Low impact encryption formula for ROBLOX Lua - encryption

In a project on ROBLOX, I am looking for a lightweight pure Lua cipher which can encrypt and decrypt a string fairly quickly using a key. I've been looking around, and most solutions require implementation of a C library, or are too heavy for what I'm looking for. I don't know too much about encryption, but it shouldn't be bluntly obvious, but not too complex. Is there a library out there that I'm somehow missing that would resolve this issue?

Here is an example of a lightweight pure Lua cipher.
It works on Lua 5.1, 5.2, 5.3 without external libraries.
do
-- This is your secret 67-bit key (any random bits are OK)
local Key53 = 8186484168865098
local Key14 = 4887
local inv256
function encode(str)
if not inv256 then
inv256 = {}
for M = 0, 127 do
local inv = -1
repeat inv = inv + 2
until inv * (2*M + 1) % 256 == 1
inv256[M] = inv
end
end
local K, F = Key53, 16384 + Key14
return (str:gsub('.',
function(m)
local L = K % 274877906944 -- 2^38
local H = (K - L) / 274877906944
local M = H % 128
m = m:byte()
local c = (m * inv256[M] - (H - M) / 128) % 256
K = L * F + H + c + m
return ('%02x'):format(c)
end
))
end
function decode(str)
local K, F = Key53, 16384 + Key14
return (str:gsub('%x%x',
function(c)
local L = K % 274877906944 -- 2^38
local H = (K - L) / 274877906944
local M = H % 128
c = tonumber(c, 16)
local m = (c + (H - M) / 128) * (2*M + 1) % 256
K = L * F + H + c + m
return string.char(m)
end
))
end
end
local s = 'Hello world'
print( encode(s) ) --> 80897dfa1dd85ec196bc84
print(decode(encode(s))) --> Hello world

There happens to be a collection of pure Lua crypto programs at plc, however, these use Lua 5.3 whereas ROBLOX uses Lua 5.1.x.
The advantage of Lua 5.3 is that it includes bit manipulation operators. Prior to 5.3 Lua needed external Libraries to do bit manipulations. [Well, not really, there were pure Lua libraries to do bit manipulation using math functions, e.g., lua-bit-numberlua, but Lua 5.3 is the first practical release for these types of programs.] Lua 5.3 also supports 64-bit integers, whereas previous versions only supported double precision floats (53 bit integers).
You can certainly implement encryption in Lua 5.1 using 32-bit integers. A simple substitution cipher would be the easiest place to start.
A more interesting and suitable cipher to implement might be solitaire

The best encryption is your own encryption. Try doing something unique and it'll be more difficult for someone to guess your algorithm.

Related

Why do some exponents in RSA have the plaintext as a result

The goal is to have a encryption like:
c = m^e mod n
where c = m
I messed up in my conclusion by estimating that e=1 or e=4^x when 4^x < n, the second part is not true and a result of messy written code.
For better understanding:
c= encryptet Text
m= plain Text
n= the procuct of two primes
There is no reason for an arbitrary message m to have m^{4^x} = m mod n
A counterexample;
n=47∗43=2021
5^{4^2} = 1803 mod 2021 , see at WolframAlpha
import math
for m in range(1,2020):
for e in (4**x for x in range(1, int(math.log(2021,4))) ):
if (m**(e) % 2021) == m:
print (m,e)
With this python code you can see the examples for the specific modulus 2021.
As you can see many of the cases happens
(423, 4)
(423, 16)
(423, 64)
(423, 256)
Now, the reason is clear if you remember the RSA definition.
the e must have an inverse in phi(n). See live at WolframAlpha
So this choice of e is not RSA.
Note since phi(n) = (p-1)(q-1), any even e cannot be a public modulus.

Modulus Decryption Function

Let's say we have a encryption function like this :
f(x) = x^5 mod 21
How can I get the plain text from the encrypted text which generated by this function? How can I denote the decryption function?
Is this homework? If so, you should tag it homework, and accept answers on some of your past questions.
This looks like RSA, where the modulus is the product of two primes (i.e. n = p*q). Just follow the steps of the algorithm.In this case, n = 21 = 7*3. This tells you phi(n) = (6*2) = 12.
If 5 is the encrypting exponent (e), and phi(n) = 12, then to calculate the decrypting exponent, you need to find d such that e*d = 1 (mod phi(n)). Written another way, e-1 = d (mod phi(n)). You can do this with the PowerMod function in Mathematica: PowerMod[5, -1, 12].
Once you know the modular inverse, the rest becomes easy:
c = (m)^5 mod 21
m = (c)^d mod 21

how to find cryptarithmetic letter value?

Cross + roads = danger ==> the answer is ==> 96233 + 62513=158746
I'm looking for a instruction to find the answer easier for another example. one of my teacher said that we can using tree to find it. but sometimes using tree to find the answer is impossible.
How do you usually find you're cryptarithmetic solution?
One simple way :
Define the variables (just for convenience) :
vars = Symbol[#] & /# ("abc" <> ToString[#] & /# Range[26]) ;
Associate a variable to each letter of the alphabet :
alphabet = Transpose[{CharacterRange["a", "z"], vars}];
Write a helper function to translate a string into an expression :
formDigits[astring_] := FromDigits[alphabet[[alphabet[[#, 2]] & /#
Position[alphabet[[All, 1]], #][[1, 1]] & /# Characters[astring], 2]]]
Example :
formDigits["cross"]
(* abc19 + 10 (abc19 + 10 (abc15 + 10 (abc18 + 10 abc3))) *)
Write the system of equations corresponding to "Cross + roads = danger" :
equation = formDigits["cross"] + formDigits["roads"] == formDigits["danger"]
Finally solve the system with the obvious additional constraints :
sol = First#FindInstance[{equation, Sequence ## Thread[Thread[0 <= vars <= 9]],
Not[Apply[And, Thread[vars == 0]]]}, alphabet[[All, 2]], Integers] ;
Check :
formDigits["cross"] /. sol
formDigits["roads"] /. sol
formDigits["danger"] /. sol
(* 78644
86614
165258 *)
This is naturally solved, in Prolog. See also Faster implementation of verbal arithmetic in Prolog :
%% unique selection from narrowing domain
selectM([A|As],S,Z):- select(A,S,S1),selectM(As,S1,Z).
selectM([],Z,Z).
%% a puzzle
cryp([[C,R,O,S,S]+[R,O,A,D,S]=[D,A,N,G,E,R]]):-
Dom=[0,1,2,3,4,5,6,7,8,9],
selectM([S],Dom,D0),
N1 is S+S, R is N1 mod 10, R=\=0,
selectM([R,D],D0,D1), D=\=0,
N2 is (N1//10)+S+D, E is N2 mod 10,
selectM([E,O,A,G],D1,D2),
N3 is (N2//10)+O+A, G is N3 mod 10,
N4 is (N3//10)+R+O, N is N4 mod 10,
selectM([N,C],D2,_), C=\=0,
N5 is (N4//10)+C+R, A is N5 mod 10,
D is N5//10.
The key to efficiency is to choose the instantiations of digits progressively, one by one, testing right away to scrap the invalid choices as soon as possible. I'm sure this can be translated to Mathematica.
The other problem like this sum is
CROSS + ROADS = DENGER
The solution for this problem is
68244 + 82714 = 150958

Divide by 10 using bit shifts?

Is it possible to divide an unsigned integer by 10 by using pure bit shifts, addition, subtraction and maybe multiply? Using a processor with very limited resources and slow divide.
Editor's note: this is not actually what compilers do, and gives the wrong answer for large positive integers ending with 9, starting with div10(1073741829) = 107374183 not 107374182. It is exact for smaller inputs, though, which may be sufficient for some uses.
Compilers (including MSVC) do use fixed-point multiplicative inverses for constant divisors, but they use a different magic constant and shift on the high-half result to get an exact result for all possible inputs, matching what the C abstract machine requires. See Granlund & Montgomery's paper on the algorithm.
See Why does GCC use multiplication by a strange number in implementing integer division? for examples of the actual x86 asm gcc, clang, MSVC, ICC, and other modern compilers make.
This is a fast approximation that's inexact for large inputs
It's even faster than the exact division via multiply + right-shift that compilers use.
You can use the high half of a multiply result for divisions by small integral constants. Assume a 32-bit machine (code can be adjusted accordingly):
int32_t div10(int32_t dividend)
{
int64_t invDivisor = 0x1999999A;
return (int32_t) ((invDivisor * dividend) >> 32);
}
What's going here is that we're multiplying by a close approximation of 1/10 * 2^32 and then removing the 2^32. This approach can be adapted to different divisors and different bit widths.
This works great for the ia32 architecture, since its IMUL instruction will put the 64-bit product into edx:eax, and the edx value will be the wanted value. Viz (assuming dividend is passed in eax and quotient returned in eax)
div10 proc
mov edx,1999999Ah ; load 1/10 * 2^32
imul eax ; edx:eax = dividend / 10 * 2 ^32
mov eax,edx ; eax = dividend / 10
ret
endp
Even on a machine with a slow multiply instruction, this will be faster than a software or even hardware divide.
Though the answers given so far match the actual question, they do not match the title. So here's a solution heavily inspired by Hacker's Delight that really uses only bit shifts.
unsigned divu10(unsigned n) {
unsigned q, r;
q = (n >> 1) + (n >> 2);
q = q + (q >> 4);
q = q + (q >> 8);
q = q + (q >> 16);
q = q >> 3;
r = n - (((q << 2) + q) << 1);
return q + (r > 9);
}
I think that this is the best solution for architectures that lack a multiply instruction.
Of course you can if you can live with some loss in precision. If you know the value range of your input values you can come up with a bit shift and a multiplication which is exact.
Some examples how you can divide by 10, 60, ... like it is described in this blog to format time the fastest way possible.
temp = (ms * 205) >> 11; // 205/2048 is nearly the same as /10
to expand Alois's answer a bit, we can expand the suggested y = (x * 205) >> 11 for a few more multiples/shifts:
y = (ms * 1) >> 3 // first error 8
y = (ms * 2) >> 4 // 8
y = (ms * 4) >> 5 // 8
y = (ms * 7) >> 6 // 19
y = (ms * 13) >> 7 // 69
y = (ms * 26) >> 8 // 69
y = (ms * 52) >> 9 // 69
y = (ms * 103) >> 10 // 179
y = (ms * 205) >> 11 // 1029
y = (ms * 410) >> 12 // 1029
y = (ms * 820) >> 13 // 1029
y = (ms * 1639) >> 14 // 2739
y = (ms * 3277) >> 15 // 16389
y = (ms * 6554) >> 16 // 16389
y = (ms * 13108) >> 17 // 16389
y = (ms * 26215) >> 18 // 43699
y = (ms * 52429) >> 19 // 262149
y = (ms * 104858) >> 20 // 262149
y = (ms * 209716) >> 21 // 262149
y = (ms * 419431) >> 22 // 699059
y = (ms * 838861) >> 23 // 4194309
y = (ms * 1677722) >> 24 // 4194309
y = (ms * 3355444) >> 25 // 4194309
y = (ms * 6710887) >> 26 // 11184819
y = (ms * 13421773) >> 27 // 67108869
each line is a single, independent, calculation, and you'll see your first "error"/incorrect result at the value shown in the comment. you're generally better off taking the smallest shift for a given error value as this will minimise the extra bits needed to store the intermediate value in the calculation, e.g. (x * 13) >> 7 is "better" than (x * 52) >> 9 as it needs two less bits of overhead, while both start to give wrong answers above 68.
if you want to calculate more of these, the following (Python) code can be used:
def mul_from_shift(shift):
mid = 2**shift + 5.
return int(round(mid / 10.))
and I did the obvious thing for calculating when this approximation starts to go wrong with:
def first_err(mul, shift):
i = 1
while True:
y = (i * mul) >> shift
if y != i // 10:
return i
i += 1
(note that // is used for "integer" division, i.e. it truncates/rounds towards zero)
the reason for the "3/1" pattern in errors (i.e. 8 repeats 3 times followed by 9) seems to be due to the change in bases, i.e. log2(10) is ~3.32. if we plot the errors we get the following:
where the relative error is given by: mul_from_shift(shift) / (1<<shift) - 0.1
Considering Kuba Ober’s response, there is another one in the same vein.
It uses iterative approximation of the result, but I wouldn’t expect any surprising performances.
Let say we have to find x where x = v / 10.
We’ll use the inverse operation v = x * 10 because it has the nice property that when x = a + b, then x * 10 = a * 10 + b * 10.
Let use x as variable holding the best approximation of result so far. When the search ends, x Will hold the result. We’ll set each bit b of x from the most significant to the less significant, one by one, end compare (x + b) * 10 with v. If its smaller or equal to v, then the bit b is set in x. To test the next bit, we simply shift b one position to the right (divide by two).
We can avoid the multiplication by 10 by holding x * 10 and b * 10 in other variables.
This yields the following algorithm to divide v by 10.
uin16_t x = 0, x10 = 0, b = 0x1000, b10 = 0xA000;
while (b != 0) {
uint16_t t = x10 + b10;
if (t <= v) {
x10 = t;
x |= b;
}
b10 >>= 1;
b >>= 1;
}
// x = v / 10
Edit: to get the algorithm of Kuba Ober which avoids the need of variable x10 , we can subtract b10 from v and v10 instead. In this case x10 isn’t needed anymore. The algorithm becomes
uin16_t x = 0, b = 0x1000, b10 = 0xA000;
while (b != 0) {
if (b10 <= v) {
v -= b10;
x |= b;
}
b10 >>= 1;
b >>= 1;
}
// x = v / 10
The loop may be unwinded and the different values of b and b10 may be precomputed as constants.
On architectures that can only shift one place at a time, a series of explicit comparisons against decreasing powers of two multiplied by 10 might work better than the solution form hacker's delight. Assuming a 16 bit dividend:
uint16_t div10(uint16_t dividend) {
uint16_t quotient = 0;
#define div10_step(n) \
do { if (dividend >= (n*10)) { quotient += n; dividend -= n*10; } } while (0)
div10_step(0x1000);
div10_step(0x0800);
div10_step(0x0400);
div10_step(0x0200);
div10_step(0x0100);
div10_step(0x0080);
div10_step(0x0040);
div10_step(0x0020);
div10_step(0x0010);
div10_step(0x0008);
div10_step(0x0004);
div10_step(0x0002);
div10_step(0x0001);
#undef div10_step
if (dividend >= 5) ++quotient; // round the result (optional)
return quotient;
}
Well division is subtraction, so yes. Shift right by 1 (divide by 2). Now subtract 5 from the result, counting the number of times you do the subtraction until the value is less than 5. The result is number of subtractions you did. Oh, and dividing is probably going to be faster.
A hybrid strategy of shift right then divide by 5 using the normal division might get you a performance improvement if the logic in the divider doesn't already do this for you.
I've designed a new method in AVR assembly, with lsr/ror and sub/sbc only. It divides by 8, then sutracts the number divided by 64 and 128, then subtracts the 1,024th and the 2,048th, and so on and so on. Works very reliable (includes exact rounding) and quick (370 microseconds at 1 MHz).
The source code is here for 16-bit-numbers:
http://www.avr-asm-tutorial.net/avr_en/beginner/DIV10/div10_16rd.asm
The page that comments this source code is here:
http://www.avr-asm-tutorial.net/avr_en/beginner/DIV10/DIV10.html
I hope that it helps, even though the question is ten years old.
brgs, gsc
elemakil's comments' code can be found here: https://doc.lagout.org/security/Hackers%20Delight.pdf
page 233. "Unsigned divide by 10 [and 11.]"

Solving a linear equation

I need to programmatically solve a system of linear equations in C, Objective C, or (if needed) C++.
Here's an example of the equations:
-44.3940 = a * 50.0 + b * 37.0 + tx
-45.3049 = a * 43.0 + b * 39.0 + tx
-44.9594 = a * 52.0 + b * 41.0 + tx
From this, I'd like to get the best approximation for a, b, and tx.
Cramer's Rule
and
Gaussian Elimination
are two good, general-purpose algorithms (also see Simultaneous Linear Equations). If you're looking for code, check out GiNaC, Maxima, and SymbolicC++ (depending on your licensing requirements, of course).
EDIT: I know you're working in C land, but I also have to put in a good word for SymPy (a computer algebra system in Python). You can learn a lot from its algorithms (if you can read a bit of python). Also, it's under the new BSD license, while most of the free math packages are GPL.
You can solve this with a program exactly the same way you solve it by hand (with multiplication and subtraction, then feeding results back into the equations). This is pretty standard secondary-school-level mathematics.
-44.3940 = 50a + 37b + c (A)
-45.3049 = 43a + 39b + c (B)
-44.9594 = 52a + 41b + c (C)
(A-B): 0.9109 = 7a - 2b (D)
(B-C): 0.3455 = -9a - 2b (E)
(D-E): 1.2564 = 16a (F)
(F/16): a = 0.078525 (G)
Feed G into D:
0.9109 = 7a - 2b
=> 0.9109 = 0.549675 - 2b (substitute a)
=> 0.361225 = -2b (subtract 0.549675 from both sides)
=> -0.1806125 = b (divide both sides by -2) (H)
Feed H/G into A:
-44.3940 = 50a + 37b + c
=> -44.3940 = 3.92625 - 6.6826625 + c (substitute a/b)
=> -41.6375875 = c (subtract 3.92625 - 6.6826625 from both sides)
So you end up with:
a = 0.0785250
b = -0.1806125
c = -41.6375875
If you plug these values back into A, B and C, you'll find they're correct.
The trick is to use a simple 4x3 matrix which reduces in turn to a 3x2 matrix, then a 2x1 which is "a = n", n being an actual number. Once you have that, you feed it into the next matrix up to get another value, then those two values into the next matrix up until you've solved all variables.
Provided you have N distinct equations, you can always solve for N variables. I say distinct because these two are not:
7a + 2b = 50
14a + 4b = 100
They are the same equation multiplied by two so you cannot get a solution from them - multiplying the first by two then subtracting leaves you with the true but useless statement:
0 = 0 + 0
By way of example, here's some C code that works out the simultaneous equations that you're placed in your question. First some necessary types, variables, a support function for printing out an equation, and the start of main:
#include <stdio.h>
typedef struct { double r, a, b, c; } tEquation;
tEquation equ1[] = {
{ -44.3940, 50, 37, 1 }, // -44.3940 = 50a + 37b + c (A)
{ -45.3049, 43, 39, 1 }, // -45.3049 = 43a + 39b + c (B)
{ -44.9594, 52, 41, 1 }, // -44.9594 = 52a + 41b + c (C)
};
tEquation equ2[2], equ3[1];
static void dumpEqu (char *desc, tEquation *e, char *post) {
printf ("%10s: %12.8lf = %12.8lfa + %12.8lfb + %12.8lfc (%s)\n",
desc, e->r, e->a, e->b, e->c, post);
}
int main (void) {
double a, b, c;
Next, the reduction of the three equations with three unknowns to two equations with two unknowns:
// First step, populate equ2 based on removing c from equ.
dumpEqu (">", &(equ1[0]), "A");
dumpEqu (">", &(equ1[1]), "B");
dumpEqu (">", &(equ1[2]), "C");
puts ("");
// A - B
equ2[0].r = equ1[0].r * equ1[1].c - equ1[1].r * equ1[0].c;
equ2[0].a = equ1[0].a * equ1[1].c - equ1[1].a * equ1[0].c;
equ2[0].b = equ1[0].b * equ1[1].c - equ1[1].b * equ1[0].c;
equ2[0].c = 0;
// B - C
equ2[1].r = equ1[1].r * equ1[2].c - equ1[2].r * equ1[1].c;
equ2[1].a = equ1[1].a * equ1[2].c - equ1[2].a * equ1[1].c;
equ2[1].b = equ1[1].b * equ1[2].c - equ1[2].b * equ1[1].c;
equ2[1].c = 0;
dumpEqu ("A-B", &(equ2[0]), "D");
dumpEqu ("B-C", &(equ2[1]), "E");
puts ("");
Next, the reduction of the two equations with two unknowns to one equation with one unknown:
// Next step, populate equ3 based on removing b from equ2.
// D - E
equ3[0].r = equ2[0].r * equ2[1].b - equ2[1].r * equ2[0].b;
equ3[0].a = equ2[0].a * equ2[1].b - equ2[1].a * equ2[0].b;
equ3[0].b = 0;
equ3[0].c = 0;
dumpEqu ("D-E", &(equ3[0]), "F");
puts ("");
Now that we have a formula of the type number1 = unknown * number2, we can simply work out the unknown value with unknown <- number1 / number2. Then, once you've figured that value out, substitute it into one of the equations with two unknowns and work out the second value. Then substitute both those (now-known) unknowns into one of the original equations and you now have the values for all three unknowns:
// Finally, substitute values back into equations.
a = equ3[0].r / equ3[0].a;
printf ("From (F ), a = %12.8lf (G)\n", a);
b = (equ2[0].r - equ2[0].a * a) / equ2[0].b;
printf ("From (D,G ), b = %12.8lf (H)\n", b);
c = (equ1[0].r - equ1[0].a * a - equ1[0].b * b) / equ1[0].c;
printf ("From (A,G,H), c = %12.8lf (I)\n", c);
return 0;
}
The output of that code matches the earlier calculations in this answer:
>: -44.39400000 = 50.00000000a + 37.00000000b + 1.00000000c (A)
>: -45.30490000 = 43.00000000a + 39.00000000b + 1.00000000c (B)
>: -44.95940000 = 52.00000000a + 41.00000000b + 1.00000000c (C)
A-B: 0.91090000 = 7.00000000a + -2.00000000b + 0.00000000c (D)
B-C: -0.34550000 = -9.00000000a + -2.00000000b + 0.00000000c (E)
D-E: -2.51280000 = -32.00000000a + 0.00000000b + 0.00000000c (F)
From (F ), a = 0.07852500 (G)
From (D,G ), b = -0.18061250 (H)
From (A,G,H), c = -41.63758750 (I)
Take a look at the Microsoft Solver Foundation.
With it you could write code like this:
SolverContext context = SolverContext.GetContext();
Model model = context.CreateModel();
Decision a = new Decision(Domain.Real, "a");
Decision b = new Decision(Domain.Real, "b");
Decision c = new Decision(Domain.Real, "c");
model.AddDecisions(a,b,c);
model.AddConstraint("eqA", -44.3940 == 50*a + 37*b + c);
model.AddConstraint("eqB", -45.3049 == 43*a + 39*b + c);
model.AddConstraint("eqC", -44.9594 == 52*a + 41*b + c);
Solution solution = context.Solve();
string results = solution.GetReport().ToString();
Console.WriteLine(results);
Here is the output:
===Solver Foundation Service Report===
Datetime: 04/20/2009 23:29:55
Model Name: Default
Capabilities requested: LP
Solve Time (ms): 1027
Total Time (ms): 1414
Solve Completion Status: Optimal
Solver Selected: Microsoft.SolverFoundation.Solvers.SimplexSolver
Directives:
Microsoft.SolverFoundation.Services.Directive
Algorithm: Primal
Arithmetic: Hybrid
Pricing (exact): Default
Pricing (double): SteepestEdge
Basis: Slack
Pivot Count: 3
===Solution Details===
Goals:
Decisions:
a: 0.0785250000000004
b: -0.180612500000001
c: -41.6375875
For a 3x3 system of linear equations I guess it would be okay to roll out your own algorithms.
However, you might have to worry about accuracy, division by zero or really small numbers and what to do about infinitely many solutions. My suggestion is to go with a standard numerical linear algebra package such as LAPACK.
Are you looking for a software package that'll do the work or actually doing the matrix operations and such and do each step?
The the first, a coworker of mine just used Ocaml GLPK. It is just a wrapper for the GLPK, but it removes a lot of the steps of setting things up. It looks like you're going to have to stick with the GLPK, in C, though. For the latter, thanks to delicious for saving an old article I used to learn LP awhile back, PDF. If you need specific help setting up further, let us know and I'm sure, me or someone will wander back in and help, but, I think it's fairly straight forward from here. Good Luck!
Template Numerical Toolkit from NIST has tools for doing that.
One of the more reliable ways is to use a QR Decomposition.
Here's an example of a wrapper so that I can call "GetInverse(A, InvA)" in my code and it will put the inverse into InvA.
void GetInverse(const Array2D<double>& A, Array2D<double>& invA)
{
QR<double> qr(A);
invA = qr.solve(I);
}
Array2D is defined in the library.
In terms of run-time efficiency, others have answered better than I. If you always will have the same number of equations as variables, I like Cramer's rule as it's easy to implement. Just write a function to calculate determinant of a matrix (or use one that's already written, I'm sure you can find one out there), and divide the determinants of two matrices.
Personally, I'm partial to the algorithms of Numerical Recipes. (I'm fond of the C++ edition.)
This book will teach you why the algorithms work, plus show you some pretty-well debugged implementations of those algorithms.
Of course, you could just blindly use CLAPACK (I've used it with great success), but I would first hand-type a Gaussian Elimination algorithm to at least have a faint idea of the kind of work that has gone into making these algorithms stable.
Later, if you're doing more interesting linear algebra, looking around the source code of Octave will answer a lot of questions.
From the wording of your question, it seems like you have more equations than unknowns and you want to minimize the inconsistencies. This is typically done with linear regression, which minimizes the sum of the squares of the inconsistencies. Depending on the size of the data, you can do this in a spreadsheet or in a statistical package. R is a high-quality, free package that does linear regression, among a lot of other things. There is a lot to linear regression (and a lot of gotcha's), but as it's straightforward to do for simple cases. Here's an R example using your data. Note that the "tx" is the intercept to your model.
> y <- c(-44.394, -45.3049, -44.9594)
> a <- c(50.0, 43.0, 52.0)
> b <- c(37.0, 39.0, 41.0)
> regression = lm(y ~ a + b)
> regression
Call:
lm(formula = y ~ a + b)
Coefficients:
(Intercept) a b
-41.63759 0.07852 -0.18061
function x = LinSolve(A,y)
%
% Recursive Solution of Linear System Ax=y
% matlab equivalent: x = A\y
% x = n x 1
% A = n x n
% y = n x 1
% Uses stack space extensively. Not efficient.
% C allows recursion, so convert it into C.
% ----------------------------------------------
n=length(y);
x=zeros(n,1);
if(n>1)
x(1:n-1,1) = LinSolve( A(1:n-1,1:n-1) - (A(1:n-1,n)*A(n,1:n-1))./A(n,n) , ...
y(1:n-1,1) - A(1:n-1,n).*(y(n,1)/A(n,n)));
x(n,1) = (y(n,1) - A(n,1:n-1)*x(1:n-1,1))./A(n,n);
else
x = y(1,1) / A(1,1);
end
For general cases, you could use python along with numpy for Gaussian elimination. And then plug in values and get the remaining values.

Resources