Loop for poLCA.table in R (poLCA package) - r

in poLCA package in R I use poLCA.table for calculates predicted cell frequencies based on an estimated latent class model.
I need use poLCA.table for all combinations of variables in a latent class model
data(carcinoma)
f <- cbind(A, B, C, D, E, F, G) ~ 1
lca2 <- poLCA(f, carcinoma, nclass = 2)
poLCA.table(formula = A ~ B, condition = list(), lc = lca2)
For example, I need all combinations to A from G.
How can I make it automatically?

This loops creates the 2-way combinations of the letters cast into separate formula objects and then passes each of them to the function you specified:
lapply( apply(combn(LETTERS[1:5],2), 2,
function(col) as.formula( paste(col[1], "~", col[2]) ) ),
function(x) poLCA.table(formula =x, condition = list(), lc = lca2)
)
#------------------
[[1]]
B 1 B 2
A 1 33.572932 18.42707
A 2 5.427068 60.57293
[[2]]
C 1 C 2
A 1 52 2.551164e-10
A 2 21 4.500000e+01
[[3]]
D 1 D 2
A 1 52 1.814161e-10
A 2 34 3.200000e+01
[[4]]
E 1 E 2
A 1 40.408128 11.59187
A 2 6.591872 59.40813
[[5]]
C 1 C 2
B 1 38.23913 0.7608669
B 2 34.76087 44.2391331
[[6]]
D 1 D 2
B 1 38.45894 0.5410609
B 2 47.54106 31.4589391
[[7]]
E 1 E 2
B 1 29.55038 9.44962
B 2 17.44962 61.55038
[[8]]
D 1 D 2
C 1 65.34774 7.652258
C 2 20.65226 24.347742
[[9]]
E 1 E 2
C 1 46.0386552 26.96134
C 2 0.9613448 44.03866
[[10]]
E 1 E 2
D 1 46.316377 39.68362
D 2 0.683623 31.31638

Related

Find immediate neighbors by group using data table or igraph

I have a data.table:
groups <- data.table(group = c("A", "B", "C", "D", "E", "F", "G"),
code_1 = c(2,2,2,7,8,NA,5),
code_2 = c(NA,3,NA,3,NA,NA,2),
code_3 = c(4,1,1,4,4,1,8))
group code_1 code_2 code_3
A 2 NA 4
B 2 3 1
C 2 NA 1
D 7 3 4
E 8 NA 4
F NA NA 1
G 5 2 8
What I would like to achieve, is for each group to find the immediate neighbors based on the available codes. For example: Group A has immediate neighbors groups B, C due to code_1 (code_1 is equal to 2 in all groups) and has immediate neighbor groups D,E due to code_3 (code_3 is equal to 4 in all those groups).
What I tried is for each code, subsetting the first column (group) based on the matches as follows:
groups$code_1_match = list()
for (row in 1:nrow(groups)){
set(groups, i=row, j="code_1_match", list(groups$group[groups$code_1[row] == groups$code_1]))
}
group code_1 code_2 code_3 code_1_match
A 2 NA 4 A,B,C,NA
B 2 3 1 A,B,C,NA
C 2 NA 1 A,B,C,NA
D 7 3 4 D,NA
E 8 NA 4 E,NA
F NA NA 1 NA,NA,NA,NA,NA,NA,...
G 5 2 8 NA,G
This "kinda" works but I would assume there is a more data table kind of way of doing this. I tried
groups[, code_1_match_2 := list(group[code_1 == groups$code_1])]
But this doesn't work.
Am I missing some obvious data table trick to deal with it?
My ideal case result would look like this (which currently would require using my method for all 3 columns and then concatenating the results):
group code_1 code_2 code_3 Immediate neighbors
A 2 NA 4 B,C,D,E
B 2 3 1 A,C,D,F
C 2 NA 1 A,B,F
D 7 3 4 B,A
E 8 NA 4 A,D
F NA NA 1 B,C
G 5 2 8
Using igraph, get 2nd degree neighbours, drop numeric nodes, paste remaining nodes.
library(data.table)
library(igraph)
# reshape wide-to-long
x <- melt(groups, id.vars = "group")[!is.na(value)]
# convert to graph
g <- graph_from_data_frame(x[, .(from = group, to = paste0(variable, "_", value))])
# get 2nd degree neighbours
x1 <- ego(g, 2, nodes = groups$group)
# prettify the result
groups$res <- sapply(seq_along(x1), function(i) toString(intersect(names(x1[[ i ]]),
groups$group[ -i ])))
# group code_1 code_2 code_3 res
# 1: A 2 NA 4 B, C, D, E
# 2: B 2 3 1 A, C, D, F
# 3: C 2 NA 1 A, B, F
# 4: D 7 3 4 B, A, E
# 5: E 8 NA 4 A, D
# 6: F NA NA 1 B, C
# 7: G 5 2 8
More info
This is how our data looks like before converting to igraph object. We want to ensure code1 with value 2 is different from code2 with value 2, etc.
x[, .(from = group, to = paste0(variable, "_", value))]
# from to
# 1: A code_1_2
# 2: B code_1_2
# 3: C code_1_2
# 4: D code_1_7
# 5: E code_1_8
# 6: G code_1_5
# 7: B code_2_3
# 8: D code_2_3
# 9: G code_2_2
# 10: A code_3_4
# 11: B code_3_1
# 12: C code_3_1
# 13: D code_3_4
# 14: E code_3_4
# 15: F code_3_1
# 16: G code_3_8
Here is how our network looks like:
Note that A..G nodes are always connected through code_x_y.
So we need to get the 2nd degree, ego(..., order = 2) gives us neighbours up to including 2nd degree neighbours, and returns a list object.
To get the names:
lapply(x1, names)
# [[1]]
# [1] "A" "code_1_2" "code_3_4" "B" "C" "D" "E"
#
# [[2]]
# [1] "B" "code_1_2" "code_2_3" "code_3_1" "A" "C" "D" "F"
#
# [[3]]
# [1] "C" "code_1_2" "code_3_1" "A" "B" "F"
#
# [[4]]
# [1] "D" "code_1_7" "code_2_3" "code_3_4" "B" "A" "E"
#
# [[5]]
# [1] "E" "code_1_8" "code_3_4" "A" "D"
#
# [[6]]
# [1] "F" "code_3_1" "B" "C"
#
# [[7]]
# [1] "G" "code_1_5" "code_2_2" "code_3_8"
To prettify the result, we need to remove code_x_y nodes and the origin node (1st node)
sapply(seq_along(x1), function(i) toString(intersect(names(x1[[ i ]]), groups$group[ -i ])))
#[1] "B, C, D, E" "A, C, D, F" "A, B, F" "B, A, E" "A, D" "B, C" ""
There is probably some more practical way of achieving this but you could do something like this, using melts and joins:
mgrp <- melt(groups, id.vars = "group")[!is.na(value)]
setkey(mgrp, variable, value)
for (i in seq_along(groups$group)) {
let = groups$group[i]
set(
groups,
i = i,
j = "inei",
value = list(mgrp[mgrp[group == let], setdiff(unique(group), let)])
)
}
groups
# group code_1 code_2 code_3 inei
# 1: A 2 NA 4 B,C,D,E
# 2: B 2 3 1 A,C,D,F
# 3: C 2 NA 1 A,B,F
# 4: D 7 3 4 B,A,E
# 5: E 8 NA 4 A,D
# 6: F NA NA 1 B,C
# 7: G 5 2 8
As mentioned by zx8754, using data.table::melt with combn and then igraph::as_adjacency_matrix
library(data.table)
df <- melt(groups, id.vars="group", na.rm=TRUE)[,
if (.N > 1L) transpose(combn(group, 2L, simplify=FALSE)), value][, (1) := NULL]
library(igraph)
as_adjacency_matrix(graph_from_data_frame(df, FALSE))
output:
7 x 7 sparse Matrix of class "dgCMatrix"
A B C E D G F
A . 1 1 1 1 1 .
B 1 . 2 . 1 1 1
C 1 2 . . . 1 1
E 1 . . . 1 1 .
D 1 1 . 1 . . .
G 1 1 1 1 . . .
F . 1 1 . . . .
or without using igraph
x <- df[, unique(c(V1, V2))]
df <- rbindlist(list(df, data.table(x, x)))
tab <- table(df) #or xtabs(~ V1 + V2, data=df)
ans <- t(tab) + tab
diag(ans) <- 0L
ans
output:
V1
V2 A B C D E F G
A 0 1 1 1 1 0 1
B 1 0 2 1 0 1 1
C 1 2 0 0 0 1 1
D 1 1 0 0 1 0 0
E 1 0 0 1 0 0 1
F 0 1 1 0 0 0 0
G 1 1 1 0 1 0 0
This is inspired by #sindri_baldur's melt. This solution:
Melts the groups
Performs a cartesian self-join.
Pastes together all the groups that matches.
Joins back to the original DT
library(data.table)
#> Warning: package 'data.table' was built under R version 3.6.2
groups <- data.table(group = c("A", "B", "C", "D", "E", "F", "G"), code_1 = c(2,2,2,7,8,NA,5), code_2 = c(NA,3,NA,3,NA,NA,2), code_3=c(4,1,1,4,4,1,8))
molten_grps = melt(groups, measure.vars = patterns("code"), na.rm = TRUE)
inei_dt = molten_grps[molten_grps,
on = .(variable, value),
allow.cartesian = TRUE
][,
.(inei = paste0(setdiff(i.group, .BY[[1L]]), collapse = ", ")),
by = group]
groups[inei_dt, on = .(group), inei := inei]
groups
#> group code_1 code_2 code_3 inei
#> <char> <num> <num> <num> <char>
#> 1: A 2 NA 4 B, C, D, E
#> 2: B 2 3 1 A, C, D, F
#> 3: C 2 NA 1 A, B, F
#> 4: D 7 3 4 B, A, E
#> 5: E 8 NA 4 A, D
#> 6: F NA NA 1 B, C
#> 7: G 5 2 8

Do same function on a list of dataframes and save them in new dataframes with new names

I have data frames A, B, C and want to modify each data frame in the same way according to dataframe D. It is like:
A = data.frame(x=c('a','b','c','d','e','f'),type=c('1','2','3','2','1','3'))
B = data.frame(x=c('g','h','i') ,type=c('1','2','3'))
C = data.frame(x=c('j','k','l','m'),type=c('2','3','1','2') )
D = data.frame(type=c('1','2','3','4'),newtype=c('I','II','III','IV') )
Firstly, i want to change the types in A,B,C to new type in D.
To A, i can do:
A$type <- D$newtype[match(A$type, D$type)]
Now how to do the same function on B and C? I have viewed other questions and thought it should be realized using lapply but i can't write it correctly.
I would store A, B, C in a list and then merge data.frame entries with D by type.
Using purrr::map and dplyr::left_join
library(purrr)
library(dplyr)
map(list(A, B, C), ~left_join(.x, D))
#[[1]]
# x type newtype
#1 a 1 I
#2 b 2 II
#3 c 3 III
#4 d 2 II
#5 e 1 I
#6 f 3 III
#
#[[2]]
# x type newtype
#1 g 1 I
#2 h 2 II
#3 i 3 III
#
#[[3]]
# x type newtype
#1 j 2 II
#2 k 3 III
#3 l 1 I
#4 m 2 II
In base R using Map and merge
Map(function(x, y) merge(x, y, by = "type"), list(A, B, C), list(D))
#[[1]]
# type x newtype
#1 1 a I
#2 1 e I
#3 2 b II
#4 2 d II
#5 3 c III
#6 3 f III
#
#[[2]]
# type x newtype
#1 1 g I
#2 2 h II
#3 3 i III
#
#[[3]]
# type x newtype
#1 1 l I
#2 2 j II
#3 2 m II
#4 3 k III
"Literally" I think it would be something like:
A = data.frame(x=c('a','b','c','d','e','f'),type=c('1','2','3','2','1','3'))
B = data.frame(x=c('g','h','i') ,type=c('1','2','3'))
C = data.frame(x=c('j','k','l','m'),type=c('2','3','1','2') )
D = data.frame(type=c('1','2','3','4'),newtype=c('I','II','III','IV') )
list2env(
lapply(list(A = A, B = B, C = C), function(x) {
x$type <- D$newtype[match(x$type, D$type)]
x
}),
envir = parent.frame())
# A
# x type
#1 a I
#2 b II
#3 c III
#4 d II
#5 e I
#6 f III

Reshape a correlation matrix, including each pair of variables only once

I have a table like this:
A B C D E
7 1 6 8 7
9 3 9 5 9
4 6 2 1 10
10 5 3 4 1
1 3 5 9 3
6 4 8 7 6
I am in the process of finding the correlation of each variable with every other variable in the table. This is the R code I use:
test <- read.csv("D:/AB/test.csv")
iterations <- ncol(test)
correlation <- matrix(ncol = 3 , nrow = iterations * iterations)
for (k in 1:iterations) {
for (l in 1:iterations){
corr <- cor(test[,k], test[,l])
corr_string_A <- names(test[k])
corr_string_B <- names(test[l])
correlation[l + ((k-1) * iterations),] <- rbind(corr_string_A, corr_string_B, corr)
}
}
The following is the output that I received:
Var1 Var2 value
1 A A 1.00000000
2 B A 0.50018605
3 C A -0.35747393
4 D A -0.25670054
5 E A -0.02974821
6 A B 0.50018605
7 B B 1.00000000
8 C B 0.56070716
9 D B 0.46164928
10 E B 0.16813991
11 A C -0.35747393
12 B C 0.56070716
13 C C 1.00000000
14 D C 0.52094589
15 E C 0.23190036
16 A D -0.25670054
17 B D 0.46164928
18 C D 0.52094589
19 D D 1.00000000
20 E D -0.39223227
21 A E -0.02974821
22 B E 0.16813991
23 C E 0.23190036
24 D E -0.39223227
25 E E 1.00000000
However, I don't want the values from the upper triangle; i.e., no diagonal values should occur, and each unique combination should appear only once. The final output should look like:
Var1 Var2 value
1 B A 0.50018605
2 C A -0.35747393
3 D A -0.25670054
4 E A -0.02974821
5 C B 0.56070716
6 D B 0.46164928
7 E B 0.16813991
8 D C 0.52094589
9 E C 0.23190036
10 E D -0.39223227
I understand that there are a few techniques like reshape using which the above output can be achieved, but I want to make the above R code to suit and produce the above mentioned results.
I believe the "n" in the second for loop should be made to change dynamically which can help achieving this. However I am not sure how to make this work.
You can convert your correlation matrix to the 3-column format with as.data.frame and as.table, and then limiting to values above or below the diagonal can be done with subset.
subset(as.data.frame(as.table(cor(dat))),
match(Var1, names(dat)) > match(Var2, names(dat)))
# Var1 Var2 Freq
# 2 B A -0.02299154
# 3 C A 0.23155350
# 4 D A -0.28036851
# 5 E A -0.05230260
# 8 C B -0.58384036
# 9 D B -0.80175393
# 10 E B 0.00000000
# 14 D C 0.52094589
# 15 E C 0.23190036
# 20 E D -0.39223227
Note that for larger datasets this should be much more efficient than separately calling cor on pairs of variables because cor is vectorized, and further it's clearly a lot less typing.
If you really must keep the looping code, then you can achieve your desired result with small changes to the pair of for loops and some book keeping about the row of correlation that you are computing:
iterations <- ncol(test)
correlation <- matrix(ncol = 3 , nrow = choose(iterations, 2))
pos <- 1
for (k in 2:iterations) {
for (l in 1:(k-1)){
corr <- cor(test[,k], test[,l])
corr_string_A <- names(test[k])
corr_string_B <- names(test[l])
correlation[pos,] <- rbind(corr_string_A, corr_string_B, corr)
pos <- pos+1
}
}
However I really wouldn't suggest this looping solution; it would be better to use the one-liner I provided and then to handle all generated NA values afterward.
From the OP's loop output, we can subset the rows,
df1[!duplicated(t(apply(df1[1:2], 1, sort))) & df1[,1]!=df1[,2],]
# Var1 Var2 value
#2 B A 0.50018605
#3 C A -0.35747393
#4 D A -0.25670054
#5 E A -0.02974821
#8 C B 0.56070716
#9 D B 0.46164928
#10 E B 0.16813991
#14 D C 0.52094589
#15 E C 0.23190036
#20 E D -0.39223227
Or as I mentioned (first) in the comments, just use
cor(test)

build word co-occurence edge list in R

I have a chunk of sentences and I want to build the undirected edge list of word co-occurrence and see the frequency of every edge. I took a look at the tm package but didn't find similar functions. Is there some package/script I can use? Thanks a lot!
Note: A word doesn't co-occur with itself. A word which appears twice or more co-occurs with other words for only once in the same sentence.
DF:
sentence_id text
1 a b c d e
2 a b b e
3 b c d
4 a e
5 a
6 a a a
OUTPUT
word1 word2 freq
a b 2
a c 1
a d 1
a e 3
b c 2
b d 2
b e 2
c d 2
c e 1
d e 1
It's convoluted so there's got to be a better approach:
dat <- read.csv(text="sentence_id, text
1, a b c d e
2, a b b e
3, b c d
4, a e", header=TRUE)
library(qdapTools); library(tidyr)
x <- t(mtabulate(with(dat, by(text, sentence_id, bag_o_words))) > 0)
out <- x %*% t(x)
out[upper.tri(out, diag=TRUE)] <- NA
out2 <- matrix2df(out, "word1") %>%
gather(word2, freq, -word1) %>%
na.omit()
rownames(out2) <- NULL
out2
## word1 word2 freq
## 1 b a 2
## 2 c a 1
## 3 d a 1
## 4 e a 3
## 5 c b 2
## 6 d b 2
## 7 e b 2
## 8 d c 2
## 9 e c 1
## 10 e d 1
Base only solution
out <- lapply(with(dat, split(text, sentence_id)), function(x) {
strsplit(gsub("^\\s+|\\s+$", "", as.character(x)), "\\s+")[[1]]
})
nms <- sort(unique(unlist(out)))
out2 <- lapply(out, function(x) {
as.data.frame(table(x), stringsAsFactors = FALSE)
})
dat2 <- data.frame(x = nms)
for(i in seq_along(out2)) {
m <- merge(dat2, out2[[i]], all.x = TRUE)
names(m)[i + 1] <- dat[["sentence_id"]][i]
dat2 <- m
}
dat2[is.na(dat2)] <- 0
x <- as.matrix(dat2[, -1]) > 0
out3 <- x %*% t(x)
out3[upper.tri(out3, diag=TRUE)] <- NA
dimnames(out3) <- list(dat2[[1]], dat2[[1]])
out4 <- na.omit(data.frame(
word1 = rep(rownames(out3), ncol(out3)),
word2 = rep(colnames(out3), each = nrow(out3)),
freq = c(unlist(out3)),
stringsAsFactors = FALSE)
)
row.names(out4) <- NULL
out4
This is very closely related to #TylerRinker's answer, but using different tools.
library(splitstackshape)
library(reshape2)
temp <- crossprod(
as.matrix(
cSplit_e(d, "text", " ", type = "character",
fill = 0, drop = TRUE)[-1]))
temp[upper.tri(temp, diag = TRUE)] <- NA
melt(temp, na.rm = TRUE)
# Var1 Var2 value
# 2 text_b text_a 2
# 3 text_c text_a 1
# 4 text_d text_a 1
# 5 text_e text_a 3
# 8 text_c text_b 2
# 9 text_d text_b 2
# 10 text_e text_b 2
# 14 text_d text_c 2
# 15 text_e text_c 1
# 20 text_e text_d 1
The "text_" parts of "Var1" and "Var2" can be stripped easily with sub or gsub.
Here's a base R way:
d <- read.table(text='sentence_id text
1 "a b c d e"
2 "a b b e"
3 "b c d"
4 "a e"', header=TRUE, as.is=TRUE)
result.vec <- table(unlist(lapply(d$text, function(text) {
pairs <- combn(unique(scan(text=text, what='', sep=' ')), m=2)
interaction(pairs[1,], pairs[2,])
})))
# a.b b.b c.b d.b a.c b.c c.c d.c a.d b.d c.d d.d a.e b.e c.e d.e
# 2 0 0 0 1 2 0 0 1 2 2 0 3 2 1 1
result <- subset(data.frame(do.call(rbind, strsplit(names(result.vec), '\\.')), freq=as.vector(result.vec)), freq > 0)
with(result, result[order(X1, X2),])
# X1 X2 freq
# 1 a b 2
# 5 a c 1
# 9 a d 1
# 13 a e 3
# 6 b c 2
# 10 b d 2
# 14 b e 2
# 11 c d 2
# 15 c e 1
# 16 d e 1

Create a new vector formed by a list of vectors

Suppose I have m vectors: a_1 = (a_{11}...a_{1n}) ... a_m = (a_{m1}...a_{mn})
I want a new vector b of length mn such that
b = (a_{11}...a_{m1} a_{12}...a_{m2}...a_{1n}...a_{mn})
I can think of a for loop, for example:
>a<-c(1,1,1);b<-c(2,2,2);c<-c(3,3,3)
>x<-NULL
>for (i in 1:3) {x<-c(x,c(a[i],b[i],c[i]))}
>x
[1] 1 2 3 1 2 3 1 2 3
Is there a better way?
Or using mapply...
c( mapply( c , a , b , c ) )
[1] 1 2 3 1 2 3 1 2 3
c(matrix(c(a, b, c), nrow=length(a), byrow=TRUE))

Resources