Can ggplot2 be used to produce a so-called topoplot (often used in neuroscience)?
Sample data:
label x y signal
1 R3 0.64924459 0.91228430 2.0261520
2 R4 0.78789621 0.78234410 1.7880972
3 R5 0.93169511 0.72980685 0.9170998
4 R6 0.48406513 0.82383895 3.1933129
Full sample data.
Rows represent individual electrodes. Columns x and y represent the projection into 2D space and the column signal is essentially the z-axis representing voltage measured at a given electrode.
stat_contour doesn't work, apparently due to unequal grid.
geom_density_2d only provides a density estimation of x and y.
geom_raster is one not fitted for this task or I must be using it incorrectly since it quickly runs out of memory.
Smoothing (like in the image on the right) and head contours (nose, ears) aren't necessary.
I want to avoid Matlab and transforming the data so that it fits this or that toolbox… Many thanks!
Update (26 January 2016)
The closest I've been able to get to my objective is via
library(colorRamps)
ggplot(channels, aes(x, y, z = signal)) + stat_summary_2d() + scale_fill_gradientn(colours=matlab.like(20))
which produces an image like this:
Update 2 (27 January 2016)
I've tried #alexforrence's approach with full data and this is the result:
It's a great start but there is a couple of issues:
The last call (ggplot()) takes about 40 seconds on an Intel i7 4790K while Matlab toolboxes manage to generate these almost instantly; my ‘emergency solution’ above takes about a second.
As you can see, the upper and lower border of the central part appear to be ‘sliced’ – I'm not sure what causes this but it could be the third issue.
I'm getting these warnings:
1: Removed 170235 rows containing non-finite values (stat_contour).
2: Removed 170235 rows containing non-finite values (stat_contour).
Update 3 (27 January 2016)
Comparison between two plots produced with different interp(xo, yo) and stat_contour(binwidth) values:
Ragged edges if one chooses low interp(xo, yo), in this case xo/yo = seq(0, 1, length = 100):
Here's a potential start:
First, we'll attach some packages. I'm using akima to do linear interpolation, though it looks like EEGLAB uses some sort of spherical interpolation here? (the data was a little sparse to try it).
library(ggplot2)
library(akima)
library(reshape2)
Next, reading in the data:
dat <- read.table(text = " label x y signal
1 R3 0.64924459 0.91228430 2.0261520
2 R4 0.78789621 0.78234410 1.7880972
3 R5 0.93169511 0.72980685 0.9170998
4 R6 0.48406513 0.82383895 3.1933129")
We'll interpolate the data, and stick that in a data frame.
datmat <- interp(dat$x, dat$y, dat$signal,
xo = seq(0, 1, length = 1000),
yo = seq(0, 1, length = 1000))
datmat2 <- melt(datmat$z)
names(datmat2) <- c('x', 'y', 'value')
datmat2[,1:2] <- datmat2[,1:2]/1000 # scale it back
I'm going to borrow from some previous answers. The circleFun below is from Draw a circle with ggplot2.
circleFun <- function(center = c(0,0),diameter = 1, npoints = 100){
r = diameter / 2
tt <- seq(0,2*pi,length.out = npoints)
xx <- center[1] + r * cos(tt)
yy <- center[2] + r * sin(tt)
return(data.frame(x = xx, y = yy))
}
circledat <- circleFun(c(.5, .5), 1, npoints = 100) # center on [.5, .5]
# ignore anything outside the circle
datmat2$incircle <- (datmat2$x - .5)^2 + (datmat2$y - .5)^2 < .5^2 # mark
datmat2 <- datmat2[datmat2$incircle,]
And I really liked the look of the contour plot in R plot filled.contour() output in ggpplot2, so we'll borrow that one.
ggplot(datmat2, aes(x, y, z = value)) +
geom_tile(aes(fill = value)) +
stat_contour(aes(fill = ..level..), geom = 'polygon', binwidth = 0.01) +
geom_contour(colour = 'white', alpha = 0.5) +
scale_fill_distiller(palette = "Spectral", na.value = NA) +
geom_path(data = circledat, aes(x, y, z = NULL)) +
# draw the nose (haven't drawn ears yet)
geom_line(data = data.frame(x = c(0.45, 0.5, .55), y = c(1, 1.05, 1)),
aes(x, y, z = NULL)) +
# add points for the electrodes
geom_point(data = dat, aes(x, y, z = NULL, fill = NULL),
shape = 21, colour = 'black', fill = 'white', size = 2) +
theme_bw()
With improvements mentioned in the comments (setting extrap = TRUE and linear = FALSE in the interp call to fill in gaps and do a spline smoothing, respectively, and removing NAs before plotting), we get:
mgcv can do spherical splines. This replaces akima (the chunk containing interp() isn't necessary).
library(mgcv)
spl1 <- gam(signal ~ s(x, y, bs = 'sos'), data = dat)
# fine grid, coarser is faster
datmat2 <- data.frame(expand.grid(x = seq(0, 1, 0.001), y = seq(0, 1, 0.001)))
resp <- predict(spl1, datmat2, type = "response")
datmat2$value <- resp
Related
I'd like calculate (not plot) 2d spline paths in R. There's an old question on that topic that suggests xspline(): Calculate a 2D spline curve in R
xspline() somewhat works for my purpose, but has important limitations:
I cannot customize the number of interpolation points
I need to call plot.new(), even if I don't want it to draw anything
I only have a single parameter (shape) to customize the spline; I'd like to be able to try a few more different types, if possible
Reproducible example:
library(ggplot2)
# control points
x <- c(.1, .5, .7, .8)
y <- c(.9, .6, .5, .1)
plot.new() # necessary for xspline(); would be great if it could be avoided
# how do I set the number of interpolation points?
# how do I modify the exact path (beyond shape parameter)?
path <- xspline(x, y, shape = 1, draw = FALSE)
# plot path (black) and control points (blue) with ggplot
ggplot(data = NULL, aes(x, y)) +
geom_point(data = as.data.frame(path), size = 0.5) +
geom_point(data = data.frame(x, y), size = 2, color = "blue")
Created on 2021-08-14 by the reprex package (v2.0.0)
Are there any easily available alternatives to xspline()?
It's not clear from your example, but base R's spline function might meet your needs. We can wrap it in a function to make it easier to use the output:
f <- function(x, y, n, method = "natural") {
new_x <- seq(min(x), max(x), length.out = n)
data.frame(x = new_x, y = spline(x, y, n = n, method = method)$y)
}
So the co-ordinates for 10 evenly spaced points along the curve can be obtained like this:
f(x, y, 10)
#> x y
#> 1 0.1000000 0.9000000
#> 2 0.1777778 0.8042481
#> 3 0.2555556 0.7173182
#> 4 0.3333333 0.6480324
#> 5 0.4111111 0.6052126
#> 6 0.4888889 0.5976809
#> 7 0.5666667 0.6222222
#> 8 0.6444444 0.6013374
#> 9 0.7222222 0.4303155
#> 10 0.8000000 0.1000000
And we can show the shape of the curve like this:
ggplot(data = NULL, aes(x, y)) +
geom_point(data = f(x, y, 100), size = 0.5) +
geom_point(data = data.frame(x, y), size = 2, color = "blue")
You can change the method argument to get different shapes - the options are listed in ?spline
EDIT
To use spline on paths, simply create splines on x and y separately. These can be as a function of another variable t, or this can be left out if you want to assume equal time spacing on the path:
f2 <- function(x, y, t = seq_along(x), n, method = "natural") {
new_t <- seq(min(t), max(t), length.out = n)
new_x <- spline(t, x, xout = new_t, method = method)$y
new_y <- spline(t, y, xout = new_t, method = method)$y
data.frame(t = new_t, x = new_x, y = new_y)
}
x <- rnorm(10)
y <- rnorm(10)
ggplot(data = NULL, aes(x, y)) +
geom_point(data = f2(x, y, n = 1000), size = 0.5) +
geom_point(data = data.frame(x, y), size = 2, color = "blue")
Created on 2021-08-14 by the reprex package (v2.0.0)
The xsplinePoints()from the {grid} package allows you to convert a xsplineGrob object to xy coordinates. One solution might be to wrap these functions to return points along an x-spline.
library(grid)
splines <- function(x, y, shape = 1, ..., density = 1) {
# Density controls number of points, though not the exact number
xs <- xsplineGrob(x * density, y * density, shape = shape, ...,
default.units = "inches")
# xsplinePoints seem to always return inches
xy <- xsplinePoints(xs)
# Drop units
xy <- lapply(xy, convertUnit, unitTo = "inches", valueOnly = TRUE)
data.frame(x = xy$x / density, y = xy$y / density)
}
I presume xsplinePoints() makes some behind the scenes calculation based on the size of the graphics device where smaller devices need less points.
The idea behind the density parameter is to let you (indirectly) control how many points are returned by artifically inflating the dimensions before handing the data to grid, and then deflating before returning to the user.
To compare with your example:
library(ggplot2)
# control points
x <- c(.1, .5, .7, .8)
y <- c(.9, .6, .5, .1)
plot.new()
path <- xspline(x, y, shape = 1, draw = FALSE)
# plot path (black) and control points (blue) with ggplot
ggplot(data = NULL, aes(x, y)) +
geom_point(data = as.data.frame(path), size = 0.5) +
geom_point(data = data.frame(x, y), size = 2, color = "blue") +
# density = 1 (red) and density = 3 (green)
geom_point(data = splines(x, y), colour = "red") +
geom_point(data = splines(x, y, density = 3), colour = "green")
Created on 2021-08-14 by the reprex package (v1.0.0)
I have made a contour plot in R with the following code:
library(mvtnorm)
# Define the parameters for the multivariate normal distribution
mu = c(0,0)
sigma = matrix(c(1,0.2,0.2,3),nrow = 2)
# Make a grid in the x-y plane centered in mu, +/- 3 standard deviations
xygrid = expand.grid(x = seq(from = mu[1]-3*sigma[1,1], to = mu[1]+3*sigma[1,1], length.out = 100),
y = seq(from = mu[2]-3*sigma[2,2], to = mu[2]+3*sigma[2,2], length.out = 100))
# Use the mvtnorm library to calculate the multivariate normal density for each point in the grid
distribution = as.matrix(dmvnorm(x = xygrid, mean = mu, sigma = sigma))
# Plot contours
df = as.data.frame(cbind(xygrid, distribution))
myPlot = ggplot() + geom_contour(data = df,geom="polygon",aes( x = x, y = y, z = distribution))
myPlot
I want to illustrate cumulative probability by shading/colouring certain parts of the plot, for instance everything in the region {x<0, y<0} (or any other self defined region).
Is there any way of achieving this in R with ggplot?
So you are able to get the coordinates used to draw the circles in the plot using ggplot_build. Subsequently you could try to use these coordinates in combination with geom_polygon to shade a particular region. My best try:
library(dplyr)
data <- ggplot_build(myPlot)$data[[1]]
xCoor <- 0
yCoor <- 0
df <- data %>% filter(group == '-1-001', x <= xCoor, y <= yCoor) %>% select(x,y)
# Insert the [0,0] coordinate in the right place
index <- which.max(abs(diff(rank(df$y))))
df <- rbind( df[1:index,], data.frame(x=xCoor, y=yCoor), df[(index+1):nrow(df),] )
myPlot + geom_polygon(data = df, aes(x=x, y=y), fill = 'red', alpha = 0.5)
As you can see it's not perfect because the [x,0] and [0,y] coordinates are not included in the data, but it's a start.
I'm clueless on below question. Any help is appreciated please.
"Simulate data with n=1000 observations and p=3 covariates -- all random variables from standard normal distribution. Create two category class variable assigning all observations within a sphere with radius of 1.5 centered at 3D zero to one class category and all others -- to the second".
Here's a 2D example to get you going...
library(ggplot2)
library(grid)
Sample x & y coords from normal distribution (default mean = 0, sd = 1)
df <- data.frame(x = rnorm(100), y = rnorm(100))
Calculate distance from centre (0,0)
df$r = sqrt(df$x^2 + df$y^2)
Assign to category
df$category <- ifelse(df$r < 1, "in", "out")
Plot
ggplot(df, aes(x = x, y = y, color = category)) +
geom_point() +
coord_equal() +
annotation_custom(grob=circleGrob(r=unit(1,"npc"), gp = gpar(fill = NA)), xmin=-0.5, xmax=0.5, ymin=-0.5, ymax=0.5)
For reasons I won't go into I need to plot a vertical normal curve on a blank ggplot2 graph. The following code gets it done as a series of points with x,y coordinates
dfBlank <- data.frame()
g <- ggplot(dfBlank) + xlim(0.58,1) + ylim(-0.2,113.2)
hdiLo <- 31.88
hdiHi <- 73.43
yComb <- seq(hdiLo, hdiHi, length = 75)
xVals <- 0.79 - (0.06*dnorm(yComb, 52.65, 10.67))/0.05
dfVertCurve <- data.frame(x = xVals, y = yComb)
g + geom_point(data = dfVertCurve, aes(x = x, y = y), size = 0.01)
The curve is clearly discernible but is a series of points. The lines() function in basic plot would turn these points into a smooth line.
Is there a ggplot2 equivalent?
I see two different ways to do it.
geom_segment
The first uses geom_segment to 'link' each point with its next one.
hdiLo <- 31.88
hdiHi <- 73.43
yComb <- seq(hdiLo, hdiHi, length = 75)
xVals <- 0.79 - (0.06*dnorm(yComb, 52.65, 10.67))/0.05
dfVertCurve <- data.frame(x = xVals, y = yComb)
library(ggplot2)
ggplot() +
xlim(0.58, 1) +
ylim(-0.2, 113.2) +
geom_segment(data = dfVertCurve, aes(x = x, xend = dplyr::lead(x), y = y, yend = dplyr::lead(y)), size = 0.01)
#> Warning: Removed 1 rows containing missing values (geom_segment).
As you can see it just link the points you created. The last point does not have a next one, so the last segment is removed (See the warning)
stat_function
The second one, which I think is better and more ggplotish, utilize stat_function().
library(ggplot2)
f = function(x) .79 - (.06 * dnorm(x, 52.65, 10.67)) / .05
hdiLo <- 31.88
hdiHi <- 73.43
yComb <- seq(hdiLo, hdiHi, length = 75)
ggplot() +
xlim(-0.2, 113.2) +
ylim(0.58, 1) +
stat_function(data = data.frame(yComb), fun = f) +
coord_flip()
This build a proper function (y = f(x)), plot it. Note that it is build on the X axis and then flipped. Because of this the xlim and ylim are inverted.
I want to add shaded areas to a chart to help people understand where bad, ok, and good points can fit.
Good = x*y>=.66
Ok = x*y>=.34
Bad = x*y<.34
Generating the right sequence of data to correctly apply the curved boundaries to the chart is proving tough.
What is the most elegant way to generate the curves?
Bonus Q: How would you do this to produce non-overlapping areas so that different colours could be used?
Updates
I've managed to do in a rather hacky way the drawing of the circle segments. I updated the MRE to use the revised segMaker function.
MRE
library(ggplot2)
pts<-seq(0,1,.02)
x<-sample(pts,50,replace=TRUE)
y<-sample(pts,50,replace=TRUE)
# What function will generate correct sequence of values as these are linear?
segMaker<-function(x,by){
# Original
# data.frame(x=c(seq(0,x,by),0)
# ,y=c(seq(x,0,-by),0)
# )
zero <- data.frame(x = 0, y = 0)
rs <- seq(0, pi, by)
xc <- x * cos(rs)
yc <- x * sin(rs)
gr <- data.frame(x = xc, y = yc)
gr <- rbind(gr[gr$x >= 0, ], zero)
return(gr)
}
firstSeg <-segMaker(.34,0.02)
secondSeg <-segMaker(.66,0.02)
thirdSeg <-segMaker(1,0.02)
ggplot(data.frame(x,y),aes(x,y, colour=x*y))+
geom_point() +
geom_polygon(data=firstSeg, fill="blue", alpha=.25)+
geom_polygon(data=secondSeg, fill="blue", alpha=.25)+
geom_polygon(data=thirdSeg, fill="blue", alpha=.25)
Current & desired shadings
You can create a data frame with the boundaries between each region and then use geom_ribbon to plot it. Here's an example using the conditions you supplied (which result in boundaries that are the reciprocal function, rather than circles, but the idea is the same, whichever function you use for the boundaries):
library(ggplot2)
# Fake data
pts<-seq(0,1,.02)
set.seed(19485)
x<-sample(pts,50,replace=TRUE)
y<-sample(pts,50,replace=TRUE)
df = data.frame(x,y)
# Region boundaries
x = seq(0.001,1.1,0.01)
bounds = data.frame(x, ymin=c(-100/x, 0.34/x, 0.66/x),
ymax=c(0.34/x, 0.66/x, 100/x),
g=rep(c("Bad","OK","Good"), each=length(x)))
bounds$g = factor(bounds$g, levels=c("Bad","OK","Good"))
ggplot() +
coord_cartesian(ylim=0:1, xlim=0:1) +
geom_ribbon(data=bounds, aes(x, ymin=ymin, ymax=ymax, fill=g), colour="grey50", lwd=0.2) +
geom_point(data=df, aes(x,y), colour="grey20") +
scale_fill_manual(values=hcl(c(15, 40, 240), 100, 80)) +
#scale_fill_manual(values=hcl(c(15, 40, 240), 100, 80, alpha=0.25)) + # If you want the fill colors to be transparent
labs(fill="") +
guides(fill=guide_legend(reverse=TRUE))
For circular boundaries, assuming we want boundaries at r=1/3 and r=2/3:
# Calculate y for circle, given r and x
cy = function(r, x) {sqrt(r^2 - x^2)}
n = 200
x = unlist(lapply(c(1/3,2/3,1), function(to) seq(0, to, len=n)))
bounds = data.frame(x, ymin = c(rep(0, n),
cy(1/3, seq(0, 1/3, len=n/2)), rep(0, n/2),
cy(2/3, seq(0, 2/3, len=2*n/3)), rep(0, n/3)),
ymax = c(cy(1/3, seq(0,1/3,len=n)),
cy(2/3, seq(0,2/3,len=n)),
rep(1,n)),
g=rep(c("Bad","OK","Good"), each=n))
bounds$g = factor(bounds$g, levels=c("Bad","OK","Good"))
If you can use a github package, ggforce adds geom_arc_bar():
# devtools::install_github('thomasp85/ggforce')
library(ggplot2)
library(ggforce)
pts<-seq(0,1,.02)
x<-sample(pts,50,replace=TRUE)
y<-sample(pts,50,replace=TRUE)
arcs <- data.frame(
x0 = 0,
y0 = 0,
start = 0,
end = pi / 2,
r0 = c(0, 1/3, 2/3),
r = c(1/3, 2/3, 1),
fill = c("bad", "ok", "good")
)
ggplot() +
geom_arc_bar(data = arcs,
aes(x0 = x0, y0 = y0, start = start, end = end, r0 = r0, r = r,
fill = fill), alpha = 0.6) +
geom_point(data = data.frame(x = x, y = y),
aes(x = x, y = y))
Based on #eipi10's great answer, to do the product component (basically ends up with the same thing) I did:
library(ggplot2)
library(data.table)
set.seed(19485)
pts <- seq(0, 1, .001)
x <- sample(pts, 50, replace = TRUE)
y <- sample(pts, 50, replace = TRUE)
df <- data.frame(x,y)
myRibbon<-CJ(pts,pts)
myRibbon[,prod:=V1 * V2]
myRibbon[,cat:=ifelse(prod<=1/3,"bad",
ifelse(prod<=2/3,"ok","good"))]
myRibbon<-myRibbon[
,.(ymin=min(V2),ymax=max(V2))
,.(cat,V1)]
ggplot() +
geom_ribbon(data=myRibbon
, aes(x=V1, ymin=ymin,ymax=ymax
, group=cat, fill=cat),
colour="grey90", lwd=0.2, alpha=.5)+
geom_point(data=df, aes(x,y), colour="grey20") +
theme_minimal()
This doesn't do anything fancy but works out for each value of x, what the smallest and largest values were that could give rise to a specific banding.
If I had just wanted arcs, the use of ggforce (#GregF) would be really great- it tucks away all the complexity.