The xgboost package and the random forests regression - r

The xgboost package allows to build a random forest (in fact, it chooses a random subset of columns to choose a variable for a split for the whole tree, not for a nod, as it is in a classical version of the algorithm, but it can be tolerated). But it seems that for regression only one tree from the forest (maybe, the last one built) is used.
To ensure that, consider just a standard toy example.
library(xgboost)
library(randomForest)
data(agaricus.train, package = 'xgboost')
dtrain = xgb.DMatrix(agaricus.train$data,
label = agaricus.train$label)
bst = xgb.train(data = dtrain,
nround = 1,
subsample = 0.8,
colsample_bytree = 0.5,
num_parallel_tree = 100,
verbose = 2,
max_depth = 12)
answer1 = predict(bst, dtrain);
(answer1 - agaricus.train$label) %*% (answer1 - agaricus.train$label)
forest = randomForest(x = as.matrix(agaricus.train$data), y = agaricus.train$label, ntree = 50)
answer2 = predict(forest, as.matrix(agaricus.train$data))
(answer2 - agaricus.train$label) %*% (answer2 - agaricus.train$label)
Yes, of course, the default version of the xgboost random forest uses not a Gini score function but just the MSE; it can be changed easily. Also it is not correct to do such a validation and so on, so on. It does not affect a main problem. Regardless of which sets of parameters are being tried results are suprisingly bad compared with the randomForest implementation. This holds for another data sets as well.
Could anybody provide a hint on such strange behaviour? When it comes to the classification task the algorithm does work as expected.
#
Well, all trees are grown and all are used to make a prediction. You may check that using the parameter 'ntreelimit' for the 'predict' function.
The main problem remains: is the specific form of the Random Forest algorithm that is produced by the xgbbost package valid?
Cross-validation, parameter tunning and other crap have nothing to do with that -- every one may add necessary corrections to the code and see what happens.
You may specify the 'objective' option like this:
mse = function(predict, dtrain)
{
real = getinfo(dtrain, 'label')
return(list(grad = 2 * (predict - real),
hess = rep(2, length(real))))
}
This provides that you use the MSE when choosing a variable for the split. Even after that, results are suprisingly bad compared to those of randomForest.
Maybe, the problem is of academical nature and concerns the way how a random subset of features to make a split is chosen. The classical implementation chooses a subset of features (the size is specified with 'mtry' for the randomForest package) for EVERY split separately and the xgboost implementation chooses one subset for a tree (specified with 'colsample_bytree').
So this fine difference appears to be of great importance, at least for some types of datasets. It is interesting, indeed.

xgboost(random forest style) does use more than one tree to predict. But there are many other differences to explore.
I myself am new to xgboost, but curious. So I wrote the code below to visualize the trees. You can run the code yourself to verify or explore other differences.
Your data set of choice is a classification problem as labels are either 0 or 1. I like to switch to a simple regression problem to visualize what xgboost does.
true model: $y = x_1 * x_2$ + noise
If you train a single tree or multiple tree, with the code examples below you observe that the learned model structure does contain more trees. You cannot argue alone from the prediction accuracy how many trees are trained.
Maybe the predictions are different because the implementations are different. None of the ~5 RF implementations I know of are exactly alike, and this xgboost(rf style) is as closest a distant "cousin".
I observe the colsample_bytree is not equal to mtry, as the former uses the same subset of variable/columns for the entire tree. My regression problem is one big interaction only, which cannot be learned if trees only uses either x1 or x2. Thus in this case colsample_bytree must be set to 1 to use both variables in all trees. Regular RF could model this problem with mtry=1, as each node would use either X1 or X2
I see your randomForest predictions are not out-of-bag cross-validated. If drawing any conclusions on predictions you must cross-validate, especially for fully grown trees.
NB You need to fix the function vec.plot as does not support xgboost out of the box, because xgboost out of some other box do not take data.frame as an valid input. The instruction in the code should be clear
library(xgboost)
library(rgl)
library(forestFloor)
Data = data.frame(replicate(2,rnorm(5000)))
Data$y = Data$X1*Data$X2 + rnorm(5000)*.5
gradientByTarget =fcol(Data,3)
plot3d(Data,col=gradientByTarget) #true data structure
fix(vec.plot) #change these two line in the function, as xgboost do not support data.frame
#16# yhat.vec = predict(model, as.matrix(Xtest.vec))
#21# yhat.obs = predict(model, as.matrix(Xtest.obs))
#1 single deep tree
xgb.model = xgboost(data = as.matrix(Data[,1:2]),label=Data$y,
nrounds=1,params = list(max.depth=250))
vec.plot(xgb.model,as.matrix(Data[,1:2]),1:2,col=gradientByTarget,grid=200)
plot(Data$y,predict(xgb.model,as.matrix(Data[,1:2])),col=gradientByTarget)
#clearly just one tree
#100 trees (gbm boosting)
xgb.model = xgboost(data = as.matrix(Data[,1:2]),label=Data$y,
nrounds=100,params = list(max.depth=16,eta=.5,subsample=.6))
vec.plot(xgb.model,as.matrix(Data[,1:2]),1:2,col=gradientByTarget)
plot(Data$y,predict(xgb.model,as.matrix(Data[,1:2])),col=gradientByTarget) ##predictions are not OOB cross-validated!
#20 shallow trees (bagging)
xgb.model = xgboost(data = as.matrix(Data[,1:2]),label=Data$y,
nrounds=1,params = list(max.depth=250,
num_parallel_tree=20,colsample_bytree = .5, subsample = .5))
vec.plot(xgb.model,as.matrix(Data[,1:2]),1:2,col=gradientByTarget) #bagged mix of trees
plot(Data$y,predict(xgb.model,as.matrix(Data[,1:2]))) #terrible fit!!
#problem, colsample_bytree is NOT mtry as columns are only sampled once
# (this could be raised as an issue on their github page, that this does not mimic RF)
#20 deep tree (bagging), no column limitation
xgb.model = xgboost(data = as.matrix(Data[,1:2]),label=Data$y,
nrounds=1,params = list(max.depth=500,
num_parallel_tree=200,colsample_bytree = 1, subsample = .5))
vec.plot(xgb.model,as.matrix(Data[,1:2]),1:2,col=gradientByTarget) #boosted mix of trees
plot(Data$y,predict(xgb.model,as.matrix(Data[,1:2])))
#voila model can fit data

Related

What's the difference between lgb.train() and lightgbm() in r?

I'm trying to build a regression model with R using lightGBM,
and i'm getting a bit confused with some functions and when/how to use them.
First one is what i've written in the title, what's the difference between lgb.train() and lightgbm()?
The description in the documentation(https://cran.r-project.org/web/packages/lightgbm/lightgbm.pdf) says that lgb.train is 'Logic to train with LightGBM' and lightgbm is 'Simple interface for training a LightGBM model', while both their outcome value is lgb.Booster, a trained model.
One difference I've found is that lgb.train() does not work with valids = , while lightgbm() does.
Second one is about a function lgb.cv(), regarding a cross validation in lightGBM. How do you apply the output of lgb.cv() to a model?
As I understood from the documentation i've linked above, it seems like the output of both lgb.cv and lgb.train is a model.
Is it correct to use it like the example below?
lgbcv <- lgb.cv(params,
lgbtrain,
nrounds = 1000,
nfold = 5,
early_stopping_rounds = 100,
learning_rate = 1.0)
lgbcv <- lightgbm(params,
lgbtrain,
nrounds = 1000,
early_stopping_rounds = 100,
learning_rate = 1.0)
Thank you in advance!
what's the difference between lgb.train() and lightgbm()?
These functions both train a LightGBM model, they're just slightly different interfaces. The biggest difference is in how training data are prepared. LightGBM training requires a special LightGBM-specific representation of the training data, called a Dataset. To use lgb.train(), you have to construct one of these beforehand with lgb.Dataset(). lightgbm(), on the other hand, can accept a data frame, data.table, or matrix and will create the Dataset object for you.
Choose whichever method you feel has a more friendly interface...both will produce a single trained LightGBM model (class "lgb.Booster").
that lgb.train() does not work with valids = , while lightgbm() does.
This is not correct. Both functions accept the keyword argument valids. Run ?lgb.train and ?lightgbm for documentation on those methods.
How do you apply the output of lgb.cv() to a model?
I'm not sure what you mean, but you can find an example of how to use lgb.cv() in the docs that show up when you run ?lgb.cv.
library(lightgbm)
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
params <- list(objective = "regression", metric = "l2")
model <- lgb.cv(
params = params
, data = dtrain
, nrounds = 5L
, nfold = 3L
, min_data = 1L
, learning_rate = 1.0
)
This returns an object of class "lgb.CVBooster". That object has multiple "lgb.Booster" objects in it (the trained models that lightgbm() or lgb.train() produce).
You can extract any one of these from model$boosters. However, in practice I don't recommend using the models from lgb.cv() directly. The goal of cross-validation is to get an estimate of the generalization error for a model. So you can use lgb.cv() to figure out the expected error for a given dataset + set of parameters (by looking at model$record_evals and model$best_score).

How to apply machine learning techniques / how to use model outputs

I am a plant scientist new to machine learning. I have had success writing code and following tutorials of machine learning techniques. My issue is trying to understand how to actually apply these techniques to answer real world questions. I don't really understand how to use the model outputs to answer questions.
I recently followed a tutorial creating an algorithm to detect credit card fraud. All of the models ran nicely and I understand how to build them; but, how in the world do I take this information and translate it into a definitive answer? Following the same example, lets say I wrote this code for my job how would I then take real credit card data and screen it using this algorithm? I really want to establish a link between running these models and generating a useful output from real data.
Thank you all.
In the name of being concise I will highlight some specific examples using the same data set found here:
https://drive.google.com/file/d/1CTAlmlREFRaEN3NoHHitewpqAtWS5cVQ/view
# Import
creditcard_data <- read_csv('PATH')
# Restructure
creditcard_data$Amount=scale(creditcard_data$Amount)
NewData=creditcard_data[,-c(1)]
head(NewData)
#Split
library(caTools)
set.seed(123)
data_sample = sample.split(NewData$Class,SplitRatio=0.80)
train_data = subset(NewData,data_sample==TRUE)
test_data = subset(NewData,data_sample==FALSE)
1) Decision Tree
library(rpart)
library(rpart.plot)
decisionTree_model <- rpart(Class ~ . , creditcard_data, method = 'class')
predicted_val <- predict(decisionTree_model, creditcard_data, type = 'class')
probability <- predict(decisionTree_model, creditcard_data, type = 'prob')
rpart.plot(decisionTree_model)
2) Artificial Neural Network
library(neuralnet)
ANN_model =neuralnet (Class~.,train_data,linear.output=FALSE)
plot(ANN_model)
predANN=compute(ANN_model,test_data)
resultANN=predANN$net.result
resultANN=ifelse(resultANN>0.5,1,0)
3) Gradient Boosting
library(gbm, quietly=TRUE)
# train GBM model
system.time(
model_gbm <- gbm(Class ~ .
, distribution = "bernoulli"
, data = rbind(train_data, test_data)
, n.trees = 100
, interaction.depth = 2
, n.minobsinnode = 10
, shrinkage = 0.01
, bag.fraction = 0.5
, train.fraction = nrow(train_data) / (nrow(train_data) + nrow(test_data))
)
)
# best iteration
gbm.iter = gbm.perf(model_gbm, method = "test")
model.influence = relative.influence(model_gbm, n.trees = gbm.iter, sort. = TRUE)
# plot
plot(model_gbm)
# plot
gbm_test = predict(model_gbm, newdata = test_data, n.trees = gbm.iter)
gbm_auc = roc(test_data$Class, gbm_test, plot = TRUE, col = "red")
print(gbm_auc)
You develop your model with, preferably, three data sets.
Training, Testing and Validation. (Sometimes different terminology is used.)
Here, Train and Test sets are used to develop the model.
The model you decide upon must never see any of the Validation set. This set is used to see how good your model is, in effect it would simulate real-world new data that may come to you in the future. Once you decide your model does perform to an acceptable level you can then go back to running all your data to produce the final operational model. Then any new 'live' data of interest is fed to the model and produces an output. In the case of the fraud detection it would output some probability: here you need human input to decide at what level you would flag the event as fraudulent enough to warrant further investigation.
At periodic intervals or as you data arrives or your model performance weakens (fraudsters may become more cunning!) you would repeat the whole process.

How to handle a skewed response in H2O algorithms

In my problem dataset response variable is extremely skewed to the left. I have tried to fit the model with h2o.randomForest() and h2o.gbm() as below. I can give tune min_split_improvement and min_rows to avoid overfitting in these two cases. But with these models, I see very high errors on the tail observations. I have tried using weights_column to oversample the tail observations and undersample other observations, but it does not help.
h2o.model <- h2o.gbm(x = predictors, y = response, training_frame = train,valid = valid, seed = 1,
ntrees =150, max_depth = 10, min_rows = 2, model_id = "GBM_DD", balance_classes = T, nbins = 20, stopping_metric = "MSE",
stopping_rounds = 10, min_split_improvement = 0.0005)
h2o.model <- h2o.randomForest(x = predictors, y = response, training_frame = train,valid = valid, seed = 1,ntrees =150, max_depth = 10, min_rows = 2, model_id = "DRF_DD", balance_classes = T, nbins = 20, stopping_metric = "MSE",
stopping_rounds = 10, min_split_improvement = 0.0005)
I have tried the h2o.automl() function of h2o package for the problem for better performance. However, I see significant overfitting. I don't know of any parameters in h2o.automl() to control overfitting.
Does anyone know of a way to avoid overfitting with h2o.automl()?
EDIT
The distribution of the log transformed response is given below. After the suggestion from Erin
EDIT2:
Distribution of original response.
H2O AutoML uses H2O algos (e.g. RF, GBM) underneath, so if you're not able to get good models there, you will suffer from the same issues using AutoML. I am not sure that I would call this overfitting -- it's more that your models are not doing well at predicting outliers.
My recommendation is to log your response variable -- that's a useful thing to do when you have a skewed response. In the future, H2O AutoML will try to detect a skewed response automatically and take the log, but that's not a feature of the the current version (H2O 3.16.*).
Here's a bit more detail if you are not familiar with this process. First, create a new column, e.g. log_response, as follows and use that as the response when training (in RF, GBM or AutoML):
train[,"log_response"] <- h2o.log(train[,response])
Caveats: If you have zeros in your response, you should use h2o.log1p() instead. Make sure not to include the original response in your predictors. In your case, you don't need to change anything because you are already explicitly specifying the predictors using a predictors vector.
Keep in mind that when you log the response that your predictions and model metrics will be on the log scale. So if you need to convert your predictions back to the normal scale, like this:
model <- h2o.randomForest(x = predictors, y = "log_response",
training_frame = train, valid = valid)
log_pred <- h2o.predict(model, test)
pred <- h2o.exp(log_pred)
This gives you the predictions, but if you also want to see the metrics, you will have to compute those using the h2o.make_metrics() function using the new preds rather than extracting the metrics from the model.
perf <- h2o.make_metrics(predicted = pred, actual = test[,response])
h2o.mse(perf)
You can try this using RF like I showed above, or a GBM, or with AutoML (which should give better performance than a single RF or GBM).
Hopefully that helps improve the performance of your models!
When your target variable is skewed, mse is not a good metric to use. I would try changing the loss function because gbm tries to fit the model to the gradient of the loss function and you want to make sure that you are using the correct distribution. if you have a spike on zero and right skewed positive target, probably Tweedie would be a better option.

R e1071 SVM leave one out cross validation function result differ from manual LOOCV

I'm using e1071 svm function to classify my data.
I tried two different ways to LOOCV.
First one is like that,
svm.model <- svm(mem ~ ., data, kernel = "sigmoid", cost = 7, gamma = 0.009, cross = subSize)
svm.pred = data$mem
svm.pred[which(svm.model$accuracies==0 & svm.pred=='good')]=NA
svm.pred[which(svm.model$accuracies==0 & svm.pred=='bad')]='good'
svm.pred[is.na(svm.pred)]='bad'
conMAT <- table(pred = svm.pred, true = data$mem)
summary(svm.model)
I typed cross='subject number' to make LOOCV, but the result of classification is different from my manual version of LOOCV, which is like...
for (i in 1:subSize){
data_Tst <- data[i,1:dSize]
data_Trn <- data[-i,1:dSize]
svm.model1 <- svm(mem ~ ., data = data_Trn, kernel = "linear", cost = 2, gamma = 0.02)
svm.pred1 <- predict(svm.model1, data_Tst[,-dSize])
conMAT <- table(pred = svm.pred1, true = data_Tst[,dSize])
CMAT <- CMAT + conMAT
CORR[i] <- sum(diag(conMAT))
}
In my opinion, through LOOCV, accuracy should not vary across many runs of code because SVM makes model with all the data except one and does it until the end of the loop. However, with the svm function with argument 'cross' input, the accuracy differs across every runs of code.
Which way is more accurate? Thanks for read this post! :-)
You are using different hyper-parameters (cost, gamma) and different kernels (linear, sigmoid). If you want identical results, then these should be the same each run.
Also, it depends how Leave One Out (LOO) is implemented:
Does your LOO method leave one out randomly or as a sliding window over the dataset?
Does your LOO method leave one out from one class at a time or both classes at the same time?
Is the training set always the same, or are you using a randomisation procedure before splitting between a training and testing set (assuming you have a separate independent testing set)? In which case, the examples you are cross-validating would change each run.

Using r and weka. How can I use meta-algorithms along with nfold evaluation method?

Here is an example of my problem
library(RWeka)
iris <- read.arff("iris.arff")
Perform nfolds to obtain the proper accuracy of the classifier.
m<-J48(class~., data=iris)
e<-evaluate_Weka_classifier(m,numFolds = 5)
summary(e)
The results provided here are obtained by building the model with a part of the dataset and testing it with another part, therefore provides accurate precision
Now I Perform AdaBoost to optimize the parameters of the classifier
m2 <- AdaBoostM1(class ~. , data = temp ,control = Weka_control(W = list(J48, M = 30)))
summary(m2)
The results provided here are obtained by using the same dataset for building the model and also the same ones used for evaluating it, therefore the accuracy is not representative of real life precision in which we use other instances to be evaluated by the model. Nevertheless this procedure is helpful for optimizing the model that is built.
The main problem is that I can not optimize the model built, and at the same time test it with data that was not used to build the model, or just use a nfold validation method to obtain the proper accuracy.
I guess you misinterprete the function of evaluate_Weka_classifier. In both cases, evaluate_Weka_classifier does only the cross-validation based on the training data. It doesn't change the model itself. Compare the confusion matrices of following code:
m<-J48(Species~., data=iris)
e<-evaluate_Weka_classifier(m,numFolds = 5)
summary(m)
e
m2 <- AdaBoostM1(Species ~. , data = iris ,
control = Weka_control(W = list(J48, M = 30)))
e2 <- evaluate_Weka_classifier(m2,numFolds = 5)
summary(m2)
e2
In both cases, the summary gives you the evaluation based on the training data, while the function evaluate_Weka_classifier() gives you the correct crossvalidation. Neither for J48 nor for AdaBoostM1 the model itself gets updated based on the crossvalidation.
Now regarding the AdaBoost algorithm itself : In fact, it does use some kind of "weighted crossvalidation" to come to the final classifier. Wrongly classified items are given more weight in the next building step, but the evaluation is done using equal weight for all observations. So using crossvalidation to optimize the result doesn't really fit into the general idea behind the adaptive boosting algorithm.
If you want a true crossvalidation using a training set and a evaluation set, you could do the following :
id <- sample(1:length(iris$Species),length(iris$Species)*0.5)
m3 <- AdaBoostM1(Species ~. , data = iris[id,] ,
control = Weka_control(W = list(J48, M=5)))
e3 <- evaluate_Weka_classifier(m3,numFolds = 5)
# true crossvalidation
e4 <- evaluate_Weka_classifier(m3,newdata=iris[-id,])
summary(m3)
e3
e4
If you want a model that gets updated based on a crossvalidation, you'll have to go to a different algorithm, eg randomForest() from the randomForest package. That collects a set of optimal trees based on crossvalidation. It can be used in combination with the RWeka package as well.
edit : corrected code for a true crossvalidation. Using the subset argument has effect in the evaluate_Weka_classifier() as well.

Resources