3D Data with ggplot - r

I have data in the following form:
x <- seq(from = 0.01,to = 1, by = 0.01)
y <- seq(from = 0.01,to = 1, by = 0.01)
xAxis <- x/(1+x*y)
yAxis <- x/(1+x*y)
z <- (0.9-xAxis)^2 + (0.5-yAxis)^2
df <- expand.grid(x,y)
xAxis <- df$Var1/(1+df$Var1*df$Var2)
yAxis <- df$Var2/(1+df$Var1*df$Var2)
df$x <- xAxis
df$y <- yAxis
df$z <- z
I would like to plot te (x,y,z) data as a surface and contour plots, possibily interpolating data to obtain as smooth a figure as possible.
Searching I reached the akima package which does the interpolation:
im <- with(df,interp(x,y,z))
I am having trouble plotting the data with this output. Ideally I would like to use ggplot2 since I want to add stuff to the original plot.
Thanks!

I'm a bit puzzled as to what you are looking for, but how about something like this?
im <- with(df, akima::interp(x, y, z, nx = 1000, ny = 1000))
df2 <- data.frame(expand.grid(x = im$x, y = im$y), z = c(im$z))
ggplot(df2, aes(x, y, fill = z)) +
geom_raster() +
viridis::scale_fill_viridis()

For contour plots, I use the "rgl" package. This allows real-time manipulation of the plot in order to have the best view.
library("rgl")
x <- seq(from = 0.01,to = 1, by = 0.01)
y <- seq(from = 0.01,to = 1, by = 0.01)
#z <- (0.9-xAxis)^2 + (0.5-yAxis)^2
df <- expand.grid(x,y)
xAxis <- df$Var1/(1+df$Var1*df$Var2)
yAxis <- df$Var2/(1+df$Var1*df$Var2)
df$z <- (0.9-xAxis)^2 + (0.5-yAxis)^2
surface3d(x=x, y=y, z=df$z, col="blue", back="lines")
title3d(xlab="x", zlab="z", ylab="y")
axes3d(tick="FALSE")
The rgl package is comparable to the ggplot2 package to customize the final plot. The 0.01 grid spacing is more than close enough for this type of smooth surface.

Related

Plot two 3D graphics from own models in one plot in R

I have a model like this
lmer(response ~ poly(pred1, 2) * poly(pred2, 2) * grouping_variable ...)
Since my grouping variable has two levels I would like to plot two 3D Graphics in one plot like this:
this is done with scatter3d from the car package. Unfortunately there is no option to plot an own model. There are some options to chose (linear, quadratic,...) but I would like to plot my model.
I was able to plot my own model with scatter3D from the plot3D package, but I could not find an option to plot both levels of the grouping variable.
Do you have an idea, how I could achieve this?
Here are some example data (I am not good in simulating data, but I think it should work):
library(car)
library(dplyr)
X <- seq(76, 135) + rnorm(sd = 2, n = 60)
Y <- seq(65, 365, length.out = 60) + rnorm(sd = 4, n = 60)
Test.grid <- expand.grid(X = X, Y = Y)
Test.grid$A <- 1
Test.grid$Z <- 2*X + 0.5*Y
df1 <- sample_n(Test.grid, 60)
df2 <- df1 %>% mutate(A = 2, Y = Y + 50)
Test <- rbind(df1, df2)
X <- Test$X
Y <- Test$Y
Z <- Test$Z
scatter3d(x=X, y=Y, z=Z, groups = as.factor(Test$A), grid = FALSE, fit = "linear", surface.col = c("red", "black"))
All commands from the plot3D package include a command add = T. With that it is very easy to plot the second surface, by just adding add = T to the second plot command.

Filling parts of a contour plot in R

I have made a contour plot in R with the following code:
library(mvtnorm)
# Define the parameters for the multivariate normal distribution
mu = c(0,0)
sigma = matrix(c(1,0.2,0.2,3),nrow = 2)
# Make a grid in the x-y plane centered in mu, +/- 3 standard deviations
xygrid = expand.grid(x = seq(from = mu[1]-3*sigma[1,1], to = mu[1]+3*sigma[1,1], length.out = 100),
y = seq(from = mu[2]-3*sigma[2,2], to = mu[2]+3*sigma[2,2], length.out = 100))
# Use the mvtnorm library to calculate the multivariate normal density for each point in the grid
distribution = as.matrix(dmvnorm(x = xygrid, mean = mu, sigma = sigma))
# Plot contours
df = as.data.frame(cbind(xygrid, distribution))
myPlot = ggplot() + geom_contour(data = df,geom="polygon",aes( x = x, y = y, z = distribution))
myPlot
I want to illustrate cumulative probability by shading/colouring certain parts of the plot, for instance everything in the region {x<0, y<0} (or any other self defined region).
Is there any way of achieving this in R with ggplot?
So you are able to get the coordinates used to draw the circles in the plot using ggplot_build. Subsequently you could try to use these coordinates in combination with geom_polygon to shade a particular region. My best try:
library(dplyr)
data <- ggplot_build(myPlot)$data[[1]]
xCoor <- 0
yCoor <- 0
df <- data %>% filter(group == '-1-001', x <= xCoor, y <= yCoor) %>% select(x,y)
# Insert the [0,0] coordinate in the right place
index <- which.max(abs(diff(rank(df$y))))
df <- rbind( df[1:index,], data.frame(x=xCoor, y=yCoor), df[(index+1):nrow(df),] )
myPlot + geom_polygon(data = df, aes(x=x, y=y), fill = 'red', alpha = 0.5)
As you can see it's not perfect because the [x,0] and [0,y] coordinates are not included in the data, but it's a start.

A ggplot2 equivalent of the lines() function in basic plot

For reasons I won't go into I need to plot a vertical normal curve on a blank ggplot2 graph. The following code gets it done as a series of points with x,y coordinates
dfBlank <- data.frame()
g <- ggplot(dfBlank) + xlim(0.58,1) + ylim(-0.2,113.2)
hdiLo <- 31.88
hdiHi <- 73.43
yComb <- seq(hdiLo, hdiHi, length = 75)
xVals <- 0.79 - (0.06*dnorm(yComb, 52.65, 10.67))/0.05
dfVertCurve <- data.frame(x = xVals, y = yComb)
g + geom_point(data = dfVertCurve, aes(x = x, y = y), size = 0.01)
The curve is clearly discernible but is a series of points. The lines() function in basic plot would turn these points into a smooth line.
Is there a ggplot2 equivalent?
I see two different ways to do it.
geom_segment
The first uses geom_segment to 'link' each point with its next one.
hdiLo <- 31.88
hdiHi <- 73.43
yComb <- seq(hdiLo, hdiHi, length = 75)
xVals <- 0.79 - (0.06*dnorm(yComb, 52.65, 10.67))/0.05
dfVertCurve <- data.frame(x = xVals, y = yComb)
library(ggplot2)
ggplot() +
xlim(0.58, 1) +
ylim(-0.2, 113.2) +
geom_segment(data = dfVertCurve, aes(x = x, xend = dplyr::lead(x), y = y, yend = dplyr::lead(y)), size = 0.01)
#> Warning: Removed 1 rows containing missing values (geom_segment).
As you can see it just link the points you created. The last point does not have a next one, so the last segment is removed (See the warning)
stat_function
The second one, which I think is better and more ggplotish, utilize stat_function().
library(ggplot2)
f = function(x) .79 - (.06 * dnorm(x, 52.65, 10.67)) / .05
hdiLo <- 31.88
hdiHi <- 73.43
yComb <- seq(hdiLo, hdiHi, length = 75)
ggplot() +
xlim(-0.2, 113.2) +
ylim(0.58, 1) +
stat_function(data = data.frame(yComb), fun = f) +
coord_flip()
This build a proper function (y = f(x)), plot it. Note that it is build on the X axis and then flipped. Because of this the xlim and ylim are inverted.

How to plot loess surface with ggplot

i have this code and i create a loess surface of my dataframe.
library(gstat)
library(sp)
x<-c(0,55,105,165,270,65,130,155,155,225,250,295,
30,100,110,135,160,190,230,300,30,70,105,170,
210,245,300,0,85,175,300,15,60,90,90,140,210,
260,270,295,5,55,55,90,100,140,190,255,285,270)
y<-c(305,310,305,310,310,260,255,265,285,280,250,
260,210,240,225,225,225,230,210,215,160,190,
190,175,160,160,170,120,135,115,110,85,90,90,
55,55,90,85,50,50,25,30,5,35,15,0,40,20,5,150)
z<-c(870,793,755,690,800,800,730,728,710,780,804,
855,813,762,765,740,765,760,790,820,855,812,
773,812,827,805,840,890,820,873,875,873,865,
841,862,908,855,850,882,910,940,915,890,880,
870,880,960,890,860,830)
dati<-data.frame(x,y,z)
x.range <- as.numeric(c(min(x), max(x)))
y.range <- as.numeric(c(min(y), max(y)))
meuse.loess <- loess(z ~ x * y, dati, degree=2, span = 0.25,
normalize=F)
meuse.mar <- list(x = seq(from = x.range[1], to = x.range[2], by = 1), y = seq(from = y.range[1],
to = y.range[2], by = 1))
meuse.lo <- predict(meuse.loess, newdata=expand.grid(meuse.mar), se=TRUE)
Now I want to plot meuse.lo[[1]] with ggplot2 function... but i don't know how to convert meuse.lo[[1]] in a dataframe with x,y (grid's coordinates) and z (interpolated value) columns. Thanks.
Your problem here is that loess() returns a matrix if you use grid.expand() to generate the new data for loess().
This is mentioned in the help for ?loess.predict:
If newdata was the result of a call to expand.grid, the predictions (and s.e.'s if requested) will be an array of the appropriate dimensions.
Now, you can still use grid.expand() to compute the new data, but force this function to return a data frame and dropping the attributes.
From ?grid.expand:
KEEP.OUT.ATTRS: a logical indicating the "out.attrs" attribute (see below) should be computed and returned.
So, try this:
nd <- expand.grid(meuse.mar, KEEP.OUT.ATTRS = FALSE)
meuse.lo <- predict(meuse.loess, newdata=nd, se=TRUE)
# Add the fitted data to the `nd` object
nd$z <- meuse.lo$fit
library(ggplot2)
ggplot(nd, aes(x, y, col = z)) +
geom_tile() +
coord_fixed()
The result:
ggplot2 is probably not the best choice for 3d graphs. However here is an easy solution with rgl
library(rgl)
plot3d(x, y, z, type="s", size=0.75, lit=FALSE,col="red")
surface3d(meuse.mar[[1]], meuse.mar[[2]], meuse.lo[[1]],
alpha=0.4, front="lines", back="lines")

Plot 3D data in R

I have a 3D dataset:
data = data.frame(
x = rep( c(0.1, 0.2, 0.3, 0.4, 0.5), each=5),
y = rep( c(1, 2, 3, 4, 5), 5)
)
data$z = runif(
25,
min = (data$x*data$y - 0.1 * (data$x*data$y)),
max = (data$x*data$y + 0.1 * (data$x*data$y))
)
data
str(data)
And I want to plot it, but the built-in-functions of R alwyas give the error
increasing 'x' and 'y' values expected
# ### 3D Plots ######################################################
# built-in function always give the error
# "increasing 'x' and 'y' values expected"
demo(image)
image(x = data$x, y = data$y, z = data$z)
demo(persp)
persp(data$x,data$y,data$z)
contour(data$x,data$y,data$z)
When I searched on the internet, I found that this message happens when combinations of X and Y values are not unique. But here they are unique.
I tried some other libraries and there it works without problems. But I don't like the default style of the plots (the built-in functions should fulfill my expectations).
# ### 3D Scatterplot ######################################################
# Nice plots without surface maps?
install.packages("scatterplot3d", dependencies = TRUE)
library(scatterplot3d)
scatterplot3d(x = data$x, y = data$y, z = data$z)
# ### 3D Scatterplot ######################################################
# Only to play around?
install.packages("rgl", dependencies = TRUE)
library(rgl)
plot3d(x = data$x, y = data$y, z = data$z)
lines3d(x = data$x, y = data$y, z = data$z)
surface3d(x = data$x, y = data$y, z = data$z)
Why are my datasets not accepted by the built-in functions?
I use the lattice package for almost everything I plot in R and it has a corresponing plot to persp called wireframe. Let data be the way Sven defined it.
wireframe(z ~ x * y, data=data)
Or how about this (modification of fig 6.3 in Deepanyan Sarkar's book):
p <- wireframe(z ~ x * y, data=data)
npanel <- c(4, 2)
rotx <- c(-50, -80)
rotz <- seq(30, 300, length = npanel[1]+1)
update(p[rep(1, prod(npanel))], layout = npanel,
panel = function(..., screen) {
panel.wireframe(..., screen = list(z = rotz[current.column()],
x = rotx[current.row()]))
})
Update: Plotting surfaces with OpenGL
Since this post continues to draw attention I want to add the OpenGL way to make 3-d plots too (as suggested by #tucson below). First we need to reformat the dataset from xyz-tripplets to axis vectors x and y and a matrix z.
x <- 1:5/10
y <- 1:5
z <- x %o% y
z <- z + .2*z*runif(25) - .1*z
library(rgl)
persp3d(x, y, z, col="skyblue")
This image can be freely rotated and scaled using the mouse, or modified with additional commands, and when you are happy with it you save it using rgl.snapshot.
rgl.snapshot("myplot.png")
Adding to the solutions of others, I'd like to suggest using the plotly package for R, as this has worked well for me.
Below, I'm using the reformatted dataset suggested above, from xyz-tripplets to axis vectors x and y and a matrix z:
x <- 1:5/10
y <- 1:5
z <- x %o% y
z <- z + .2*z*runif(25) - .1*z
library(plotly)
plot_ly(x=x,y=y,z=z, type="surface")
The rendered surface can be rotated and scaled using the mouse. This works fairly well in RStudio.
You can also try it with the built-in volcano dataset from R:
plot_ly(z=volcano, type="surface")
If you're working with "real" data for which the grid intervals and sequence cannot be guaranteed to be increasing or unique (hopefully the (x,y,z) combinations are unique at least, even if these triples are duplicated), I would recommend the akima package for interpolating from an irregular grid to a regular one.
Using your definition of data:
library(akima)
im <- with(data,interp(x,y,z))
with(im,image(x,y,z))
And this should work not only with image but similar functions as well.
Note that the default grid to which your data is mapped to by akima::interp is defined by 40 equal intervals spanning the range of x and y values:
> formals(akima::interp)[c("xo","yo")]
$xo
seq(min(x), max(x), length = 40)
$yo
seq(min(y), max(y), length = 40)
But of course, this can be overridden by passing arguments xo and yo to akima::interp.
I think the following code is close to what you want
x <- c(0.1, 0.2, 0.3, 0.4, 0.5)
y <- c(1, 2, 3, 4, 5)
zfun <- function(a,b) {a*b * ( 0.9 + 0.2*runif(a*b) )}
z <- outer(x, y, FUN="zfun")
It gives data like this (note that x and y are both increasing)
> x
[1] 0.1 0.2 0.3 0.4 0.5
> y
[1] 1 2 3 4 5
> z
[,1] [,2] [,3] [,4] [,5]
[1,] 0.1037159 0.2123455 0.3244514 0.4106079 0.4777380
[2,] 0.2144338 0.4109414 0.5586709 0.7623481 0.9683732
[3,] 0.3138063 0.6015035 0.8308649 1.2713930 1.5498939
[4,] 0.4023375 0.8500672 1.3052275 1.4541517 1.9398106
[5,] 0.5146506 1.0295172 1.5257186 2.1753611 2.5046223
and a graph like
persp(x, y, z)
Not sure why the code above did not work for the library rgl, but the following link has a great example with the same library.
Run the code in R and you will obtain a beautiful 3d plot that you can turn around in all angles.
http://statisticsr.blogspot.de/2008/10/some-r-functions.html
########################################################################
## another example of 3d plot from my personal reserach, use rgl library
########################################################################
# 3D visualization device system
library(rgl);
data(volcano)
dim(volcano)
peak.height <- volcano;
ppm.index <- (1:nrow(volcano));
sample.index <- (1:ncol(volcano));
zlim <- range(peak.height)
zlen <- zlim[2] - zlim[1] + 1
colorlut <- terrain.colors(zlen) # height color lookup table
col <- colorlut[(peak.height-zlim[1]+1)] # assign colors to heights for each point
open3d()
ppm.index1 <- ppm.index*zlim[2]/max(ppm.index);
sample.index1 <- sample.index*zlim[2]/max(sample.index)
title.name <- paste("plot3d ", "volcano", sep = "");
surface3d(ppm.index1, sample.index1, peak.height, color=col, back="lines", main = title.name);
grid3d(c("x", "y+", "z"), n =20)
sample.name <- paste("col.", 1:ncol(volcano), sep="");
sample.label <- as.integer(seq(1, length(sample.name), length = 5));
axis3d('y+',at = sample.index1[sample.label], sample.name[sample.label], cex = 0.3);
axis3d('y',at = sample.index1[sample.label], sample.name[sample.label], cex = 0.3)
axis3d('z',pos=c(0, 0, NA))
ppm.label <- as.integer(seq(1, length(ppm.index), length = 10));
axes3d('x', at=c(ppm.index1[ppm.label], 0, 0), abs(round(ppm.index[ppm.label], 2)), cex = 0.3);
title3d(main = title.name, sub = "test", xlab = "ppm", ylab = "samples", zlab = "peak")
rgl.bringtotop();

Resources