vegan accumulation curve predictions [closed] - r

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 6 years ago.
Improve this question
I'm having a matrix of plants(rows) and pollinators(columns) and interaction frequencies within (converted to 0 (no interaction) and 1 (interaction/s present) for this analysis).
I'm using the vegan package and have produced a species accumulation curve.
accum <- specaccum(mydata[1:47,], method = "random", permutations = 1000)
plot(accum)
I now would like to predict how many new pollinator species I would be likely to find with additional plant sampling but can't figure in what format I have to include "newdata" within the predict command. I have tried empty rows and rows with zeros within the matrix but was not able to get results. This is the code I've used for the prediction:
predictaccum1 <- predict(accum, newdata=mydata[48:94,])
The error message:
Error in UseMethod("predict") :
no applicable method for 'predict' applied to an object of class "specaccum"
The error message does not change if I specify: interpolation = c("linear") or "spline".
Could anyone help please?

Not perhaps the clearest way of putting this, but the documentation says:
newdata: Optional data used in prediction interpreted as number of
sampling units (sites).
It should be a number of sampling units you had. A single number or a vector of numbers will do. However, the predict function cannot extrapolate, but it only interpolates. The nonlinear regression models of fitspecaccum may be able to extrapolate, but should you trust them?
Here a bit about dangers of extrapolation: the non-linear regression models are conventionally used analysing species accumulation data, but none of these is really firmly based on theory -- they are just some nice non-linear regression models. I know of some models that may have a firmer basis, but we haven't implemented them in vegan, neither plan to do so (but contributions are welcome). However, it is possible to get some idea of problems by subsampling your data and seeing if you can estimate the overall number of species with an extrapolation from your subsample. The following shows how to do this with the BCI data in vegan. These data have 50 sample plot with 225 species. We take subsamples of 25 plots and extrapolate to 50:
mod <- c("arrhenius", "gleason", "gitay", "lomolino", "asymp", "gompertz",
"michaelis-menten", "logis", "weibull")
extraps <- matrix(NA, 100, length(mod))
colnames(extraps) <- mod
for(i in 1:nrow(extraps)) {
## use the same accumulation for all nls models
m <- specaccum(BCI[sample(50,25),], "exact")
for(p in mod) {
## need try because some nls models can fail
tmp <- try(predict(fitspecaccum(m, p), newdata=50))
if(!inherits(tmp, "try-error")) extraps[i,p] <- tmp
}
}
When I tried this, most extrapolation models did not include the correct number of species among their predictions, but all values were either higher than correct richness (from worst: Arrhenius, Gitay, Gleason) or lower than correct richness (from worst: logistic, Gompertz, asymptotic, Michaelis-Menten, Lomolino, Weibull; only these two last included the correct richness in their range).
In summary: in lack of theory and adequate model, beware extrapolation.

Related

Plot an envelope for an mppm object in spatstat

My question is closely related to this previous one: Simulation-based hypothesis testing on spatial point pattern hyperframes using "envelope" function in spatstat
I have obtained an mppm object by fitting a model on several independent datasets using the mppmfunction from the R package spatstat. How can I study its envelope to compare it to my observations ?
I fitted my model as such:
data <- listof(NMJ1,NMJ2,NMJ3)
data <- hyperframe(X=1:3, Points=data)
model <- mppm(Points ~marks*sqrt(x^2+y^2), data)
where NMJ1, NMJ2, and NMJ3 are marked ppp and are independent realizations of the same experiment.
However, the envelope function does not accept inputs of type mppm:
> envelope(model, Kcross.inhom, nsim=10)
Error in UseMethod("envelope") :
no applicable method for 'envelope' applied to an object of class "c('mppm', 'list')"
The answer provided to the previously mentioned question indicates how to plot global envelopes for each pattern, and to use the product rule for multiple testing. However, my fitted model implies that my 3 ppp objects are statistically equivalent, and are independent realizations of the same experiment (ie no different covariates between them). I would thus like to obtain one single plot comparing my fitted model to my 3 datasets. The following code:
gamma= 1 - 0.95^(1/3)
nsims=round(1/gamma-1)
sims <- simulate(model, nsim=2*nsims)
SIMS <- list()
for(i in 1:nrow(sims)) SIMS[[i]] <- as.solist(sims[i,,drop=TRUE])
Hplus <- cbind(data, hyperframe(Sims=SIMS))
EE1 <- with(Hplus, envelope(Points, Kcross.inhom, nsim=nsims, simulate=Sims))
pool(EE1[1],EE1[2],EE1[3])
leads to the following error:
Error in pool.envelope(`1` = list(r = c(0, 0.78125, 1.5625, 2.34375, 3.125, :
Arguments 2 and 3 do not belong to the class “envelope”
Wrong type of subset index. Use
pool(EE1[[1]], EE1[[2]], EE1[[3]])
or just
pool(EE1)
These would have given an error message that the envelope commands should have been called with savefuns=TRUE. So you just need to change that step as well.
However, statistically this procedure makes little sense. You have already fitted a model, which allows for rigorous statistical inference using anova.mppm and other tools. Instead of this, you are generating simulated data from the fitted model and performing a Monte Carlo test, with all the fraught issues of multiple testing and low power. There are additional problems with this approach - for example, even if the model is "the same" for each row of the hyperframe, the patterns are not statistically equivalent unless the windows of the point patterns are identical, and so on.

How to obtain Brier Score in Random Forest in R?

I am having trouble getting the Brier Score for my Machine Learning Predictive models. The outcome "y" was categorical (1 or 0). Predictors are a mix of continuous and categorical variables.
I have created four models with different predictors, I will call them "model_1"-"model_4" here (except predictors, other parameters are the same). Example code of my model is:
Model_1=rfsrc(y~ ., data=TrainTest, ntree=1000,
mtry=30, nodesize=1, nsplit=1,
na.action="na.impute", nimpute=3,seed=10,
importance=T)
When I run the "Model_1" function in R, I got the results:
My question was how can I get the predicted possibility for those 412 people? And how to find the observed probability for each person? Do I need to calculate by hand? I found the function BrierScore() in "DescTools" package.
But I tried "BrierScore(Model_1)", it gives me no results.
codes I added:
library(scoring)
library(DescTools)
BrierScore(Raw_SB)
class(TrainTest$VL_supress03)
TrainTest$VL_supress03_nu<-as.numeric(as.character(TrainTest$VL_supress03))
class(TrainTest$VL_supress03_nu)
prediction_Raw_SB = predict(Raw_SB, TrainTest)
BrierScore(prediction_Raw_SB, as.numeric(TrainTest$VL_supress03) - 1)
BrierScore(prediction_Raw_SB, as.numeric(as.character(TrainTest$VL_supress03)) - 1)
BrierScore(prediction_Raw_SB, TrainTest$VL_supress03_nu - 1)
I tried some codes: have so many error messages:
One assumption I am making about your approach is that you want to compute the BrierScore on the data you train your model on (which is usually not the correct approach, google train-test split if you need more info there).
In general, therefore you should reflect on whether your approach is correct there.
The BrierScore method in DescTools only has a defined method for glm models, otherwise, it expects as input a vector of predicted probabilities and a vector of true values (see ?BrierScore).
What you would need to do though is to predict on your data using:
prediction = predict(model_1, TrainTest, na.action="na.impute")
and then compute the brier score using
BrierScore(as.numeric(TrainTest$y) - 1, prediction$predicted[, 1L])
(Note, that we transform TrainTest$y into a numeric vector of 0's and 1's in order to compute the brier score.)
Note: The randomForestSRC package also prints a normalized brier score when you call print(prediction).
In general, using one of the available workbenches for machine learning in R (mlr3, tidymodels, caret) might simplify this approach for you and prevent a lot of errors in this direction. This is a really good practice, especially if you are less experienced in ML as it can prevent many errors.
See e.g. this chapter in the mlr3 book for more information.
For reference, here is some very similar code using the mlr3 package, automatically also taking care of train-test splits.
data(breast, package = "randomForestSRC") # with target variable "status"
library(mlr3)
library(mlr3extralearners)
task = TaskClassif$new(id = "breast", backend = breast, target = "status")
algo = lrn("classif.rfsrc", na.action = "na.impute", predict_type = "prob")
resample(task, algo, rsmp("holdout", ratio = 0.8))$score(msr("classif.bbrier"))

Writing syntax for bivariate survival censored data to fit copula models in R

library(Sunclarco)
library(MASS)
library(survival)
library(SPREDA)
library(SurvCorr)
library(doBy)
#Dataset
diabetes=data("diabetes")
data1=subset(diabetes,select=c("LASER","TRT_EYE","AGE_DX","ADULT","TIME1","STATUS1"))
data2=subset(diabetes,select=c("LASER","TRT_EYE","AGE_DX","ADULT","TIME2","STATUS2"))
#Adding variable which identify cluster
data1$CLUSTER<- rep(1,197)
data2$CLUSTER<- rep(2,197)
#Renaming the variable so that that we hve uniformity in the common items in the data
names(data1)[5] <- "TIME"
names(data1)[6] <- "STATUS"
names(data2)[5] <- "TIME"
names(data2)[6] <- "STATUS"
#merge the files
Total_data=rbind(data1,data2)
# Re arranging the database
diabete_full=orderBy(~LASER+TRT_EYE+AGE_DX,data=Total_data)
diabete_full
#using Sunclarco package for Clayton a nd Gumbel
Clayton_1step <- SunclarcoModel(data=diabete_full,time="TIME",status="STATUS",
clusters="CLUSTER",covariates=c("LASER","TRT_EYE","ADULT"),
stage=1,copula="Clayton",marginal="Weibull")
summary(Clayton_1step)
# Estimates StandardErrors
#lambda 0.01072631 0.005818201
#rho 0.79887565 0.058942208
#theta 0.10224445 0.090585891
#beta_LASER 0.16780224 0.157652947
#beta_TRT_EYE 0.24580489 0.162333369
#beta_ADULT 0.09324001 0.158931463
# Estimate StandardError
#Kendall's Tau 0.04863585 0.04099436
Clayton_2step <- SunclarcoModel(data=diabete_full,time="TIME",status="STATUS",
clusters="CLUSTER",covariates=c("LASER","TRT_EYE","ADULT"),
stage=2,copula="Clayton",marginal="Weibull")
summary(Clayton_1step)
# Estimates StandardErrors
#lambda 0.01131751 0.003140733
#rho 0.79947406 0.012428824
#beta_LASER 0.14244235 0.041845100
#beta_TRT_EYE 0.27246433 0.298184235
#beta_ADULT 0.06151645 0.253617142
#theta 0.18393973 0.151048024
# Estimate StandardError
#Kendall's Tau 0.08422381 0.06333791
Gumbel_1step <- SunclarcoModel(data=diabete_full,time="TIME",status="STATUS",
clusters="CLUSTER",covariates=c("LASER","TRT_EYE","ADULT"),
stage=1,copula="GH",marginal="Weibull")
# Estimates StandardErrors
#lambda 0.01794495 0.01594843
#rho 0.70636113 0.10313853
#theta 0.87030690 0.11085344
#beta_LASER 0.15191936 0.14187943
#beta_TRT_EYE 0.21469814 0.14736381
#beta_ADULT 0.08284557 0.14214373
# Estimate StandardError
#Kendall's Tau 0.1296931 0.1108534
Gumbel_2step <- SunclarcoModel(data=diabete_full,time="TIME",status="STATUS",
clusters="CLUSTER",covariates=c("LASER","TRT_EYE","ADULT"),
stage=2,copula="GH",marginal="Weibull")
Am required to fit copula models in R for different copula classes particularly the Gaussian, FGM,Pluckett and possibly Frank (if i still have time). The data am using is Diabetes data available in R through the package Survival and Survcorr.
Its my thesis am working on and its a study for the exploratory purposes to see how does copula class serves different purposes as in results they lead to having different results on the same. I found a package Sunclarco in Rstudio which i was able to fit Clayton and Gumbel copula class but its not available yet for the other classes.
The challenge am facing is that since i have censored data which has to be incorporated in likelihood estimation then it becomes harder fro me to write a syntax since as I don't have a strong programming background. In addition, i have to incorporate the covariates present in programming and see their impact on the association if it present or not. However, taking to my promoter he gave me insights on how to approach the syntax writing for this puzzle which goes as follows
• ******First of all, forget about the likelihood function. We only work with the log-likelihood function. In this way, you do not need to take the product of the contributions over each of the observations, but can take the sum of the log-contributions over the different observations.
• Next, since we have a balanced design, we can use the regular data frame structure in which we have for each cluster only one row in the data frame. The different variables such as the lifetimes, the indicators and all the covariates are the columns in this data frame.
• Due to the bivariate setting, there are only 4 possible ways to give a contribution to the log-likelihood function: both uncensored, both censored, first uncensored and second censored, or first censored and second uncensored. Well, to create the loglikelihood function, you create a new variable in your data frame in which you put the correct contribution of the log-likelihood based on which individual in the couple is censored. When you take the sum of this variable, you have the value of the log-likelihood function.
• Since this function depends on parameters, you can use any optimizer, like optim or nlm to get your optimal values. By careful here, optim and nlm look for the minimum of a function, not a maximum. This is easy solved since the minimum of a function -f is the same as the maximum of a function f.
• Since you have for each copula function, the different expressions for the derivatives, it should be possible to get the likelihood functions now.******
Am still struggling to find a way as for each copula class each of the likelihood changes as the generator function is also unique for the respective copula since it needs to be adapted during estimation. Lastly, I should run analysis for both one and two steps of copula estimations as i will use to compare results.
if someone could help me to figure it out then I will be eternally grateful. Even if for just one copula class e.g. Gaussian then I will figure it the rest based on the one that am requesting to be assisted since I tried everything and still i have nothing to show up for and now i feel time is running out to get answers by myself.

Calculating confidence intervall for quantiles first by hand (than in R) [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 9 years ago.
Improve this question
It would be great if someone can check whether my approach is correct or not.
Question in short will be, if the error calculation is the correct way.
lets assume i have the following data.
data = c(23.7,25.47,25.16,23.08,24.86,27.89,25.9,25.08,25.08,24.16,20.89)
Furthermore i want to check if my data follows a normal distribution.
Edit: I know that there are tests etc. but i will concentrate on constructing the qqplot with confidence lines. I know that there is a method in the car package, but i want to understand the building of these lines.
So i calculate the percentiles for my sample data as well as for my theoretical distribution (with estimated mu = 24.6609and sigma = 1.6828. So i end up with these two vectors containing the percentiles.
percentileReal = c(23.08,23.7,24.16,24.86,25.08,25.08,25.16,25.47,25.90)
percentileTheo = c(22.50,23.24,23.78,24.23,24.66,25.09,25.54,26.08,26.82)
Now i want to calculate the confidence intervall for alpha=0.05 for the theoretical percentiles. If i rembember myself correct, the formula is given by
error = z*sigma/sqrt(n),
value = +- error
with n=length(data) and z=quantil of the normal distribution for the given p.
So in order to get the confidence intervall for the 2nd percentile i'll do the following:
error = (qnorm(20+alpha/2,mu,sigma)-qnorm(20-alpha/2,mu,sigma))*sigma/sqrt(n)
Insert the values:
error = (qnorm(0.225,24.6609,1.6828)-qnorm(0.175,24.6609,1.6828)) * 1.6828/sqrt(11)
error = 0.152985
confidenceInterval(for 2nd percentil) = [23.24+0.152985,23.24-0.152985]
confidenceInterval(for 2nd percentil) = [23.0870,23.3929]
Finally i have
percentileTheoLower = c(...,23.0870,.....)
percentileTheoUpper = c(...,23.3929,.....)
same for the rest....
So what do you think, can i go with it?
If your goal is to test if the data follows a normal distribution, use the shapiro.wilk test:
shapiro.test(data)
# Shapiro-Wilk normality test
# data: data
# W = 0.9409, p-value = 0.5306
1-p is the probability that the distribution is non-normal. So, since p>0.05 we cannot assert that the distribution is non-normal. A crude interpretation is that "there is a 53% chance that the distribution is normal."
You can also use qqplot(...). The more nearly linear this plot is, the more likely it is that your data is normally distributed.
qqnorm(data)
Finally, there is the nortest package in R which has, among other things, the Pearson Chi-Sq test for normality:
library(nortest)
pearson.test(data)
# Pearson chi-square normality test
# data: data
# P = 3.7273, p-value = 0.2925
This (more conservative) test suggest that there is only a 29% chance that the distribution is normal. All these tests are fully explained in the documentation.

Using survfit object's formula in survdiff call

I'm doing some survival analysis in R, and looking to tidy up/simplify my code.
At the moment I'm doing several steps in my data analysis:
make a Surv object (time variable with indication as to whether each observation was censored);
fit this Surv object according to a categorical predictor, for plotting/estimation of median survival time processes; and
calculate a log-rank test to ask whether there is evidence of "significant" differences in survival between the groups.
As an example, here is a mock-up using the lung dataset in the survival package from R. So the following code is similar enough to what I want to do, but much simplified in terms of the predictor set (which is why I want to simplify the code, so I don't make inconsistent calls across models).
library(survival)
# Step 1: Make a survival object with time-to-event and censoring indicator.
# Following works with defaults as status = 2 = dead in this dataset.
# Create survival object
lung.Surv <- with(lung, Surv(time=time, event=status))
# Step 2: Fit survival curves to object based on patient sex, plot this.
lung.survfit <- survfit(lung.Surv ~ lung$sex)
print(lung.survfit)
plot(lung.survfit)
# Step 3: Calculate log-rank test for difference in survival objects
lung.survdiff <- survdiff(lung.Surv ~ lung$sex)
print(lung.survdiff)
Now this is all fine and dandy, and I can live with this but would like to do better.
So my question is around step 3. What I would like to do here is to be able to use information in the formula from the lung.survfit object to feed into the calculation of the differences in survival curves: i.e. in the call to survdiff. And this is where my domitable [sic] programming skills hit a wall. Below is my current attempt to do this: I'd appreciate any help that you can give! Once I can get this sorted out I should be able to wrap a solution up in a function.
lung.survdiff <- survdiff(parse(text=(lung.survfit$call$formula)))
## Which returns following:
# Error in survdiff(parse(text = (lung.survfit$call$formula))) :
# The 'formula' argument is not a formula
As I commented above, I actually sorted out the answer to this shortly after having written this question.
So step 3 above could be replaced by:
lung.survdiff <- survdiff(formula(lung.survfit$call$formula))
But as Ben Barnes points out in the comment to the question, the formula from the survfit object can be more directly extracted with
lung.survdiff <- survdiff(formula(lung.survfit))
Which is exactly what I wanted and hoped would be available -- thanks Ben!

Resources