RcppArmadillo on several cpu cores - r

I have the following RccpArmadillo function that runs fine if I execute it on one cpu core. But if I use several cores, then R will crash. All the other Rcpp functions I created so far run fine on several cores (with foreach), only RccpArmadillo seems to be problematic. Any ideas how to fix that?
cppFunction('double augmentedDickeyFullerCpp(NumericVector a, NumericVector b, double gamma, double mu, int lags) {
if (gamma < 0) {
return 0;
}
int n = a.size()-1;
int lags2 = lags + 1;
// first rows, then columns
NumericMatrix x(n-lags2,lags2);
NumericMatrix zdifflag(n-lags2+1,lags2);
NumericVector diff(n);
NumericVector zdiff(n-lags2+1);
NumericVector residuals(n+1);
residuals[0] = a[0] - gamma * b[0] - mu;
// residuals a is y and b is x
for(int i = 1; i < n+1; i++) {
residuals[i] = a[i] - gamma * b[i] - mu;
diff[i-1] = residuals[i] - residuals[i-1];
}
for(int i = 0; i < n-lags2+1; i++) {
zdifflag[0,i] = residuals[i+lags2-1];
}
for(int j = 0; j < n-lags2+1; j++) {
for(int i = 0; i < lags2; i++) {
x(j,i) = diff[j+lags2-1-i];
if (i > 0) {
zdifflag(j,i) = x(j,i);
}
}
zdiff[j] = x(j,0);
}
int length = zdifflag.nrow(), k = zdifflag.ncol();
arma::mat X(zdifflag.begin(), length, k, false); // reuses memory and avoids extra copy
arma::colvec y(zdiff.begin(), zdiff.size(), false);
arma::colvec coef = arma::solve(X, y); // fit model y ~ X
arma::colvec res = y - X*coef; // residuals
// std.errors of coefficients
//arma::colvec res = y - X*coef[0];
// sqrt(sum(residuals^2)/(length - k))
double s2 = std::inner_product(res.begin(), res.end(), res.begin(), 0.0)/(length - k);
arma::colvec std_err = arma::sqrt(s2 * arma::diagvec(arma::pinv(arma::trans(X)*X)));
return coef[0]/std_err[0];
}',depends = "RcppArmadillo", includes="#include <RcppArmadillo.h>")

I generally recommend putting the code into a small package, and having each parallel worker load the package. That is known to work, both in serial and parallel, whereas relying on cppFunction() for an ad-hoc function may be too fragile for parallel execution.

Related

Can an Rcpp::IntegerVector (ever) be used with OpenMP?

I am probably being greedy for performance, but I've observed significant performance gains when combining Rcpp and OpenMP in possibly illict ways. I understand that "Calling any of the R API from threaded code is ‘for experts only’ and strongly discouraged." but I'm don't fully understand when C++ code may be implicitly doing this on Rcpp vectors. I understand RcppParallel has the RVector class but I understand this may involve taking a copy of the vector, which may wash away any performance gains.
I note the Rcpp gallery has (https://gallery.rcpp.org/articles/gerber-statistic/) which appears to access a NumericMatrix HIST_RETURN_RAW inside a parallel loop, so it seems "some" access is allowed, but I know/believe that some wrappers (like Rcpp::List) would not be permitted. Is atomicity the distinguishing characteristic?
Concretely, are any of the following acceptable uses of OpenMP? (i.e. are they all threadsafe, compliant with R's memory management, and free from undefined behaviour?)
#include <Rcpp.h>
#ifdef _OPENMP
#include <omp.h>
#endif
using namespace Rcpp;
// 1. No 'outside' R vector, but IntegerVector created outside omp region
// [[Rcpp::export]]
IntegerVector fastInitalize(int n, int nThread = 1) {
IntegerVector out = no_init(n);
#pragma omp parallel for num_threads(nThread)
for (int i = 0; i < n; ++i) {
out[i] = 0;
}
return out;
}
// 2. Simple access
// [[Rcpp::export]]
IntegerVector AddOMP(IntegerVector x, IntegerVector y, int nThread = 1) {
R_xlen_t N = x.length();
if (N != y.length()) {
stop("Lengths differ");
}
IntegerVector out = no_init(N);
#pragma omp parallel for num_threads(nThread)
for (R_xlen_t i = 0; i < N; ++i) {
out[i] = x[i] + y[i];
}
return out;
}
// 3. Access, copy inside Rcpp
// [[Rcpp::export]]
IntegerVector pmax0xy(IntegerVector x, IntegerVector y, int nThread = 1) {
R_xlen_t N = x.length();
if (N != y.length()) {
stop("Lengths differ");
}
IntegerVector out = clone(y);
#pragma omp parallel for num_threads(nThread)
for (R_xlen_t i = 0; i < N; ++i) {
if (x[i] > 0) {
out[i] = 0;
}
}
return out;
}
// 4. Access with omp + reduction
// [[Rcpp::export]]
int firstNonzero(IntegerVector x, int nThread = 1) {
R_xlen_t N = x.length();
int out = N;
#pragma omp parallel for num_threads(nThread) reduction(min : out)
for (R_xlen_t i = 0; i < N; ++i) {
if (x[i] != 0) {
out = (i < out) ? i : out;
}
}
return out;
}
// 5. Access with omp array reduction
// [[Rcpp::export]]
IntegerVector count_one_to_ten(IntegerVector x, int nThread = 1) {
R_xlen_t N = x.length();
if (N >= INT_MAX) {
stop("Possibly too many numbers.");
}
const int TEN = 10;
int numbers[TEN] = {}; // what if 10 was large?
#if defined _OPENMP && _OPENMP >= 201511
#pragma omp parallel for num_threads(nThread) reduction(+:numbers[:TEN])
#endif
for (R_xlen_t i = 0; i < N; ++i) {
int xi = x[i];
if (xi < 1 || xi > 10) {
continue;
}
numbers[xi - 1] += 1;
}
IntegerVector out(TEN);
for (int n = 0; n < TEN; ++n) {
out[n] = numbers[n];
}
return out;
}
// You can include R code blocks in C++ files processed with sourceCpp
// (useful for testing and development). The R code will be automatically
// run after the compilation.
//
/*** R
x <- sample(1:1200, size = 1e6, replace = TRUE)
y <- sample(1:1200, size = 1e6, replace = TRUE)
fastInitalize(1e6)[1]
head(AddOMP(x, y))
head(AddOMP(x, y, 2))
head(pmax0xy(x, y))
head(pmax0xy(x, y, 2))
firstNonzero(x)
firstNonzero(x, 2)
count_one_to_ten(x, 2)
*/

How to make R code with an array to be more efficient?

I have a following R code which is not efficient. I would like to make this efficient using Rcpp. Particularly, I am not used to dealing with array in Rcpp. Any help would be appreciated.
myfunc <- function(n=1600,
m=400,
p = 3,
time = runif(n,min=0.05,max=4),
qi21 = rnorm(n),
s0c = rnorm(n),
zc_min_ecox_multi = array(rnorm(n*n*p),dim=c(n,n,p)),
qi=matrix(0,n,n),
qi11 = rnorm(p),
iIc_mat = matrix(rnorm(p*p),p,p)){
for (j in 1:n){
u<-time[j]
ind<-1*(u<=time)
locu<-which(time==u)
qi2<- sum(qi21*ind) /s0c[locu]
for (i in 1:n){
qi1<- qi11%*%iIc_mat%*%matrix(zc_min_ecox_multi[i,j,],p,1)
qi[i,j]<- -(qi1+qi2)/m
}
}
}
Computing time is about 7.35 secs. I need to call this function over and over again, maybe 20 times.
system.time(myfunc())
user system elapsed
7.34 0.00 7.35
First thing to do would be to profile your code: profvis::profvis({myfunc()}).
What you can do is precompute qi11 %*% iIc_mat once.
You get (with minor improvements):
precomp <- qi11 %*% iIc_mat
for (j in 1:n) {
u <- time[j]
qi2 <- sum(qi21[u <= time]) / s0c[time == u]
for (i in 1:n) {
qi1 <- precomp %*% zc_min_ecox_multi[i, j, ]
qi[i, j] <- -(qi1 + qi2) / m
}
}
that is twice as fast (8 sec -> 4 sec).
Vectorizing the i loop then seems straightforward:
q1_all_i <- tcrossprod(precomp, zc_min_ecox_multi[, j, ])
qi[, j] <- -(q1_all_i + qi2) / m
(12 times as fast now)
And if you want to try it in Rcpp, you will first need a function to multiply the matrices...
#include<Rcpp.h>
#include<numeric>
// [[Rcpp::plugins("cpp11")]]
Rcpp::NumericMatrix mult(const Rcpp::NumericMatrix& lhs,
const Rcpp::NumericMatrix& rhs)
{
if (lhs.ncol() != rhs.nrow())
Rcpp::stop ("Incompatible matrices");
Rcpp::NumericMatrix out(lhs.nrow(),rhs.ncol());
Rcpp::NumericVector rowvec, colvec;
for (int i = 0; i < lhs.nrow(); ++i)
{
rowvec = lhs(i,Rcpp::_);
for (int j = 0; j < rhs.ncol(); ++j)
{
colvec = rhs(Rcpp::_,j);
out(i, j) = std::inner_product(rowvec.begin(), rowvec.end(),
colvec.begin(), 0.);
}
}
return out;
}
Then port your function...
// [[Rcpp::export]]
Rcpp::NumericMatrix myfunc_rcpp( int n, int m, int p,
const Rcpp::NumericVector& time,
const Rcpp::NumericVector& qi21,
const Rcpp::NumericVector& s0c,
const Rcpp::NumericVector& zc_min_ecox_multi,
const Rcpp::NumericMatrix& qi11,
const Rcpp::NumericMatrix& iIc_mat)
{
Rcpp::NumericMatrix qi(n, n);
Rcpp::NumericMatrix outermat = mult(qi11, iIc_mat);
for (int j = 0; j < n; ++j)
{
double qi2 = 0;
for(int k = 0; k < n; ++k)
{
if(time[j] <= time[k]) qi2 += qi21[k];
}
qi2 /= s0c[j];
for (int i = 0; i < n; ++i)
{
Rcpp::NumericMatrix tmpmat(p, 1);
for(int z = 0; z < p; ++z)
{
tmpmat(z, 0) = zc_min_ecox_multi[i + n*j + z*n*n];
}
Rcpp::NumericMatrix qi1 = mult(outermat, tmpmat);
qi(i,j) -= (qi1(0,0) + qi2)/m;
}
}
return qi;
}
Then in R:
my_rcpp_func <- function(n=1600,
m=400,
p = 3,
time = runif(n,min=0.05,max=4),
qi21 = rnorm(n),
s0c = rnorm(n),
zc_min_ecox_multi = array(rnorm(n*n*p),dim=c(n,n,p)),
qi11 = rnorm(p),
iIc_mat = matrix(rnorm(p*p),p,p))
{
myfunc_rcpp(n, m, p, time, qi21, s0c, as.vector(zc_min_ecox_multi),
matrix(qi11,1,p), iIc_mat)
}
This is certainly faster, and gives the same results as your own function, but it's no quicker than the in-R optimizations suggested by F Privé. Maybe optimizing the C++ code could get things even faster, but ultimately you are multiplying 2 reasonably large matrices together over 2.5 million times, so it's never going to be all that fast. R is optimized pretty well for this kind of calculation after all...

How to make Rcpp code efficient with multiple for loops?

I am trying to implement following Rcpp code by calling from R. The computing time is extremely slow. There are lots of for loops involved.
#include <RcppArmadillo.h>
using namespace Rcpp;
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]
arma::mat qpart(
const int& n,
const int& p,
const int& m,
arma::vec& G,
arma::vec& ftime,
arma::vec& cause,
arma::mat& covs,
arma::mat& S1byS0hat,
arma::vec& S0hat,
arma::vec& expz){
arma::mat q(n,p);
q.zeros();
for(int u=0;u<n;++u){
arma::mat q1(1,p);
q1.zeros();
for(int iprime=0;iprime<n;++iprime){
for(int i=0;i<n;++i){
if(cause(iprime)==1 & cause(i)>1 & (ftime(i) < ftime(u)) & (ftime(u) <= ftime(iprime))){
q1 += (covs.row(i) - S1byS0hat.row(iprime))*G(iprime)/G(i)*expz(i)/S0hat(iprime);
}
}
}
q.row(u) = q1/(m*m);
}
return q;
}
Following is an example in R.
#### In R ########
n = 2000
m = 500
p=3
G = runif(n)
ftime = runif(n,0.01,5)
cause = c(rep(0,600),rep(1,1000),rep(2,400))
covs = matrix(rnorm(n*p),n,p)
S1byS0hat = matrix(rnorm(n*p),p,n)
S0hat = rnorm(n)
expz = rnorm(n)
system.time( qpart(n,p,m,G,ftime,cause,covs,t(S1byS0hat),S0hat,expz))
user system elapsed
21.5 0.0 21.5
As we can see, the computing time is very high.
Same code implemented in R and the computing time is very high.
q = matrix(0,n,p)
for(u in 1 : n){
q1 <- matrix(0,p,1)
for(iprime in 1 : n){
for(i in 1 : n){
if(cause[iprime]==1 & cause[i]>1 & (time[i]<time[u]) & (time[u] <= time[iprime])){
q1 = q1 + (covs[i,] - S1byS0hat[,iprime])*G[iprime]/G[i]*expz[i]/S0hat[iprime]
}
}
}
q[u,] = q1/(m*m)
}
Following is the formula that I am trying to implement.
Some conditions depends only on u and iprime so you can check them much before.
You can also precompute some stuff. This gives:
arma::mat qpart2(
double m,
arma::vec& ftime,
arma::vec& cause,
arma::mat& covs,
arma::mat& S1byS0hat,
arma::vec& G_div_S0hat,
arma::vec& expz_div_G){
double m2 = m * m;
int n = covs.n_rows;
int p = covs.n_cols;
arma::mat q(n, p, arma::fill::zeros);
for (int u = 0; u < n; u++) {
double ftime_u = ftime(u);
for (int iprime = 0; iprime < n; iprime++) {
if (cause(iprime) == 1 && ftime_u <= ftime(iprime)) {
for (int i = 0; i < n; i++) {
if (cause(i) > 1 && ftime(i) < ftime_u) {
double coef = G_div_S0hat(iprime) * expz_div_G(i);
for (int j = 0; j < p; j++) {
q(u, j) += (covs(i, j) - S1byS0hat(iprime, j)) * coef;
}
}
}
}
}
for (int j = 0; j < p; j++) q(u, j) /= m2;
}
return q;
}
Using qpart2(m, ftime, cause, covs, t(S1byS0hat), G / S0hat, expz / G) takes 3.7 sec (vs 32 sec for your code).
**
Small remarks:
Is there a reason why you are using arma structures instead of Rcpp ones?
You should access matrices by columns, not by rows, it should be a bit faster because they are stored column-wise.

Unexpected behaviour in Rcpp

Please note that this error was taken from a bigger context, which I cannot obviously report here entirely.
I have the following functions in the file fun.cpp
#include <RcppArmadilloExtensions/sample.h>
using namespace Rcpp;
// [[Rcpp::depends(RcppArmadillo)]]
arma::vec colMeans(arma::mat data){
int n_0 = data.n_rows;
arma::vec xbar(data.n_cols);
for(int i = 0; i < data.n_rows; i++){
for(int j = 0; j < data.n_cols; j++){
xbar[j] += data(i,j) /n_0;
}
}
return xbar;
}
// [[Rcpp::export]]
List PosteriorNIW(arma::mat data, arma::vec mu0, double lambda0,
double df0, arma::mat V){
// Compute posterior
int n = data.n_rows;
arma::vec xbar = colMeans(data);
double lambdan = lambda0 + n;
arma::vec mun = (lambda0 * mu0 + n * xbar) / lambdan;
arma::mat S;
S.zeros(data.n_cols, data.n_cols);
for(int i = 0; i < n; i++){
S += (arma::conv_to<arma::vec>::from(data.row(i)) - xbar) * arma::trans(arma::conv_to<arma::vec>::from(data.row(i)) - xbar);
}
arma::mat Vn = V + S + ((lambda0*n)/(lambda0 + n)) * (xbar - mu0) * arma::trans(xbar - mu0);
return List::create(_["mun"] = mun,
_["Vn"] = Vn,
_["lambdan"] = lambdan);
}
Calling now:
library(Rcpp); library(RcppArmadillo)
mu0 <- c(3,3)
V0 <- matrix(c(2.5,0.0,0.0,2.5), nrow = 2)
sourceCpp("fun.cpp")
data <- cbind(rep(5,15),rep(0,15))
PosteriorNIW(data, mu0, 1, 1, V0)
gives the expected result.
$mun
[,1]
[1,] 4.8750
[2,] 0.1875
$Vn
[,1] [,2]
[1,] 6.250 -5.6250
[2,] -5.625 10.9375
$lambdan
[1] 16
Now if I add to the file fun.cpp the following functions (again, these are taken from a bigger context so don't bother trying to understand but just paste them) strange things happens:
// [[Rcpp::export]]
NumericMatrix myFun(arma::mat t_dish, arma::cube data){
int l = 0;
for(int j = 0; j < data.n_rows; j++){
l++;
}
NumericMatrix Dk(l, 2);
return Dk;
}
// [[Rcpp::export]]
int myFun2(arma::cube n_cust){
arma::mat temp = n_cust.subcube(arma::span(0), arma::span(), arma::span());
int i;
for(i = 0; i < n_cust.n_cols; i++){
arma::rowvec temp2 = temp.row(i);
}
return i + 1;
}
// [[Rcpp::export]]
arma::vec myFun3(arma::mat k_tables){
arma::vec temp(k_tables.n_cols * k_tables.n_rows);
int l = 0;
if(!R_IsNA(k_tables(0,0))){
l++;
}
arma::vec temp2(l);
arma::vec tmp3 = sort(temp2);
return tmp3;
}
double myFun4(arma::vec x, double nu, arma::vec mu, arma::mat Sigma){
arma::vec product = (arma::trans(x - mu) * arma::inv(Sigma) * (x - mu));
double num = pow(1 + (1 / nu) * product[0], - ( nu + 2 ) / 2);
double den = pow(sqrt(M_PI * nu),2) * sqrt(arma::det(Sigma));
return num / den;
}
bool myFun5(NumericVector X, double z) {
return std::find(X.begin(), X.end(), z)!=X.end();
}
calling PosteriorNIW(data, mu0, 1, 1, V0) repeatedly starts giving different results every time. Note that there is no randomness in the functions and that obviously those functions have got no impact as they are not called in the original function.
I have tried on a different machine to make sure it was not a problem of my compiler but the error keeps happening.
I know that removing those function (even just one of them) fixes the problem but clearly this is not a feasible solution when I am working with more functions.
I would like to know if other users are able to replicate this behavior and if yes if there is a fix for it.
Thank you in advance
EDIT:
The version of R is 3.3.2 and Rtools is 3.4. Both Rcpp and RcppArmadillo are up-to-date
You're not zeroing xbar in your colMeans function. If I do do that:
arma::vec colMeans(arma::mat data){
int n_0 = data.n_rows;
arma::vec xbar;
xbar.zeros(data.n_cols);
for(int i = 0; i < data.n_rows; i++){
for(int j = 0; j < data.n_cols; j++){
xbar[j] += data(i,j) /n_0;
}
}
return xbar;
}
I get this everytime:
> PosteriorNIW(data, mu0, 1, 1.1, V0)
$mun
[,1]
[1,] 4.8750
[2,] 0.1875
$Vn
[,1] [,2]
[1,] 6.250 -5.6250
[2,] -5.625 10.9375
$lambdan
[1] 16
Even when I do add your extra block of code.
I don't know if these vectors are documented to be initialised to zero by their constructor (in which case this might be a bug there) or not, in which case its your bug!

Parallel computation of a quadratic term in Rcpp

Let Y and K be an n-dimensional (column) vector and n by n matrix, respectively. Think of Y and K as a sample vector and its covariance matrix.
Corresponding to each entry of Y (say Yi) there is a row vector (of size 2) Si encoding the location of the sample in a two dimensional space. Construct the n by 2 matrix S by concatenating all the Si vectors. The ij-th entry of K is of the form
Kij= f( |si-sj|, b )
in which |.| denotes the usual Euclidean norm, f is the covariance function and b represents the covariance parameters. For instance for powered exponential covariance we have f(x) = exp( (-|x|/r)q ) and b = (r,q).
The goal is to compute the following quantity in Rcpp, using a parallel fashion. (YT stands for Y transpose and ||.||2 denotes the sum of square entries of K).
YTKY ⁄ ||K||2
Here is the piece of code I've written to do the job. While running, Rstudio runs out of memory after a few seconds and the following massage displays: "R encountered a fatal error. The session was terminated". I've very recently started using open MP in Rcpp and I have no idea why this happens! Can anybody tell me what have I done wrong here?
#include <Rcpp.h>
#include<math.h>
#include<omp.h>
// [[Rcpp::plugins(openmp)]]
using namespace Rcpp;
// [[Rcpp::export]]
double InnerProd(NumericVector x, NumericVector y) {
int n = x.size();
double total = 0;
for(int i = 0; i < n; ++i) {
total += x[i]*y[i];
}
return total;
}
// [[Rcpp::export]]
double CorFunc(double r, double range_param, double beta) {
double q,x;
x = r/range_param;
q = exp( -pow(x,beta) );
return(q);
}
// [[Rcpp::export]]
double VarianceComp( double range, NumericVector Y, NumericMatrix s, double
beta, int t ){
int n,i,j;
double Numer = 0, Denom = 0, dist, CorVal, ObjVal;
NumericVector DistVec;
n = Y.size();
omp_set_num_threads(t);
# pragma omp parallel for private(DistVec,CorVal,dist,j) \
reduction(+:Numer,Denom)
for( i = 0; i < n; ++i) {
for( j = 0; j < n; ++j){
DistVec = ( s(i,_)-s(j,_) );
dist = sqrt( InnerProd(DistVec,DistVec) );
CorVal = CorFunc(dist,range,beta);
Numer += Y[i]*Y[j]*CorVal/n;
Denom += pow( CorVal, 2 )/n;
}
}
ObjVal = Numer/Denom;
return( ObjVal );
}

Resources