Sequences of varying length in R - r

My question is simple but still I haven't been able to find the solution online.
I have a vector, e.g. a = c(7,3,5). I need to convert it to b = c(0,1,2,3,4,5,6,0,1,2,0,1,2,3,4). I can do that with a loop, but its notoriously slow when length(a) > 500000.
m <- 0
n <- 0
for (i in 1:length(a)) {
m <- n+1;
n <- n+a[i];
b[m:n] <- (0:(a[i]-1));
}
Is there a one-liner in R that can produce the described behaviour really fast? Can that same approach convert vector a into c = c(0,0,0,0,0,0,1,0,0,1,0,0,0,0,1)?

Several options in the comments, but not one posted in the answer area, so while the hunt for a possible duplicate is on, here's a consolidation of what we have so far. The most direct/logical alternative for each option is listed first.
## To get your first vector
sequence(a) - 1 # #Henrik
ave(1:sum(a), rep(seq_along(a), a), FUN = seq_along) - 1 # #akrun
## To get your second vector
tabulate(cumsum(a)) # #alexis_laz
{ x <- integer(sum(a)) ; x[cumsum(a)] <- 1; x } # #DavidArenburg
{ x <- sequence(a) - 1 ; as.integer(c(diff(x) != 1, TRUE)) } # #Henrik
sequence(a) %/% rep(a, a) # #GL_Li
This answer is Community Wikied, so feel free to edit and add alternatives.

Related

Faster ways to generate Yellowstone sequence (A098550) in R?

I just saw a YouTube video from Numberphile on the Yellowstone sequence (A098550). It's base on a sequence starting with 1 and 2, with subsequent terms generated by the rules:
no repeated terms
always pick the lowest integer
gcd(a_n, a_(n-1)) = 1
gcd(a_n, a_(n-2)) > 1
The first 15 terms would be: 1 2 3 4 9 8 15 14 5 6 25 12 35 16 7
A Q&D approach in R could be something like this, but understandably, this becomes very slow at attempts to make longer sequences. It also make some assumptions about the highest number that is possible within the sequence (as info: the sequence of 10,000 items never goes higher than 5000).
What can we do to make this faster?
library(DescTools)
a <- c(1, 2, 3)
p <- length(a)
# all natural numbers
all_ints <- 1:5000
for (n in p:1000) {
# rule 1 - remove all number that are in sequence already
next_a_set <- all_ints[which(!all_ints %in% a)]
# rule 3 - search the remaining set for numbers that have gcd == 1
next_a_option <- next_a_set[which(
sapply(
next_a_set,
function(x) GCD(a[n], x)
) == 1
)]
# rule 4 - search the remaining number for gcd > 1
next_a <- next_a_option[which(
sapply(
next_a_option,
function(x) GCD(a[n - 1], x)
) > 1
)]
# select the lowest
a <- c(a, min(next_a))
n <- n + 1
}
Here's a version that's about 20 times faster than yours, with comments about the changes:
# Set a to the final length from the start.
a <- c(1, 2, 3, rep(NA, 997))
p <- 3
# Define a vectorized gcd() function. We'll be testing
# lots of gcds at once. This uses the Euclidean algorithm.
gcd <- function(x, y) { # vectorized gcd
while (any(y != 0)) {
x1 <- ifelse(y == 0, x, y)
y <- ifelse(y == 0, 0, x %% y)
x <- x1
}
x
}
# Guess at a reasonably large vector to work from,
# but we'll grow it later if not big enough.
allnum <- 1:1000
# Keep a logical record of what has been used
used <- c(rep(TRUE, 3), rep(FALSE, length(allnum) - 3))
for (n in p:1000) {
# rule 1 - remove all number that are in sequence already
# nothing to do -- used already records that.
repeat {
# rule 3 - search the remaining set for numbers that have gcd == 1
keep <- !used & gcd(a[n], allnum) == 1
# rule 4 - search the remaining number for gcd > 1
keep <- keep & gcd(a[n-1], allnum) > 1
# If we found anything, break out of this loop
if (any(keep))
break
# Otherwise, make the set of possible values twice as big,
# and try again
allnum <- seq_len(2*length(allnum))
used <- c(used, rep(FALSE, length(used)))
}
# select the lowest
newval <- which.max(keep)
# Assign into the appropriate place
a[n+1] <- newval
# Record that it has been used
used[newval] <- TRUE
}
If you profile it, you'll see it spends most of its time in the gcd() function. You could probably make that a lot faster by redoing it in C or C++.
The biggest change here is pre-allocation and restricting the search to numbers that have not yet been used.
library(numbers)
N <- 5e3
a <- integer(N)
a[1:3] <- 1:3
b <- logical(N) # which numbers have been used already?
b[1:3] <- TRUE
NN <- 1:N
system.time({
for (n in 4:N) {
a1 <- a[n - 1L]
a2 <- a[n - 2L]
for (k in NN[!b]) {
if (GCD(k, a1) == 1L & GCD(k, a2) > 1L) {
a[n] <- k
b[k] <- TRUE
break
}
}
if (!a[n]) {
a <- a[1:(n - 1L)]
break
}
}
})
#> user system elapsed
#> 1.28 0.00 1.28
length(a)
#> [1] 1137
For a fast C++ algorithm, see here.

Can I further vectorize this function

I am relatively new to R, and matrix-based scripting languages in general. I have written this function to return the index's of each row which has a content similar to any another row's content. It is a primitive form of spam reduction that I am developing.
if (!require("RecordLinkage")) install.packages("RecordLinkage")
library("RecordLinkage")
# Takes a column of strings, returns a list of index's
check_similarity <- function(x) {
threshold <- 0.8
values <- NULL
for(i in 1:length(x)) {
values <- c(values, which(jarowinkler(x[i], x[-i]) > threshold))
}
return(values)
}
is there a way that I could write this to avoid the for loop entirely?
We can simplify the code somewhat using sapply.
# some test data #
x = c('hello', 'hollow', 'cat', 'turtle', 'bottle', 'xxx')
# create an x by x matrix specifying which strings are alike
m = sapply(x, jarowinkler, x) > threshold
# set diagonal to FALSE: we're not interested in strings being identical to themselves
diag(m) = FALSE
# And find index positions of all strings that are similar to at least one other string
which(rowSums(m) > 0)
# [1] 1 2 4 5
I.e. this returns the index positions of 'hello', 'hollow', 'turtle', and 'bottle' as being similar to another string
If you prefer, you can use colSums instead of rowSums to get a named vector, but this could be messy if the strings are long:
which(colSums(m) > 0)
# hello hollow turtle bottle
# 1 2 4 5

R split numeric vector at position

I am wondering about the simple task of splitting a vector into two at a certain index:
splitAt <- function(x, pos){
list(x[1:pos-1], x[pos:length(x)])
}
a <- c(1, 2, 2, 3)
> splitAt(a, 4)
[[1]]
[1] 1 2 2
[[2]]
[1] 3
My question: There must be some existing function for this, but I can't find it? Is maybe split a possibility? My naive implementation also does not work if pos=0 or pos>length(a).
An improvement would be:
splitAt <- function(x, pos) unname(split(x, cumsum(seq_along(x) %in% pos)))
which can now take a vector of positions:
splitAt(a, c(2, 4))
# [[1]]
# [1] 1
#
# [[2]]
# [1] 2 2
#
# [[3]]
# [1] 3
And it does behave properly (subjective) if pos <= 0 or pos >= length(x) in the sense that it returns the whole original vector in a single list item. If you'd like it to error out instead, use stopifnot at the top of the function.
I tried to use flodel's answer, but it was too slow in my case with a very large x (and the function has to be called repeatedly). So I created the following function that is much faster, but also very ugly and doesn't behave properly. In particular, it doesn't check anything and will return buggy results at least for pos >= length(x) or pos <= 0 (you can add those checks yourself if you're unsure about your inputs and not too concerned about speed), and perhaps some other cases as well, so be careful.
splitAt2 <- function(x, pos) {
out <- list()
pos2 <- c(1, pos, length(x)+1)
for (i in seq_along(pos2[-1])) {
out[[i]] <- x[pos2[i]:(pos2[i+1]-1)]
}
return(out)
}
However, splitAt2 runs about 20 times faster with an x of length 106:
library(microbenchmark)
W <- rnorm(1e6)
splits <- cumsum(rep(1e5, 9))
tm <- microbenchmark(
splitAt(W, splits),
splitAt2(W, splits),
times=10)
tm
Another alternative that might be faster and/or more readable/elegant than flodel's solution:
splitAt <- function(x, pos) {
unname(split(x, findInterval(x, pos)))
}

How to apply a function to each element of a vector in R

Let's say I want to multiply each even element of a vector by 2 and each odd element of a vector by 3. Here is some code that can do this:
v <- 0:10
idx <- v %% 2 == 0
v[idx] <- v[idx] * 2
v[!idx] <- v[!idx] * 3
This would get difficult if I had more than two cases. It seems like the apply family of functions never deals with vectors so I don't know a better way to do this problem. Maybe using an apply function would work if I made transformations on the data, but it seems like that shouldn't be something that I would need to do to solve this simple problem.
Any ideas?
Edit: Sorry for the confusion. I am not specifically interested in the "%%" operator. I wanted to put some concrete code in my question, but, based on the responses to the question, was too specific. I wanted to figure out how to apply some arbitrary function to each member of the list. This was not possible with apply() and I thought sapply() only worked with lists.
You can do:
v <- v * c(2, 3)[v %% 2 + 1]
It is generalizable to any v %% n, e.g.:
v <- v * c(2, 3, 9, 1)[v %% 4 + 1]
Also it does not require that length(v) be a multiple of n.
You can use vector multiplication to do what you want:
tmp <- 1:10
tmp * rep(c(3,2), length(tmp)/2)
This is easy to extend to three or more cases:
tmp * rep(c(3,2,4), length(tmp)/3)
Easiest would be:
v*c(2,3) # as suggested by flodel in a comment.
The term to search for in the documentation is "argument recycling" ... a feature of the R language. Only works for dyadic infix functions (see ?Ops). For non-dyadcic vectorized functions that would not error out with some of the arguments and where you couldn't depend on the structure of "v" to be quite so regular, you could use ifelse:
ifelse( (1:length(v)) %% 2 == 0, func1(v), func2(v) )
This constructs two vectors and then chooses elements in the first or second based on the truth value of hte first argument. If you were trying to answer the question in the title of your posting then you should look at:
?sapply
Here is an answer allowing any set of arbitrary functions to be applied to defined groups within a vector.
# source data
test <- 1:9
# categorisations of source data
cattest <- rep(1:3,each=3)
#[1] 1 1 1 2 2 2 3 3 3
Make the function to differentially apply functions:
categ <- function(x,catg) {
mapply(
function(a,b) {
switch(b,
a * 2,
a * 3,
a / 2
)
},
x,
catg
)
}
# where cattest = 1, multiply by 2
# where cattest = 2, multiply by 3
# where cattest = 3, divide by 2
The result:
categ(test,cattest)
#[1] 2.0 4.0 6.0 12.0 15.0 18.0 3.5 4.0 4.5

How to assign from a function which returns more than one value?

Still trying to get into the R logic... what is the "best" way to unpack (on LHS) the results from a function returning multiple values?
I can't do this apparently:
R> functionReturningTwoValues <- function() { return(c(1, 2)) }
R> functionReturningTwoValues()
[1] 1 2
R> a, b <- functionReturningTwoValues()
Error: unexpected ',' in "a,"
R> c(a, b) <- functionReturningTwoValues()
Error in c(a, b) <- functionReturningTwoValues() : object 'a' not found
must I really do the following?
R> r <- functionReturningTwoValues()
R> a <- r[1]; b <- r[2]
or would the R programmer write something more like this:
R> functionReturningTwoValues <- function() {return(list(first=1, second=2))}
R> r <- functionReturningTwoValues()
R> r$first
[1] 1
R> r$second
[1] 2
--- edited to answer Shane's questions ---
I don't really need giving names to the result value parts. I am applying one aggregate function to the first component and an other to the second component (min and max. if it was the same function for both components I would not need splitting them).
(1) list[...]<- I had posted this over a decade ago on r-help. Since then it has been added to the gsubfn package. It does not require a special operator but does require that the left hand side be written using list[...] like this:
library(gsubfn) # need 0.7-0 or later
list[a, b] <- functionReturningTwoValues()
If you only need the first or second component these all work too:
list[a] <- functionReturningTwoValues()
list[a, ] <- functionReturningTwoValues()
list[, b] <- functionReturningTwoValues()
(Of course, if you only needed one value then functionReturningTwoValues()[[1]] or functionReturningTwoValues()[[2]] would be sufficient.)
See the cited r-help thread for more examples.
(2) with If the intent is merely to combine the multiple values subsequently and the return values are named then a simple alternative is to use with :
myfun <- function() list(a = 1, b = 2)
list[a, b] <- myfun()
a + b
# same
with(myfun(), a + b)
(3) attach Another alternative is attach:
attach(myfun())
a + b
ADDED: with and attach
I somehow stumbled on this clever hack on the internet ... I'm not sure if it's nasty or beautiful, but it lets you create a "magical" operator that allows you to unpack multiple return values into their own variable. The := function is defined here, and included below for posterity:
':=' <- function(lhs, rhs) {
frame <- parent.frame()
lhs <- as.list(substitute(lhs))
if (length(lhs) > 1)
lhs <- lhs[-1]
if (length(lhs) == 1) {
do.call(`=`, list(lhs[[1]], rhs), envir=frame)
return(invisible(NULL))
}
if (is.function(rhs) || is(rhs, 'formula'))
rhs <- list(rhs)
if (length(lhs) > length(rhs))
rhs <- c(rhs, rep(list(NULL), length(lhs) - length(rhs)))
for (i in 1:length(lhs))
do.call(`=`, list(lhs[[i]], rhs[[i]]), envir=frame)
return(invisible(NULL))
}
With that in hand, you can do what you're after:
functionReturningTwoValues <- function() {
return(list(1, matrix(0, 2, 2)))
}
c(a, b) := functionReturningTwoValues()
a
#[1] 1
b
# [,1] [,2]
# [1,] 0 0
# [2,] 0 0
I don't know how I feel about that. Perhaps you might find it helpful in your interactive workspace. Using it to build (re-)usable libraries (for mass consumption) might not be the best idea, but I guess that's up to you.
... you know what they say about responsibility and power ...
Usually I wrap the output into a list, which is very flexible (you can have any combination of numbers, strings, vectors, matrices, arrays, lists, objects int he output)
so like:
func2<-function(input) {
a<-input+1
b<-input+2
output<-list(a,b)
return(output)
}
output<-func2(5)
for (i in output) {
print(i)
}
[1] 6
[1] 7
I put together an R package zeallot to tackle this problem. zeallot includes a multiple assignment or unpacking assignment operator, %<-%. The LHS of the operator is any number of variables to assign, built using calls to c(). The RHS of the operator is a vector, list, data frame, date object, or any custom object with an implemented destructure method (see ?zeallot::destructure).
Here are a handful of examples based on the original post,
library(zeallot)
functionReturningTwoValues <- function() {
return(c(1, 2))
}
c(a, b) %<-% functionReturningTwoValues()
a # 1
b # 2
functionReturningListOfValues <- function() {
return(list(1, 2, 3))
}
c(d, e, f) %<-% functionReturningListOfValues()
d # 1
e # 2
f # 3
functionReturningNestedList <- function() {
return(list(1, list(2, 3)))
}
c(f, c(g, h)) %<-% functionReturningNestedList()
f # 1
g # 2
h # 3
functionReturningTooManyValues <- function() {
return(as.list(1:20))
}
c(i, j, ...rest) %<-% functionReturningTooManyValues()
i # 1
j # 2
rest # list(3, 4, 5, ..)
Check out the package vignette for more information and examples.
functionReturningTwoValues <- function() {
results <- list()
results$first <- 1
results$second <-2
return(results)
}
a <- functionReturningTwoValues()
I think this works.
There's no right answer to this question. I really depends on what you're doing with the data. In the simple example above, I would strongly suggest:
Keep things as simple as possible.
Wherever possible, it's a best practice to keep your functions vectorized. That provides the greatest amount of flexibility and speed in the long run.
Is it important that the values 1 and 2 above have names? In other words, why is it important in this example that 1 and 2 be named a and b, rather than just r[1] and r[2]? One important thing to understand in this context is that a and b are also both vectors of length 1. So you're not really changing anything in the process of making that assignment, other than having 2 new vectors that don't need subscripts to be referenced:
> r <- c(1,2)
> a <- r[1]
> b <- r[2]
> class(r)
[1] "numeric"
> class(a)
[1] "numeric"
> a
[1] 1
> a[1]
[1] 1
You can also assign the names to the original vector if you would rather reference the letter than the index:
> names(r) <- c("a","b")
> names(r)
[1] "a" "b"
> r["a"]
a
1
[Edit] Given that you will be applying min and max to each vector separately, I would suggest either using a matrix (if a and b will be the same length and the same data type) or data frame (if a and b will be the same length but can be different data types) or else use a list like in your last example (if they can be of differing lengths and data types).
> r <- data.frame(a=1:4, b=5:8)
> r
a b
1 1 5
2 2 6
3 3 7
4 4 8
> min(r$a)
[1] 1
> max(r$b)
[1] 8
If you want to return the output of your function to the Global Environment, you can use list2env, like in this example:
myfun <- function(x) { a <- 1:x
b <- 5:x
df <- data.frame(a=a, b=b)
newList <- list("my_obj1" = a, "my_obj2" = b, "myDF"=df)
list2env(newList ,.GlobalEnv)
}
myfun(3)
This function will create three objects in your Global Environment:
> my_obj1
[1] 1 2 3
> my_obj2
[1] 5 4 3
> myDF
a b
1 1 5
2 2 4
3 3 3
Lists seem perfect for this purpose. For example within the function you would have
x = desired_return_value_1 # (vector, matrix, etc)
y = desired_return_value_2 # (vector, matrix, etc)
returnlist = list(x,y...)
} # end of function
main program
x = returnlist[[1]]
y = returnlist[[2]]
Yes to your second and third questions -- that's what you need to do as you cannot have multiple 'lvalues' on the left of an assignment.
How about using assign?
functionReturningTwoValues <- function(a, b) {
assign(a, 1, pos=1)
assign(b, 2, pos=1)
}
You can pass the names of the variable you want to be passed by reference.
> functionReturningTwoValues('a', 'b')
> a
[1] 1
> b
[1] 2
If you need to access the existing values, the converse of assign is get.
[A]
If each of foo and bar is a single number, then there's nothing wrong with c(foo,bar); and you can also name the components: c(Foo=foo,Bar=bar). So you could access the components of the result 'res' as res[1], res[2]; or, in the named case, as res["Foo"], res["BAR"].
[B]
If foo and bar are vectors of the same type and length, then again there's nothing wrong with returning cbind(foo,bar) or rbind(foo,bar); likewise nameable. In the 'cbind' case, you would access foo and bar as res[,1], res[,2] or as res[,"Foo"], res[,"Bar"]. You might also prefer to return a dataframe rather than a matrix:
data.frame(Foo=foo,Bar=bar)
and access them as res$Foo, res$Bar. This would also work well if foo and bar were of the same length but not of the same type (e.g. foo is a vector of numbers, bar a vector of character strings).
[C]
If foo and bar are sufficiently different not to combine conveniently as above, then you shuld definitely return a list.
For example, your function might fit a linear model and
also calculate predicted values, so you could have
LM<-lm(....) ; foo<-summary(LM); bar<-LM$fit
and then you would return list(Foo=foo,Bar=bar) and then access the summary as res$Foo, the predicted values as res$Bar
source: http://r.789695.n4.nabble.com/How-to-return-multiple-values-in-a-function-td858528.html
Year 2021 and this is something I frequently use.
tidyverse package has a function called lst that assigns name to the list elements when creating the list.
Post which I use list2env() to assign variable or use the list directly
library(tidyverse)
fun <- function(){
a<-1
b<-2
lst(a,b)
}
list2env(fun(), envir=.GlobalEnv)#unpacks list key-values to variable-values into the current environment
This is only for the sake of completeness and not because I personally prefer it. You can pipe %>% the result, evaluate it with curly braces {} and write variables to the parent environment using double-arrow <<-.
library(tidyverse)
functionReturningTwoValues() %>% {a <<- .[1]; b <<- .[2]}
UPDATE:
Your can also use the multiple assignment operator from the zeallot package:: %<-%
c(a, b) %<-% list(0, 1)
I will post a function that returns multiple objects by way of vectors:
Median <- function(X){
X_Sort <- sort(X)
if (length(X)%%2==0){
Median <- (X_Sort[(length(X)/2)]+X_Sort[(length(X)/2)+1])/2
} else{
Median <- X_Sort[(length(X)+1)/2]
}
return(Median)
}
That was a function I created to calculate the median. I know that there's an inbuilt function in R called median() but nonetheless I programmed it to build other function to calculate the quartiles of a numeric data-set by using the Median() function I just programmed. The Median() function works like this:
If a numeric vector X has an even number of elements (i.e., length(X)%%2==0), the median is calculated by averaging the elements sort(X)[length(X)/2] and sort(X)[(length(X)/2+1)].
If Xdoesn't have an even number of elements, the median is sort(X)[(length(X)+1)/2].
On to the QuartilesFunction():
QuartilesFunction <- function(X){
X_Sort <- sort(X) # Data is sorted in ascending order
if (length(X)%%2==0){
# Data number is even
HalfDN <- X_Sort[1:(length(X)/2)]
HalfUP <- X_Sort[((length(X)/2)+1):length(X)]
QL <- Median(HalfDN)
QU <- Median(HalfUP)
QL1 <- QL
QL2 <- QL
QU1 <- QU
QU2 <- QU
QL3 <- QL
QU3 <- QU
Quartiles <- c(QL1,QU1,QL2,QU2,QL3,QU3)
names(Quartiles) = c("QL (1)", "QU (1)", "QL (2)", "QU (2)","QL (3)", "QU (3)")
} else{ # Data number is odd
# Including the median
Half1DN <- X_Sort[1:((length(X)+1)/2)]
Half1UP <- X_Sort[(((length(X)+1)/2)):length(X)]
QL1 <- Median(Half1DN)
QU1 <- Median(Half1UP)
# Not including the median
Half2DN <- X_Sort[1:(((length(X)+1)/2)-1)]
Half2UP <- X_Sort[(((length(X)+1)/2)+1):length(X)]
QL2 <- Median(Half2DN)
QU2 <- Median(Half2UP)
# Methods (1) and (2) averaged
QL3 <- (QL1+QL2)/2
QU3 <- (QU1+QU2)/2
Quartiles <- c(QL1,QU1,QL2,QU2,QL3,QU3)
names(Quartiles) = c("QL (1)", "QU (1)", "QL (2)", "QU (2)","QL (3)", "QU (3)")
}
return(Quartiles)
}
This function returns the quartiles of a numeric vector by using three methods:
Discarding the median for the calculation of the quartiles when the number of elements of the numeric vector Xis odd.
Keeping the median for the calculation of the quartiles when the number of elements of the numeric vector Xis odd.
Averaging the results obtained by using methods 1 and 2.
When the number of elements in the numeric vector X is even, the three methods coincide.
The result of the QuartilesFunction() is a vector that depicts the first and third quartiles calculated by using the three methods outlined.
With R 3.6.1, I can do the following
fr2v <- function() { c(5,3) }
a_b <- fr2v()
(a_b[[1]]) # prints "5"
(a_b[[2]]) # prints "3"
To obtain multiple outputs from a function and keep them in the desired format you can save the outputs to your hard disk (in the working directory) from within the function and then load them from outside the function:
myfun <- function(x) {
df1 <- ...
df2 <- ...
save(df1, file = "myfile1")
save(df2, file = "myfile2")
}
load("myfile1")
load("myfile2")

Resources