I am doing OpenCL on an NVIDIA Quadro M4000 installed on PCIe 3x16. On the card documentation, it is stated that the transfer rate CPU->GPU can go up to 15.7Gb/s while on my benchmark it is yielding only ~2.4Gb/s. I know that effective transfer rate can significantly differ from theoretical one but I wasn't expecting the difference to be that much.
Anyone has any experience with the quadro CPU->GPU data transfer.
Thanks
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<string>
#include<cmath>
#include<CL/cl.h>
#include <Windows.h>
using namespace std;
SYSTEMTIME last_call;
cl_platform_id platform_id = NULL;
cl_uint ret_num_platform;
cl_device_id device_id = NULL;
cl_uint ret_num_device;
cl_context context = NULL;
cl_command_queue command_queue = NULL;
cl_program program = NULL;
cl_kernel kernel = NULL;
cl_int err;
void _profile(char* msg){
SYSTEMTIME tmp;
clFinish(command_queue);
GetSystemTime(&tmp);
printf("__Profile --- %s --- : %d : %d : %d\n", msg, (tmp.wMinute - last_call.wMinute),
(tmp.wSecond - last_call.wSecond),
(tmp.wMilliseconds - last_call.wMilliseconds));
last_call = tmp;
}
int main()
{
// Reading Kernel Program
char *kernel_src_std = "__kernel void copy(__global const uchar *x, __global uchar *z){\
const int id = get_global_id(0);\
z[id] = x[id]; \
}";
size_t kernel_src_size = strlen(kernel_src_std);
// Create Input data
int w = 1920;
int h = 1080;
int c = 3;
float* input = (float*)malloc(w * h * c * sizeof(float));
for(int i=0;i<w*h*c;i++)
input[i] = (float)rand()/RAND_MAX;
// getting platform ID
err = clGetPlatformIDs(1, &platform_id, &ret_num_platform);
// Get Device ID
err = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_GPU, 1, &device_id, &ret_num_device );
// Create Context
context = clCreateContext(NULL,1,&device_id,NULL,NULL,&err);
// Create Command Queue
command_queue = clCreateCommandQueue(context, device_id, 0, &err);
// Create buffer Object
cl_mem buf_in = clCreateBuffer(context,CL_MEM_READ_ONLY, sizeof(float) * w*h*c,
0, &err);
cl_mem buf_out = clCreateBuffer(context,CL_MEM_WRITE_ONLY, sizeof(float) * w*h*c,
0, &err);
_profile("Start transfer input...");
// Copy Data from Host to Device
cl_event event[5];
err = clEnqueueWriteBuffer(command_queue,buf_in,CL_TRUE, 0, sizeof(float)*w*h*c,input,0,NULL, NULL);
_profile("End transfer input...");
// Create and Build Program
program = clCreateProgramWithSource(context, 1, (const char **)&kernel_src_std, 0, &err);
// Create Kernel
kernel = clCreateKernel(program,"copy",&err );
// Set Kernel Arguments
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&buf_in);
err = clSetKernelArg(kernel, 1,sizeof(cl_mem), (void *)&buf_out);
// Execute Kernel
size_t ws[]={h*w*c};
size_t lws[]={100};
err = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL, ws, lws, 0, NULL, NULL);
// Create output buf
float* output = (float*)malloc(sizeof(float)*w*h*c);
// Read output Data, from Device to Host
err = clEnqueueReadBuffer(command_queue, buf_out, CL_TRUE, 0, sizeof(float)*w*h*c, output,NULL,NULL,NULL);
//Release Objects
clReleaseMemObject(buf_in);
clReleaseMemObject(buf_out);
clReleaseKernel(kernel);
clReleaseProgram(program);
clReleaseCommandQueue(command_queue);
clReleaseContext(context);
free(input);
free(output);
while(1);
return(0);
}
As your question is vague it is hard to pinpoint the exact reason for your poor performance. Some concrete code might help.
However, in your comments you say that you transfer an array of 6220800 floats. That is about 200 megabits to transfer. At maximum transfer rate (15.7Gb/s) that should give about 12ms.
However, with every new transfer request there is also a latency that is added, which --- for small transfers --- can effectively degrade your transfer rate.
Have you tried benchmarking on significantly bigger arrays (say, 100x the size)?
You're using blocking transfers which means you're incurring a stall on the read/write requests (additionally you're not using pinned memory, but you addressed that). At the moment, your code goes
Begin timing -> Write -> stall -> kernel -> read -> stall -> end timing. This will drastically affect the timings for your memory bandwidth transfer if your transfer scale is on the order of 2ms, as the stalls are comparable in size to this. You'll need to eliminate these stalls if you want to measure the bandwidth accurately
Related
I was trying to use the Intel's FFT1D kernel by writing the Host program by my own for Intel FPGA. Link to Intel's FFT1d can be found here
I have also given my host program below, wherein, I have a file saved (which contains some data), my task is to read that data, calculate its FFT and print some of it. It is a 4K point FFT
#include <stdio.h>
#include <stdlib.h>
#include "CL/opencl.h"
#include "AOCLUtils/aocl_utils.h"
#include <string.h>
#include "fft_config.h"
#define N (1<<LOGN) //Please check the FFT Sample Code for Ref (2 to the power 12 gives 4K points)
#define DATA_FILE "complex_input.data"
using namespace aocl_utils;
cl_platform_id platform = NULL;
cl_device_id device = NULL;
cl_command_queue queue0 = NULL;
cl_command_queue queue1 = NULL;
cl_context context = NULL;
cl_program program = NULL;
cl_kernel kernel0, kernel1;
cl_mem d_inData, d_outData;
cl_int err = 0;
typedef struct {
float x;
float y;
} float2;
//float2 h_outData[N], h_inData[N];
float2 *h_inData = (float2 *)alignedMalloc(sizeof(float2)*N);
float2 *h_outData = (float2 *)alignedMalloc(sizeof(float2)*N);
void init(); //Function that does the job of Querying Platform and Device, creating Context, Command Queues, Program and required Kernels to do the job.
void cleanup(); //Function that releases all the Created Contexts, Buffers etc, in order to finish the execution.
void read_data(); //Reads data from the complex numbers from .data file and fills in the float2 struct h_inData[].
int temp_value = 1;
int main()
{
// h_inData = (float2 *)alignedMalloc(sizeof(float2)*N);
//h_outData = (float2 *)alignedMalloc(sizeof(float2)*N);
int inverse = false;
int temp =1;
init();
read_data();
d_inData = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float2)*N, NULL, &err);
checkError(err,"Failed to allocate Buffer for input array\n");
d_outData = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_CHANNEL_2_INTELFPGA, sizeof(float2)*N, NULL, &err);
checkError(err, "Failed to allocate the Buffer for output\n");
//WE FINISH THE FETCH KERNEL
err = clEnqueueWriteBuffer(queue1,d_inData, CL_TRUE, 0, sizeof(float2)*N, h_inData, 0, NULL, NULL);
checkError(err,"Failed to Write the input Buffer\n");
err = clSetKernelArg(kernel1, 0, sizeof(cl_mem), (void *)&d_inData);
checkError(err, "Failed to set KerArg for Kernel1 - 0\n");
err = clSetKernelArg(kernel0, 0, sizeof(cl_mem), (void *)&d_outData);
checkError(err, "Failed to set KerArg for Kernel0 - 0\n");
err = clSetKernelArg(kernel0, 1, sizeof(cl_int), (void *)&temp_value);
checkError(err, "Failed to set KerArg for Kernel0 - 1\n");
err = clSetKernelArg(kernel0, 2, sizeof(cl_int), (void *)&inverse);
checkError(err, "Failed to set KerArg for Kernel0 - 2\n");
printf("FFT Initialization Complete!\n\n");
err = clEnqueueTask(queue0, kernel0, 0, NULL, NULL);
checkError(err, "Failed to Launch the Kernel for FFT\n");
size_t local_work_size = N/8;
size_t global_work_size = local_work_size * 1; //Coz the number of Iterations is just 1
err = clEnqueueNDRangeKernel(queue1, kernel1, 1, NULL, &local_work_size, &global_work_size, 0, NULL, NULL);
checkError(err, "Failed to launch the Fetch Kernel\n");
err = clFinish(queue0);
checkError(err, "Failed to finish FFT\n");
err = clFinish(queue1);
checkError(err, "Failed to finish Fetch kernel\n");
err = clEnqueueReadBuffer(queue0, d_outData, CL_TRUE, 0, sizeof(float2)*N, h_outData, 0, NULL, NULL);
checkError(err, "Failed to Read back the Buffer output\n");
printf("FFT is Complete!\n\n");
printf("Printing some of the values, just to make sure they are non-zero\n\n");
for(int ii=100;ii<125;ii++)
{
printf("%f + %f j -> %f + %f j\n",h_inData[ii].x,h_inData[ii].y,h_outData[ii].x,h_outData[ii].y);
}
printf("\n\n");
cleanup();
return 0;
}
void read_data()
{
size_t sourceSize;
float* temp;
FILE *fp = fopen(DATA_FILE,"r");
if(fp==NULL)
{
printf("Could not find the Random Data File! Exiting!\n");
exit(1);
}
fseek(fp,0,SEEK_END);
sourceSize=ftell(fp);
rewind(fp);
temp = (float *)alignedMalloc(sourceSize);
fread(temp, sizeof(float),sourceSize,fp);
fclose(fp);
for(int i=0;i<N;i++)
{
h_inData[i].x = temp[2*i];
h_inData[i].y = temp[(2*i)+1];
}
}
void init()
{
platform = findPlatform("Intel(R) FPGA SDK for OpenCL(TM)");
if(platform == NULL)
{
printf("Could not find the Platform\n");
exit(1);
}
scoped_array<cl_device_id> devices;
cl_uint num_devices;
devices.reset(getDevices(platform, CL_DEVICE_TYPE_ACCELERATOR, &num_devices));
device = devices[0];
context = clCreateContext(NULL, 1, &device, &oclContextCallback, NULL, &err);
checkError(err, "Failed to create Context\n");
queue0 = clCreateCommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE, &err);
checkError(err, "Failed to create Command Queue0\n");
queue1 = clCreateCommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE, &err);
checkError(err, "Failed to create Command Queue1\n");
program = createProgramFromBinary(context, "bin/fft1d.aocx", &device, 1);
err = clBuildProgram(program, 1, &device, "", NULL, NULL);
checkError(err, "Failed to Build Program\n");
kernel0 = clCreateKernel(program, "fft1d", &err);
checkError(err,"Could not Create Kernel0\n");
kernel1 = clCreateKernel(program, "fetch", &err);
checkError(err, "Could not Create Kernel1\n");
printf("Finished with the Initial Setup!\n");
}
void cleanup()
{
if(kernel0)
clReleaseKernel(kernel0);
if(kernel1)
clReleaseKernel(kernel1);
if(program)
clReleaseProgram(program);
if(queue0)
clReleaseCommandQueue(queue0);
if(queue1)
clReleaseCommandQueue(queue1);
if(d_inData)
clReleaseMemObject(d_inData);
if(d_outData)
clReleaseMemObject(d_outData);
if(context)
clReleaseContext(context);
}
I checked if the data from file is being read fine, and It is correct and as expected.
Please let me know where could this go wrong!
Update!
I found out the solution. Reading from the itself was not a good idea, here. I tried generating the random there during the execution and it worked just fine!
I checked out some answers, which indicates an immediate return after clEnqueueNDRangeKernel starts (for example in this link the 1st question). But in my case, the kernel executes serially (one by one).
A simple example of my code:
cl_int err;
cl_platform_id* platforms;
cl_device_id* devices;
cl_context context;
cl_command_queue queue;
cl_int gpu_platform_id;
SetupPlatform(&platforms, &gpu_platform_id);
SetupDevice(platforms, &devices, gpu_platform_id);
SetupContext(platforms, devices, &context, 1, gpu_platform_id);
SetupQueue(&queue, context, devices);
cl_program programs[2];
cl_event events[3];
...
programs[0] = SetupBuildProgramWithBinary(context, devices, "Kernel1_Opt.bin");
programs[1] = SetupBuildProgramWithBinary(context, devices, "Kernel2_Opt.bin");
cl_kernel kernels[2];
char kernel_name[][50] = { "kernel1","kernel2"};
SetupKernel(kernels, programs, 2, kernel_name);
...(some host data preparation)
err = clEnqueueNDRangeKernel(queue, kernels[0], 3, 0, kernel1_global_size, kernel1_local_size,
0, NULL, &events[0]); checkErr(err);
clWaitForEvents(1, &events[0]);
for(int i=0;i<2;i++){
...(some host data preparation)
err = clEnqueueNDRangeKernel(queue, kernels[1], 2, 0, kernel2_global_size,
kernel2_local_size, 0, NULL, &events[i+1]); checkErr(err);
}
I want the kernel execution in the for loop to be asynchronousso that the host data preparation in the second loop can be executed while the kernel in the first loop is executing. But the fact is that clEnqueueNDRangeKernel does not return immediately to the host, so I can not process the data preparation in the second loop immediately.
My queue setup is:
cl_int err = 0;
cl_command_queue_properties props[] = { CL_QUEUE_PROFILING_ENABLE |
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE };
//choose 0th device
*queue = clCreateCommandQueue(context, devices[0], *props, &err); checkErr(err);
I am using Windows OS, NVIDIA RTX 3090 GPU card, kernels are compiled with OpenCL 3.0.
I am working on my dissertation project trying to investigate if and when the use of OpenCL pipes can be useful also on CPUs (we already know they are widely used in FPGAs).
I am trying to implement even the simplest algorithm where I have a producer (writing to the pipe) and a consumer kernel (reading from the pipe). I would like to execute the two kernels in parallel and have a blocking behaviour for the pipe (read only when the pipe is not empty). Reading on Intel documentation at Intel_FPGA_Opencl it is explained that the attribute __attribute__((blocking)) declared for the pipe should have the read operation blocking when the pipe is empty. However, when I try to use the attribute I get __write_pipe_2_bl is undefined. I even tried to emulate the blocking behaviour with a while loop (as shown in the intel documentation) but the kernel stalls even if the pipe is not empty.
Furthermore, the kernels seem not to run in parallel unless I use two different command queues.
Kernel code:
#pragma OPENCL EXTENSION cl_intel_printf : enable
#define SIZE 1000
__kernel void pipe_writer(__global int *in,
write_only pipe int __attribute((depth(SIZE))) p)
{
for(int i = 0; i < SIZE; i++){
write_pipe(p, &in[i]);
printf("written: %d\n", in[i]);
}
}
__kernel void pipe_reader(__global int *out,
read_only pipe int __attribute((depth(SIZE))) p)
{
for(int i = 0; i < SIZE; i++){
while (read_pipe(p, &out[i]) == -1){
//printf("blocked read\n";
}
//int check = read_pipe(p, &out[i]);
printf("read: %d\n", out[i]);
}
}
Host Code:
#include <stdio.h>
#include <stdlib.h>
#ifdef __APPLE__
#include <OpenCL/opencl.h>
#else
#include <CL/cl.h>
#endif
#define MAX_SOURCE_SIZE (0x100000)
int main(void) {
// Create the two input vectors
int bb = 0;
int i;
const int LIST_SIZE = 1000;
int *A = (int*)malloc(sizeof(int)*LIST_SIZE);
int *B = (int*)malloc(sizeof(int)*LIST_SIZE);
for(i = 0; i < LIST_SIZE; i++) {
A[i] = i;
}
// Load the kernel source code into the array source_str
FILE *fp;
char *source_str;
size_t source_size;
fp = fopen("kernel.cl", "r");
if (!fp) {
fprintf(stderr, "Failed to load kernel.\n");
exit(1);
}
source_str = (char*)malloc(MAX_SOURCE_SIZE);
source_size = fread( source_str, 1, MAX_SOURCE_SIZE, fp);
fclose( fp );
// Get platform and device information
cl_platform_id platform_id = NULL;
cl_device_id device_id = NULL;
cl_uint ret_num_devices;
cl_uint ret_num_platforms;
cl_int ret = clGetPlatformIDs(1, &platform_id, &ret_num_platforms);
if(ret != CL_SUCCESS){
printf("getPlatformId, ERROR CODE: %d\n", ret);
bb=1;
}
ret = clGetDeviceIDs( platform_id, CL_DEVICE_TYPE_CPU, 1,
&device_id, &ret_num_devices);
if(ret != CL_SUCCESS){
printf("getDevice, ERROR CODE: %d\n", ret);
bb=1;
}
// Create an OpenCL context
cl_context context = clCreateContext( NULL, 1, &device_id, NULL, NULL, &ret);
if(ret != CL_SUCCESS){
printf("createContext, ERROR CODE: %d\n", ret);
bb=1;
}
// Create a command queue
cl_command_queue command_queue = clCreateCommandQueue(context, device_id, 0, &ret);
cl_command_queue command_queue2 = clCreateCommandQueue(context, device_id, 0, &ret);
if(ret != CL_SUCCESS){
printf("commandQueue, ERROR CODE: %d\n", ret);
bb=1;
}
// Create memory buffers on the device for each vector
cl_mem a_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY,
LIST_SIZE * sizeof(int), NULL, &ret);
cl_mem b_mem_obj = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
LIST_SIZE * sizeof(int), NULL, &ret);
if(ret != CL_SUCCESS){
printf("memobj, ERROR CODE: %d\n", ret);
bb=1;
}
ret = clEnqueueWriteBuffer(command_queue, a_mem_obj, CL_TRUE, 0,
LIST_SIZE * sizeof(int), A, 0, NULL, NULL);
if(ret != CL_SUCCESS){
printf("enqueuewritebuffer, ERROR CODE: %d\n", ret);
bb=1;
}
cl_program program = clCreateProgramWithSource(context, 1,
(const char **)&source_str, (const size_t *)&source_size, &ret);
if(ret != CL_SUCCESS){
printf("crateProgWithSource, ERROR CODE: %d\n", ret);
bb=1;
}
// Build the program
ret = clBuildProgram(program, 1, &device_id, "-cl-std=CL2.0", NULL, NULL);
if(ret != CL_SUCCESS){
printf("buildProgram, ERROR CODE: %d\n", ret);
bb=1;
}
/////Debug Kernel compilation:
size_t ret_val_size;
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, 0, NULL, &ret_val_size);
char * build_log = (char*) malloc(sizeof(char) * (ret_val_size));
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, ret_val_size, build_log, NULL);
printf("LOG: \n%s\n", build_log);
///////////////////////////////
cl_kernel pipe_writer = clCreateKernel(program, "pipe_writer", &ret);
if(ret != CL_SUCCESS){
printf("createkernelwriter, ERROR CODE: %d\n", ret);
bb=1;
}
cl_kernel pipe_reader = clCreateKernel(program, "pipe_reader", &ret);
if(ret != CL_SUCCESS){
printf("createkernelReader, ERROR CODE: %d\n", ret);
bb=1;
}
cl_mem pipe = clCreatePipe(context, 0, sizeof(cl_int), 1000, NULL, &ret);
if(ret != CL_SUCCESS){
printf("createPipe, ERROR CODE: %d\n", ret);
bb=1;
}
// Set the arguments of the kernel
ret = clSetKernelArg(pipe_writer, 0, sizeof(cl_mem), (void *)&a_mem_obj);
if(ret != CL_SUCCESS){
printf("setArgWriterZERO, ERROR CODE: %d\n", ret);
bb=1;
}
ret = clSetKernelArg(pipe_writer, 1, sizeof(cl_mem), &pipe);
if(ret != CL_SUCCESS){
printf("setArgWriterONE, ERROR CODE: %d\n", ret);
bb=1;
}
ret = clSetKernelArg(pipe_reader, 0, sizeof(cl_mem), (void *)&b_mem_obj);
if(ret != CL_SUCCESS){
printf("setArgReaderZERO, ERROR CODE: %d\n", ret);
bb=1;
}
ret = clSetKernelArg(pipe_reader, 1, sizeof(cl_mem), &pipe);
if(ret != CL_SUCCESS){
printf("setArgReaderONE, ERROR CODE: %d\n", ret);
bb=1;
}
// Execute the OpenCL kernel on the list
size_t global_item_size = 1; // Process the entire lists
size_t local_item_size = 1; // Divide work items into groups of 64
cl_event sync; //??
ret = clEnqueueTask (command_queue, pipe_writer, NULL, NULL, NULL);
if(ret != CL_SUCCESS){
printf("EnqueueKernelWriter, ERROR CODE: %d\n", ret);
bb=1;
}
if(ret != CL_SUCCESS){
printf("EnqueueKernelwriter, ERROR CODE: %d\n", ret);
bb=1;
}
ret = clEnqueueTask (command_queue2, pipe_reader, NULL, NULL, NULL);
if(ret != CL_SUCCESS){
printf("EnqueueKernelWriter, ERROR CODE: %d\n", ret);
bb=1;
}
if(ret != CL_SUCCESS){
printf("EnqueueKernelReader, ERROR CODE: %d\n", ret);
bb=1;
}
ret = clEnqueueReadBuffer(command_queue2, b_mem_obj, CL_TRUE, 0,
LIST_SIZE * sizeof(int), B, 0, NULL, NULL);
if(ret != CL_SUCCESS){
printf("EnqueueReadBuffer, ERROR CODE: %d\n", ret);
bb=1;
}
if(bb == 0){
// Display the result to the screen
for(i = 0; i < LIST_SIZE; i++)
printf("%d and %d\n", A[i], B[i]);
}
// Clean up
ret = clFlush(command_queue);
ret = clFinish(command_queue);
ret = clReleaseKernel(pipe_writer);
ret = clReleaseKernel(pipe_reader);
ret = clReleaseProgram(program);
ret = clReleaseMemObject(a_mem_obj);
ret = clReleaseMemObject(b_mem_obj);
ret = clReleaseCommandQueue(command_queue);
ret = clReleaseContext(context);
free(A);
free(B);
return 0;
}
And this is what I get about the CPU I am using running 'clinfo':
Platform Name Intel(R) CPU Runtime for OpenCL(TM) Applications
Number of devices 1
Device Name Intel(R) Xeon(R) CPU E5-2698 v4 # 2.20GHz
Device Vendor Intel(R) Corporation
Device Vendor ID 0x8086
Device Version OpenCL 2.1 (Build 0)
Driver Version 18.1.0.0920
Device OpenCL C Version OpenCL C 2.0
Device Type CPU
Device Profile FULL_PROFILE
Max compute units 80
Max clock frequency 2200MHz
Device Partition (core)
Max number of sub-devices 80
Supported partition types by counts, equally, by names (Intel)
Max work item dimensions 3
Max work item sizes 8192x8192x8192
Max work group size 8192
Preferred work group size multiple 128
Max sub-groups per work group 1
Preferred / native vector sizes
char 1 / 32
short 1 / 16
int 1 / 8
long 1 / 4
half 0 / 0 (n/a)
float 1 / 8
double 1 / 4 (cl_khr_fp64)
Half-precision Floating-point support (n/a)
Single-precision Floating-point support (core)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero No
Round to infinity No
IEEE754-2008 fused multiply-add No
Support is emulated in software No
Correctly-rounded divide and sqrt operations No
Double-precision Floating-point support (cl_khr_fp64)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Correctly-rounded divide and sqrt operations No
Address bits 64, Little-Endian
Global memory size 540956721152 (503.8GiB)
Error Correction support No
Max memory allocation 135239180288 (126GiB)
Unified memory for Host and Device Yes
Shared Virtual Memory (SVM) capabilities (core)
Coarse-grained buffer sharing Yes
Fine-grained buffer sharing Yes
Fine-grained system sharing Yes
Atomics Yes
Minimum alignment for any data type 128 bytes
Alignment of base address 1024 bits (128 bytes)
Preferred alignment for atomics
SVM 64 bytes
Global 64 bytes
Local 0 bytes
Max size for global variable 65536 (64KiB)
Preferred total size of global vars 65536 (64KiB)
Global Memory cache type Read/Write
Global Memory cache size 262144
Global Memory cache line 64 bytes
Image support Yes
Max number of samplers per kernel 480
Max size for 1D images from buffer 8452448768 pixels
Max 1D or 2D image array size 2048 images
Base address alignment for 2D image buffers 64 bytes
Pitch alignment for 2D image buffers 64 bytes
Max 2D image size 16384x16384 pixels
Max 3D image size 2048x2048x2048 pixels
Max number of read image args 480
Max number of write image args 480
Max number of read/write image args 480
Max number of pipe args 16
Max active pipe reservations 3276
Max pipe packet size 1024
Local memory type Global
Local memory size 32768 (32KiB)
Max constant buffer size 131072 (128KiB)
Max number of constant args 480
Max size of kernel argument 3840 (3.75KiB)
Queue properties (on host)
Out-of-order execution Yes
Profiling Yes
Local thread execution (Intel) Yes
Queue properties (on device)
Out-of-order execution Yes
Profiling Yes
Preferred size 4294967295 (4GiB)
Max size 4294967295 (4GiB)
Max queues on device 4294967295
Max events on device 4294967295
Prefer user sync for interop No
Profiling timer resolution 1ns
Execution capabilities
Run OpenCL kernels Yes
Run native kernels Yes
Sub-group independent forward progress No
IL version SPIR-V_1.0
SPIR versions 1.2
printf() buffer size 1048576 (1024KiB)
Built-in kernels
Device Available Yes
Compiler Available Yes
Linker Available Yes
Device Extensions cl_khr_icd cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_byte_addressable_store cl_khr_depth_images cl_khr_3d_image_writes cl_intel_exec_by_local_thread cl_khr_spir cl_khr_fp64 cl_khr_image2d_from_buffer cl_intel_vec_len_hint
OpenCL 2.0 Pipes used for Intel FPGA are quite different from the
standard OpenCL 2.0 used for CPU.
One important difference is that standard OpenCL 2.0 Pipes are not
meant to be used to establish a communication between concurrent
kernels. Pipes are a subclass of memory objects and their state is
enforced only at a syncronization point (see s3.3.1 Memory Consistency
of OpenCL 1.2 Specification), where syncronization point is either a
command queue barrier, or a wait on event (see s3.4.3
Synchronization). In other words, according to the OpenCL
Specification, data written to a pipe is only visible when the kernel
finishes execution.
Intel OpenCL for FPGA have additional features (extensions) to make
OpenCL 2.0 Pipes usable for FPGA: specifically, it guarantess that
kernels can communicate over pipes, and provides a few extensions to
make such communication simpler and more efficient (blocking pipes,
host pipes, pipe depth). All these features are not supported by
Intel OpenCL runtime for CPU.
However, for the purpose of your dissertation project, you can look at
the Fast Emulator from Intel FPGA SDK: basically it is a CPU runtime
that supports FPGA extensions, including pipes (with kernel-to-kernel communication) and host pipes. See
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
s8.7. Using the Fast Emulator (Preview).
Furthermore, the kernels seem not to run in parallel unless I use two different command queues.
If you don't create a command queue with
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, a queue is in-order, meaning
that there is an implicit dependency between commands pushed to this
queue, so they cannot run in parallel.
Also, you should call clFlush(command_queue) before
clEnqueueReadBuffer(command_queue2, ...) to ensure that the writer
kernel is started before you make a blocking call for the reader.
I'm dying a little inside. I've been working on this all day to no avail. I was having issues running some code that previously ran fine, so I wrote a short "toy" OpenCL program to try and figure out what was going on, but my toy program has me baffled and incredibly frustrated.
I'm working with an Nvidia 780i with 3Gb of global memory. It has a maximum allocation of ~780 Mb. At first, it wouldn't error out when I was intentionally over-allocating. Solved that (it was typographical, but the compiler/analyzer wasn't catching it). Now, even when trying to allocate WAY below what the device should be able to handle, I get an error code of -6 (CL_OUT_OF_HOST_MEMORY) on the second big buffer allocation.
I've been researching this error and I just can't track how it applies in this case. I have 32 gb of ram in the machine I'm using so there's certainly not a shortage there. I figure there's something that I just don't understand going on here.
It will allocate the first buffer alright, but then choke on the second. I basically just cannot allocate nearly the amount of global memory I both want and need to.
Any help is much appreciated. If you can help me with this and you're near LA I'll take you out for drinks. That's how frustrated I am.
Code and output is below for my machine.
Thanks,
John
Main program:
#define _CRT_SECURE_NO_WARNINGS
#define PROGRAM_FILE "kernels.cl"
#define KERNEL_NAME "test"
#include <CL/cl.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#define N_PROJ 4000
#define N_CHANNELS 736
#define N_ROWS 32
/* Find a GPU or CPU associated with the first available platform */
cl_device_id create_device() {
cl_platform_id platform;
cl_device_id dev;
int err;
/* Identify a platform */
err = clGetPlatformIDs(1, &platform, NULL);
if(err < 0) {
perror("Couldn't identify a platform");
exit(1);
}
/* Access a device */
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &dev, NULL);
if(err == CL_DEVICE_NOT_FOUND) {
perror("Just a heads up: I'm not going to run on the GPU");
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_CPU, 1, &dev, NULL);
}
if(err < 0) {
perror("Couldn't access any devices");
exit(1);
}
cl_ulong16 alloc_size,mem_size;
char name[40];
clGetDeviceInfo(dev,CL_DEVICE_MAX_MEM_ALLOC_SIZE,sizeof(cl_ulong16),&alloc_size,NULL);
clGetDeviceInfo(dev,CL_DEVICE_NAME,sizeof(name),name,NULL);
clGetDeviceInfo(dev,CL_DEVICE_GLOBAL_MEM_SIZE,sizeof(cl_ulong16),&mem_size,NULL);
printf("Using device: %s\n",name);
printf("Global memory size: %lu\n",mem_size);
printf("Max. allocation: %lu\n",alloc_size);
return dev;
}
/* Create program from a file and compile it */
cl_program build_program(cl_context ctx, cl_device_id dev, const char* filename) {
cl_program program;
FILE *program_handle;
char *program_buffer, *program_log;
size_t program_size, log_size;
int err;
/* Read program file and place content into buffer */
program_handle = fopen(filename, "r");
if(program_handle == NULL) {
perror("Couldn't find the program file");
exit(1);
}
fseek(program_handle, 0, SEEK_END);
program_size = ftell(program_handle)-13;
rewind(program_handle);
program_buffer = (char*)malloc(program_size + 1);
program_buffer[program_size] = '\0';
fread(program_buffer, sizeof(char), program_size, program_handle);
fclose(program_handle);
/* Create program from file */
program = clCreateProgramWithSource(ctx, 1,
(const char**)&program_buffer, &program_size, &err);
if(err < 0) {
perror("Couldn't create the program");
exit(1);
}
free(program_buffer);
/* Build program */
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
if(err < 0) {
/* Find size of log and print to std output */
clGetProgramBuildInfo(program, dev, CL_PROGRAM_BUILD_LOG,
0, NULL, &log_size);
program_log = (char*) malloc(log_size + 1);
program_log[log_size] = '\0';
clGetProgramBuildInfo(program, dev, CL_PROGRAM_BUILD_LOG,
log_size + 1, program_log, NULL);
printf("%s\n", program_log);
free(program_log);
exit(1);
}
return program;
}
int main(int argc, const char * argv[])
{
/* This file serves as a backbone for OpenCL programs. */
/* All the user needs to do is enter their OpenCL data */
/* structures, set kernel args, and kernel dispatches. */
/* Standard OCL structures */
cl_device_id device;
cl_context context;
cl_program program;
cl_kernel kernel;
cl_command_queue queue;
device=create_device();
context = clCreateContext(NULL, 1, &device, NULL, NULL, NULL);
program = build_program(context, device, PROGRAM_FILE);
queue = clCreateCommandQueue(context, device,0, NULL);
kernel = clCreateKernel(program, KERNEL_NAME, NULL);
/* User code goes here */
cl_int err;
/* Declare and set data */
int a[]={1,2,3};
float *rebin;
rebin =(float*) calloc(N_PROJ*N_CHANNELS*N_ROWS,sizeof(float));
float *mat;
mat =(float*) calloc(N_PROJ*N_CHANNELS*N_ROWS,sizeof(float));
printf("\nAllocation size: %lu\n",N_PROJ*N_CHANNELS*N_ROWS*sizeof(float));
/* Declare and set buffer objects */
cl_mem a_buff,rebin_buff,mat_buff;
printf("Total memory to be allocated: %lu\n",2*N_PROJ*N_CHANNELS*N_ROWS*sizeof(float)+sizeof(a) );
a_buff =clCreateBuffer(context,CL_MEM_COPY_HOST_PTR|CL_MEM_READ_WRITE,sizeof(a),a,NULL);
rebin_buff =clCreateBuffer(context,CL_MEM_COPY_HOST_PTR|CL_MEM_READ_WRITE,N_PROJ*N_CHANNELS*N_ROWS*sizeof(float),rebin,&err);
if (err<0){
printf("Error: %i\n",err);
perror("Couldn't create buffer 1");
exit(1);
}
mat_buff =clCreateBuffer(context,CL_MEM_COPY_HOST_PTR|CL_MEM_READ_WRITE,N_PROJ*N_CHANNELS*N_ROWS*sizeof(float),mat ,&err);
if (err<0){
printf("Error: %i\n",err);
perror("Couldn't create buffer 2");
exit(1);
}
/* Copy data over to the device */
err=clSetKernelArg(kernel,0,sizeof(cl_mem),&mat_buff);
if (err<0){
perror("Couldn't set kernel argument");
exit(1);
}
err=clSetKernelArg(kernel,1,sizeof(cl_mem),&rebin_buff);
err=clSetKernelArg(kernel,2,sizeof(cl_mem),&a_buff);
clEnqueueTask(queue,kernel,0,NULL,NULL);
clEnqueueReadBuffer(queue,mat_buff ,CL_TRUE,0,N_PROJ*N_CHANNELS*N_ROWS*sizeof(float),mat ,0,NULL,NULL);
clEnqueueReadBuffer(queue,rebin_buff,CL_TRUE,0,N_PROJ*N_CHANNELS*N_ROWS*sizeof(float),rebin,0,NULL,NULL);
clEnqueueReadBuffer(queue,a_buff, CL_TRUE,0,sizeof(a),a,0,NULL,NULL);
printf("%f %f %f\n",mat[1],mat[2],mat[3]);
printf("%f %f %f\n",rebin[1],rebin[2],rebin[3]);
printf("%i %i %i",a[0],a[1],a[2]);
/***********************/
clReleaseKernel(kernel);
clReleaseCommandQueue(queue);
clReleaseProgram(program);
clReleaseContext(context);
//clReleaseDevice(device);
printf("\n\nProgram apparently executed fully. \n");
return 0;
}
Kernel:
__kernel void test(__global float *mat,__global float *rebin,__global int *a){
a[0]=3;
a[1]=2;
a[2]=1;
rebin[1]=1.0f;
rebin[2]=2.0f;
rebin[3]=3.0f;
mat[1]=3.0f;
mat[2]=2.0f;
mat[3]=1.0f;
}
Console output for my machine:
Using device: GeForce GTX 780
Global memory size: 3221225472
Max. allocation: 805306368
Allocation size: 376832000
Total memory to be allocated: 753664012
Error: -6
Couldn't create buffer 2: No error
Process returned 1 (0x1) execution time : 0.435 s
Press any key to continue.
Ich have a strange problem. I just started with openCL development and implemented a simple matrix multiplication:
void MatrixMult(float *M, float *N, float *P, int width) {
cl_context context = core.getContext();
cl_command_queue commandQueue = core.getCommandQueue();
// create the kernel
cl_kernel kernel = core.createKernel("MatrixMultKernel");
// reserve memory for i/o
int size = width * width * sizeof(float);
cl_mem Md = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, size, M, NULL);
cl_mem Nd = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, size, N, NULL);
cl_mem Pd = clCreateBuffer(context, CL_MEM_WRITE_ONLY , size, NULL, NULL);
// define kernel args
clSetKernelArg(kernel, 0, sizeof(cl_mem), &Md);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &Nd);
clSetKernelArg(kernel, 2, sizeof(cl_mem), &Pd);
clSetKernelArg(kernel, 3, sizeof(int), &width);
// create kernel instances
size_t globalSize[] = {static_cast<size_t>(width), static_cast<size_t>(width)};
cl_int kernelError = clEnqueueNDRangeKernel(commandQueue, kernel, 2, NULL, globalSize, NULL, 0, NULL, NULL);
if (kernelError != CL_SUCCESS) {
NSLog(#"Error executing kernel");
}
// read back results
clEnqueueReadBuffer(commandQueue, Pd, false, 0, size, P, 0, NULL, &readEvent);
clSetEventCallback(readEvent, CL_COMPLETE, &eventCallback, NULL);
}
My problem is that the callback is never called. I test with small inputs which should finish immediately.
The strange this is whenever I call the function (MatrixMult) a second time the callback fires as it should. The same thing for every consecutive call. When I check the event while it is not firing it always has the status CL_SUBMITTED. What is going on here?
You probably need to add a call to clFlush at the end of your code. Though the OpenCL spec may not clearly list that as a requirement, I find it is the case on my system. It is waiting for either clFlush of a command that does an implicit clFlush.