "foo"
# Warning message:
# In rm(foo.object) : object 'foo.object' not found

For these particular case of object not found, you may use something like this:
if(exists("foo.object")) rm(foo.object)
If you want to hide other warnings as well, just use suppressWarnings().

Related

Error: object 'skim_without_charts' not found [duplicate]

I got the error message:
Error: object 'x' not found
Or a more complex version like
Error in mean(x) :
error in evaluating the argument 'x' in selecting a method for function 'mean': Error: object 'x' not found
What does this mean?
The error means that R could not find the variable mentioned in the error message.
The easiest way to reproduce the error is to type the name of a variable that doesn't exist. (If you've defined x already, use a different variable name.)
x
## Error: object 'x' not found
The more complex version of the error has the same cause: calling a function when x does not exist.
mean(x)
## Error in mean(x) :
## error in evaluating the argument 'x' in selecting a method for function 'mean': Error: object 'x' not found
Once the variable has been defined, the error will not occur.
x <- 1:5
x
## [1] 1 2 3 4 5
mean(x)
## [1] 3
You can check to see if a variable exists using ls or exists.
ls() # lists all the variables that have been defined
exists("x") # returns TRUE or FALSE, depending upon whether x has been defined.
Errors like this can occur when you are using non-standard evaluation. For example, when using subset, the error will occur if a column name is not present in the data frame to subset.
d <- data.frame(a = rnorm(5))
subset(d, b > 0)
## Error in eval(expr, envir, enclos) : object 'b' not found
The error can also occur if you use custom evaluation.
get("var", "package:stats") #returns the var function
get("var", "package:utils")
## Error in get("var", "package:utils") : object 'var' not found
In the second case, the var function cannot be found when R looks in the utils package's environment because utils is further down the search list than stats.
In more advanced use cases, you may wish to read:
The Scope section of the CRAN manual Intro to R and demo(scoping)
The Non-standard evaluation chapter of Advanced R
While executing multiple lines of code in R, you need to first select all the lines of code and then click on "Run".
This error usually comes up when we don't select our statements and click on "Run".
Let's discuss why an "object not found" error can be thrown in R in addition to explaining what it means. What it means (to many) is obvious: the variable in question, at least according to the R interpreter, has not yet been defined, but if you see your object in your code there can be multiple reasons for why this is happening:
check syntax of your declarations. If you mis-typed even one letter or used upper case instead of lower case in a later calling statement, then it won't match your original declaration and this error will occur.
Are you getting this error in a notebook or markdown document? You may simply need to re-run an earlier cell that has your declarations before running the current cell where you are calling the variable.
Are you trying to knit your R document and the variable works find when you run the cells but not when you knit the cells? If so - then you want to examine the snippet I am providing below for a possible side effect that triggers this error:
{r sourceDataProb1, echo=F, eval=F}
# some code here
The above snippet is from the beginning of an R markdown cell. If eval and echo are both set to False this can trigger an error when you try to knit the document. To clarify. I had a use case where I had left these flags as False because I thought i did not want my code echoed or its results to show in the markdown HTML I was generating. But since the variable was then used in later cells, this caused an error during knitting. Simple trial and error with T/F TRUE/FALSE flags can establish if this is the source of your error when it occurs in knitting an R markdown document from RStudio.
Lastly: did you remove the variable or clear it from memory after declaring it?
rm() removes the variable
hitting the broom icon in the evironment window of RStudio clearls everything in the current working environment
ls() can help you see what is active right now to look for a missing declaration.
exists("x") - as mentioned by another poster, can help you test a specific value in an environment with a very lengthy list of active variables
I had a similar problem with R-studio. When I tried to do my plots, this message was showing up.
Eventually I realised that the reason behind this was that my "window" for the plots was too small, and I had to make it bigger to "fit" all the plots inside!
Hope to help
I'm going to add this on here even though it's not a new question as it comes quite highly in the search results for the error:
As mentioned above, re checking syntax, if you're using dplyr, make sure you have all the %>% pipes at the end of the lines above the error, otherwise the contents of anything like a select statement won't pass down into the next part of the code block.

How to avoid printing / showing messages

this question has been asked before but non of the answers is working for me.
I am using the library rhdf5 from bioconductor.org to read HDF5 files: source("http://bioconductor.org/biocLite.R"); biocLite("rhdf5"); library(rhdf5);
When I use the h5read function to read particular variables that contain references the following warning message is printed:
"Warning: h5read for type 'REFERENCE' not yet implemented. Values replaced by NA's"
(It is not shown in red like errors and warnings in RStudio. Just in black)
The warning is OK for me as I don't need those references. But I use this function to read hundreds of variables, so my screen gets polluted with these messages.
For example:
a <-h5read(f, "/#Link2#")
Warning: h5read for type 'REFERENCE' not yet implemented. Values replaced by NA's
Warning: h5read for type 'REFERENCE' not yet implemented. Values replaced by NA's
I have tried all suggestions I found (capture.output, suppressMessage/Warning, sink, options(warn, max.print, show.error.messages):
capture.output(a <- h5read(f, "/#Link2#"), file='/dev/null')
I also tried invisible just in case: invisible(capture.output(a <- h5read(f, "/#Link2#"), file='/dev/null'))
suppressWarnings(suppressMessages(a <- h5read(f, "/#Link2#")))
I also tried suppressForeignCheck and suppressPackageStartupMessages just in case
{sink("/dev/null"); a <-h5read(f, "/#Link2#"); sink()}
{options(warn=-1, max.print=1,show.error.messages=FALSE); a <-h5read(f, "/#Link2#") }
They all keep producing the same warning messages.
Does anyone knows any other thing I might try, or why are these things not working?
How does the library manages to print the messages skipping all these? Sounds that I might be doing something wrong...
Any help is appreciated.
Just as reference these are the other posts I used:
r: do not show warnings
How to suppress warnings globally in an R Script
suppress messages displayed by "print" instead of "message" or "warning" in R
Suppress one command's output in R
You should ask maintainer("rhdf5") to provide a solution -- print message less frequently, and use standard R warnings -- the message is from C code and uses printf() rather than Rf_warning() or Rf_ShowMessage() or Rprintf() / REprintf().
Here's an illustration of the problem
> library(inline)
> fun = cfunction(character(), 'printf("hello world\\n"); return R_NilValue;')
> fun()
hello world
NULL
> sink("/dev/null"); fun(); sink()
hello world
>
and a solution -- use Rf_warning() to generate R warnings. The example also illustrates how writing to R's output stream via Rprintf() would then allow the output to be captured with sink.
> fun = cfunction(character(), 'Rf_warning("hello world"); return R_NilValue;')
> x = fun()
Warning message:
In fun() : hello world
> x = suppressWarnings(fun())
> fun = cfunction(character(), 'Rprintf("hello world\\n"); return R_NilValue;')
> sink("/dev/null"); fun(); sink()
>
None of this helps you directly, though!
UPDATE the maintainer updated the code in the 'devel' branch of the package, version 2.17.2.

Retrieving expected data.frame for testthat expectation

I'd like to test that a function returns the expected data.frame. The data.frame is too large to define in the R file (eg, using something like structure()). I'm doing something wrong with the environments when I try a simple retrieval from disk, like:
test_that("SO example for data.frame retreival", {
path_expected <- "./inst/test_data/project_longitudinal/expected/default.rds"
actual <- data.frame(a=1:5, b=6:10) #saveRDS(actual, file=path_expected)
expected <- readRDS(path_expected)
expect_equal(actual, expected, label="The returned data.frame should be correct")
})
The lines execute correctly when run in the console. But when I run devtools::test(), the following error occurs when the rds/data.frame is read from a file.
1. Error: All Records -Default ----------------------------------------------------------------
cannot open the connection
1: withCallingHandlers(eval(code, new_test_environment), error = capture_calls, message = function(c) invokeRestart("muffleMessage"),
warning = function(c) invokeRestart("muffleWarning"))
2: eval(code, new_test_environment)
3: eval(expr, envir, enclos)
4: readRDS(path_expected) at test-read_batch_longitudinal.R:59
5: gzfile(file, "rb")
To make this work, what adjustments are necessary to the environment? If there's not an easy way, what's a good way to test large data.frames?
I suggest you check out the excellent ensurer package. You can include these functions inside the function itself (rather than as part of the testthat test set).
It will throw an error if the dataframe (or whatever object you'd like to check) doesn't fulfill your requirements, and will just return the object if it passes your tests.
The difference with testthat is that ensurer is built to check your objects at runtime, which probably circumvents the entire environment problem you are facing, as the object is tested inside the function at runtime.
See the end of this vignette, to see how to test the dataframe against a template that you can make as detailed as you like. You'll also find many other tests you can run inside the function. It looks like this approach may be preferable over testthat in this case.
Based on the comment by #Gavin Simpson, the problem didn't involve environments, but instead the file path. Changing the snippet's second line worked.
path_qualified <- base::file.path(
devtools::inst(name="REDCapR"),
test_data/project_longitudinal/expected/dummy.rds"
)
The file's location is found whether I'm debugging interactively, or testthat is running (and thus whether inst is in the path or not).

Problems with reassignInPackage

I am trying to understand the way the YourCast R package works and make it work with my data.
For example, if a function produces errors, I
get the source code of that function using YourCast:::bad.fn
add outputs of critical
values at critical stages
use reassignInPackage(name="original.fn", package="YourCast", value="my.fn")
Once I find the cause of the error, I fix it in the function and reassign it in the package.
However, for some strange reason this does not work for non-hidden functions.
For example:
install.packages("YourCast")
Library(YourCast)
YourCast:::check.depvar
This will print the hidden function check.depvar. One line if (all(ix == 1:3)) will produce an error message if any of the x is missing.
Thus, I change the whole function to the following and replace the original formula:
mzuba.check.depvar <- function(formula)
{
return (grepl("log[(]",as.character(formula)[2]))
}
reassignInPackage("check.depvar",
pkgName="YourCast",
mzuba.check.depvar)
rm(mzuba.check.depvar)
Now YourCast:::check.depvar will print my version of that function, and everything is fine.
However
YourCast::yourcast or YourCast:::yourcast or simply yourcast will print the non-hidden function yourcast. Suppose I want to change that function as well.
reassignInPackage(name="yourcast",
pkgName="YourCast",
value=test)
Now, YourCast::yourcast and YourCast:::yourcast will print the new, modified version but yourcast still gives the old version!
That might not a problem if I could simply call YourCast::yourcast instead of yourcast, but that produces some kind of error that I can't trace back because suddenly R-Studio does not print error messages at all anymore!, although it still does something if it is capable to:
> Uagh! do something!
> 1 + 1
[1] 2
> Why no error msg?
>
Restarting the R-session will solve the error-msg problem, though.
So my question is: How do I reassign non-hidden functions in packages?
Furthermore (this would faciliate testing a lot), is there a way to make all hidden functions available without using the ::: operator? I.e., How to export all functions from a package?

call to sapply() works in interactive mode, not in batch mode

I need to execute some commands in batch mode (e.g., via Rscript). They work in interactive mode, but not in batch mode. Here is a minimal example: sapply(1:3, is, "numeric"). Why does this work in interactive mode but return an error in batch mode? Is there a way to make a command like this work in batch mode?
More specifically, I need to write scripts and to run them in batch mode. They need to call a function (which I didn't write and can't edit) that looks like this:
testfun <- function (...)
{
args <- list(...)
if (any(!sapply(args, is, "numeric")))
stop("All arguments must be numeric.")
else
writeLines("All arguments look OK.")
}
I need to pass a list to this function. A command like testfun(list(1, 2, 3)) works in interactive mode. But in batch mode, it produces an error: Error in match.fun(FUN) : object 'is' not found. I tried debugger() to get a handle on the problem, but it didn't give me any insight. I also looked through r-help, the R FAQ, R Inferno, but I couldn't find anything that spoke to this problem.
Rscript doesn't load the methods package by default because it takes a lot of time. From the Details section of ?Rscript:
‘--default-packages=list’ where ‘list’ is a comma-separated list
of package names or ‘NULL’. Sets the environment variable
‘R_DEFAULT_PACKAGES’ which determines the packages loaded on
startup. The default for ‘Rscript’ omits ‘methods’ as it
takes about 60% of the startup time.
You can make it load methods by using the --default-packages argument.
> Rscript -e 'sapply(1:3, is, "numeric")' --default-packages='methods'
[1] TRUE TRUE TRUE

Resources