Count Occurrences of All Integers in Matrix - r

I have an array containing 20,000 rows and 300 columns. Each element is an integer. I would like to count the occurrences of each integer in this matrix.
I have tried the following:
>frequency_Table=read.csv('huge_file.csv',header=FALSE,check.names=FALSE)
>table(frequency_Table)
I get the error "attempt to make a table with >= 2^31 elements", which makes sense after reading it.
I want something like this:
1 2000
2 2023
3 5683
Basically, a frequency table of sorts, for all the numbers. Any advice would be appreciated!

The 'frequency_table' object is a data.frame. We unlist (assuming that the OP wants an R solution as the dataset got read with R syntax) it to make a vector and then get the frequency with table
as.data.frame(table(unlist(frequency_table)))
data
set.seed(24)
frequency_table <- as.data.frame(matrix(sample(22:29, 20*4,
replace=TRUE), ncol=4))

from collections import Counter
from numpy import np
Counter(np.array(frequency_Table).flatten())

numpy.unique can do this:
>>> import numpy as np
>>> table = np.array([[1, 2, 3], [2, 2, 3], [3, 2, 3]])
>>> values, counts = np.unique(table, return_counts = True)
>>> for value, count in zip(values, counts):
... print("{}\t{}".format(value, count))
...
1 1
2 4
3 4

Can you find out a way to get all the unique integers in the data.fame quickly?
My thought is that after you find out the unique integers in the data.frame. You can use the code sapply(unique_int, function(x) sum(m == x)) to find out the corresponding occurrence of each integer.
This is the code I tried:
m <- matrix(sample(1:10, size=20000*300, replace=TRUE), ncol=300)
#A way to get the unique integers
unique_int <- unique(c(m))
#Count
count <- sapply(unique_int, function(x) sum(m == x))
names(count) <- unique_int
count
## 10 8 3 9 6 5 4 1 2 7
## 598551 600413 599396 599517 600114 600503 601311 601205 599268 599722

Here a 1 line solution in R:
You can use stack() or unlist to arrange all columns of the dataset in one. Based on this you can define the first column of the the stacked dataset as factor and use tapply with length as a function, which gives you the frequency of each element:
Using stack():
tapply(stack(frequency_Table)[,1],factor(stack(frequency_Table)[,1]),length)
Using unlist:
tapply(unlist(frequency_Table),factor(unlist(frequency_Table)),length)

Related

count of multiple partially matching DNA sequences

I have a dataset of partially matching DNA sequences and want to assign different numerical indexes to the partially matching sequences.
i.e.:
sequences <- c("AAAAAAAAAAAAAAA",
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"AAAAAAAAAAAAAAAAAAAAAAAAAAAACCC",
"AAAAAAAAAAAAAAAAAAAAAAAAACC",
"CATTTTCAG",
"CATTTTCAGTCAAAATTT",
"CATG",
"CATGG",
"CATGGGTT",
"GATC")
The first one recurs in the 2nd, 3rd and 4th and they should all get a value 1, the 5th recurs in the 6th and they should all get a 2, the 7th recurs in the 8th and 9th and should all get a 3, the 10th does not recur and should get 4 as index. This is just an example of course, sometimes the dataset could contain >3000 rows.
I tried several solutions including grepl and str_count. The latest one of the attempts was to create a dictionary first to store all the sequences and the indices, create a list of prefixes and then iterate the prefixes to assign the indices. However the result is not what I expect as all the sequences get a index of 1.
# Create a dictionary to store the sequences and their indices
indices <- as.list(1:length(sequences))
names(indices) <- sequences
# Create a function that returns the first 7 characters of a sequence
get_prefix <- function(seq) {
return(substring(seq, 1, 7))
}
# Create a list of unique prefixes
prefixes <- unique(sapply(sequences, get_prefix))
# Iterate over the prefixes and assign the same index to all sequences that start with the same prefix
for (i in 1:length(prefixes)) {
prefix <- prefixes[i]
seqs <- sequences[sapply(sequences, get_prefix) == prefix]
indices[seqs] <- which.min(indices[seqs])
}
# Print the final indices
print(indices)
Any help is welcome! thanks!
This problem relates to grouping using relational data. You can use grep + igraph to do so:
library(igraph)
sapply(sequences, grep, sequences, value = TRUE) |>
stack() |>
graph.data.frame() |>
clusters() |>
getElement("membership") |>
stack()
values ind
1 1 AAAAAAAAAAAAAAA
2 1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
3 1 AAAAAAAAAAAAAAAAAAAAAAAAAAAACCC
4 1 AAAAAAAAAAAAAAAAAAAAAAAAACC
5 2 CATTTTCAG
6 2 CATTTTCAGTCAAAATTT
7 3 CATG
8 3 CATGG
9 3 CATGGGTT
10 4 GATC

How to exclude a range of data points by index from a dataframe in R [duplicate]

I have a data frame named "mydata" that looks like this this:
A B C D
1. 5 4 4 4
2. 5 4 4 4
3. 5 4 4 4
4. 5 4 4 4
5. 5 4 4 4
6. 5 4 4 4
7. 5 4 4 4
I'd like to delete row 2,4,6. For example, like this:
A B C D
1. 5 4 4 4
3. 5 4 4 4
5. 5 4 4 4
7. 5 4 4 4
The key idea is you form a set of the rows you want to remove, and keep the complement of that set.
In R, the complement of a set is given by the '-' operator.
So, assuming the data.frame is called myData:
myData[-c(2, 4, 6), ] # notice the -
Of course, don't forget to "reassign" myData if you wanted to drop those rows entirely---otherwise, R just prints the results.
myData <- myData[-c(2, 4, 6), ]
You can also work with a so called boolean vector, aka logical:
row_to_keep = c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)
myData = myData[row_to_keep,]
Note that the ! operator acts as a NOT, i.e. !TRUE == FALSE:
myData = myData[!row_to_keep,]
This seems a bit cumbersome in comparison to #mrwab's answer (+1 btw :)), but a logical vector can be generated on the fly, e.g. where a column value exceeds a certain value:
myData = myData[myData$A > 4,]
myData = myData[!myData$A > 4,] # equal to myData[myData$A <= 4,]
You can transform a boolean vector to a vector of indices:
row_to_keep = which(myData$A > 4)
Finally, a very neat trick is that you can use this kind of subsetting not only for extraction, but also for assignment:
myData$A[myData$A > 4,] <- NA
where column A is assigned NA (not a number) where A exceeds 4.
Problems with deleting by row number
For quick and dirty analyses, you can delete rows of a data.frame by number as per the top answer. I.e.,
newdata <- myData[-c(2, 4, 6), ]
However, if you are trying to write a robust data analysis script, you should generally avoid deleting rows by numeric position. This is because the order of the rows in your data may change in the future. A general principle of a data.frame or database tables is that the order of the rows should not matter. If the order does matter, this should be encoded in an actual variable in the data.frame.
For example, imagine you imported a dataset and deleted rows by numeric position after inspecting the data and identifying the row numbers of the rows that you wanted to delete. However, at some later point, you go into the raw data and have a look around and reorder the data. Your row deletion code will now delete the wrong rows, and worse, you are unlikely to get any errors warning you that this has occurred.
Better strategy
A better strategy is to delete rows based on substantive and stable properties of the row. For example, if you had an id column variable that uniquely identifies each case, you could use that.
newdata <- myData[ !(myData$id %in% c(2,4,6)), ]
Other times, you will have a formal exclusion criteria that could be specified, and you could use one of the many subsetting tools in R to exclude cases based on that rule.
Create id column in your data frame or use any column name to identify the row. Using index is not fair to delete.
Use subset function to create new frame.
updated_myData <- subset(myData, id!= 6)
print (updated_myData)
updated_myData <- subset(myData, id %in% c(1, 3, 5, 7))
print (updated_myData)
By simplified sequence :
mydata[-(1:3 * 2), ]
By sequence :
mydata[seq(1, nrow(mydata), by = 2) , ]
By negative sequence :
mydata[-seq(2, nrow(mydata), by = 2) , ]
Or if you want to subset by selecting odd numbers:
mydata[which(1:nrow(mydata) %% 2 == 1) , ]
Or if you want to subset by selecting odd numbers, version 2:
mydata[which(1:nrow(mydata) %% 2 != 0) , ]
Or if you want to subset by filtering even numbers out:
mydata[!which(1:nrow(mydata) %% 2 == 0) , ]
Or if you want to subset by filtering even numbers out, version 2:
mydata[!which(1:nrow(mydata) %% 2 != 1) , ]
For completeness, I'll add that this can be done with dplyr as well using slice. The advantage of using this is that it can be part of a piped workflow.
df <- df %>%
.
.
slice(-c(2, 4, 6)) %>%
.
.
Of course, you can also use it without pipes.
df <- slice(df, -c(2, 4, 6))
The "not vector" format, -c(2, 4, 6) means to get everything that is not at rows 2, 4 and 6. For an example using a range, let's say you wanted to remove the first 5 rows, you could do slice(df, 6:n()). For more examples, see the docs.
Delete Dan from employee.data - No need to manage a new data.frame.
employee.data <- subset(employee.data, name!="Dan")
Here's a quick and dirty function to remove a row by index.
removeRowByIndex <- function(x, row_index) {
nr <- nrow(x)
if (nr < row_index) {
print('row_index exceeds number of rows')
} else if (row_index == 1)
{
return(x[2:nr, ])
} else if (row_index == nr) {
return(x[1:(nr - 1), ])
} else {
return (x[c(1:(row_index - 1), (row_index + 1):nr), ])
}
}
It's main flaw is it the row_index argument doesn't follow the R pattern of being a vector of values. There may be other problems as I only spent a couple of minutes writing and testing it, and have only started using R in the last few weeks. Any comments and improvements on this would be very welcome!
To identify by a name:
Call out the unique ID and identify the location in your data frame (DF).
Mark to delete. If the unique ID applies to multiple rows, all these rows will be removed.
Code:
Rows<-which(grepl("unique ID", DF$Column))
DF2<-DF[-c(Rows),]
DF2
Another approach when working with Unique IDs is to subset data:
*This came from an actual report where I wanted to remove the chemical standard
Chem.Report<-subset(Chem.Report, Chem_ID!="Standard")
Chem_ID is the column name.
The ! is important for excluding

R: subsetting dataframe using elements from a vector

I have a data frame which includes a vector of individual identifiers (which are 6 letters) and vectors of numbers
I would like to subset it using a vector of elements (again 6-letters identifiers) taken from another dataframe
Here is what I did (in a simplified version, my dataframe has over 200 columns and 64 rows)
n = c(2, 3, 5, 7, 8, 1)
i = c("abazzz", "bbaxxx", "ccbeee","dddfre", "sdtyuo", "loatvz" )
c = c(10, 2, 10, 2, 12, 34)
df1 = data.frame(n, i, c)
attach(example)
This is the vector whose elements I want to use for subsetting:
v<- c("abazzz", "ccbeee", "lllaaa")
This is what I do to subset
df2<-example[, i==abazzz | ccbeee | lllaaa]
This does not work, the error I get is "abazzz" not found ( I tried with and without "", I tried using the command subset, same error appears)
Moreover I would like to avoid the or operator as the vector I need to use for subsetting has about 50 elements. So, in words, what I would like to do is to subset df2 in order to extract only those individuals who already appear in df1 using their identifiers (column in df1)
Writing this makes me think this must be very easy to do, but I can't figure it out by myself, I tried looking up similar questions but could not find what I was looking for. I hope someone can help me, suggest other posts or manuals so I can learn. Thanks!
Here's another nice option using data.tables binary search (for efficiency)
library(data.table)
setkey(setDT(df1), i)[J(v), nomatch = 0]
# n i c
# 1: 2 abazzz 10
# 2: 5 ccbeee 10
Or if you don't want to reorder the data set and keep the syntax similar to base R, you could set a secondary key instead (contributed by #Arun)
set2key(setDT(df1), i)
df1[i %in% v]
Or dplyr (for simplicity)
library(dplyr)
df1 %>% filter(i %in% v)
# n i c
# 1: 2 abazzz 10
# 2: 5 ccbeee 10
As a side note: as mentioned in comments, never use attach
(1)
Instead of
attach(df1)
df2<-df1[, i==abazzz | ccbeee | lllaaa]
detach(df1)
try
df2 <- with(df1, df1[i=="abazzz" | i=="ccbeee" | i=="lllaaa", ])
(2)
with(df1, df1[i %in% v, ])
Both yield
# n i c
# 1 2 abazzz 10
# 3 5 ccbeee 10

Deleting many, specific rows in R [duplicate]

I have a data frame named "mydata" that looks like this this:
A B C D
1. 5 4 4 4
2. 5 4 4 4
3. 5 4 4 4
4. 5 4 4 4
5. 5 4 4 4
6. 5 4 4 4
7. 5 4 4 4
I'd like to delete row 2,4,6. For example, like this:
A B C D
1. 5 4 4 4
3. 5 4 4 4
5. 5 4 4 4
7. 5 4 4 4
The key idea is you form a set of the rows you want to remove, and keep the complement of that set.
In R, the complement of a set is given by the '-' operator.
So, assuming the data.frame is called myData:
myData[-c(2, 4, 6), ] # notice the -
Of course, don't forget to "reassign" myData if you wanted to drop those rows entirely---otherwise, R just prints the results.
myData <- myData[-c(2, 4, 6), ]
You can also work with a so called boolean vector, aka logical:
row_to_keep = c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)
myData = myData[row_to_keep,]
Note that the ! operator acts as a NOT, i.e. !TRUE == FALSE:
myData = myData[!row_to_keep,]
This seems a bit cumbersome in comparison to #mrwab's answer (+1 btw :)), but a logical vector can be generated on the fly, e.g. where a column value exceeds a certain value:
myData = myData[myData$A > 4,]
myData = myData[!myData$A > 4,] # equal to myData[myData$A <= 4,]
You can transform a boolean vector to a vector of indices:
row_to_keep = which(myData$A > 4)
Finally, a very neat trick is that you can use this kind of subsetting not only for extraction, but also for assignment:
myData$A[myData$A > 4,] <- NA
where column A is assigned NA (not a number) where A exceeds 4.
Problems with deleting by row number
For quick and dirty analyses, you can delete rows of a data.frame by number as per the top answer. I.e.,
newdata <- myData[-c(2, 4, 6), ]
However, if you are trying to write a robust data analysis script, you should generally avoid deleting rows by numeric position. This is because the order of the rows in your data may change in the future. A general principle of a data.frame or database tables is that the order of the rows should not matter. If the order does matter, this should be encoded in an actual variable in the data.frame.
For example, imagine you imported a dataset and deleted rows by numeric position after inspecting the data and identifying the row numbers of the rows that you wanted to delete. However, at some later point, you go into the raw data and have a look around and reorder the data. Your row deletion code will now delete the wrong rows, and worse, you are unlikely to get any errors warning you that this has occurred.
Better strategy
A better strategy is to delete rows based on substantive and stable properties of the row. For example, if you had an id column variable that uniquely identifies each case, you could use that.
newdata <- myData[ !(myData$id %in% c(2,4,6)), ]
Other times, you will have a formal exclusion criteria that could be specified, and you could use one of the many subsetting tools in R to exclude cases based on that rule.
Create id column in your data frame or use any column name to identify the row. Using index is not fair to delete.
Use subset function to create new frame.
updated_myData <- subset(myData, id!= 6)
print (updated_myData)
updated_myData <- subset(myData, id %in% c(1, 3, 5, 7))
print (updated_myData)
By simplified sequence :
mydata[-(1:3 * 2), ]
By sequence :
mydata[seq(1, nrow(mydata), by = 2) , ]
By negative sequence :
mydata[-seq(2, nrow(mydata), by = 2) , ]
Or if you want to subset by selecting odd numbers:
mydata[which(1:nrow(mydata) %% 2 == 1) , ]
Or if you want to subset by selecting odd numbers, version 2:
mydata[which(1:nrow(mydata) %% 2 != 0) , ]
Or if you want to subset by filtering even numbers out:
mydata[!which(1:nrow(mydata) %% 2 == 0) , ]
Or if you want to subset by filtering even numbers out, version 2:
mydata[!which(1:nrow(mydata) %% 2 != 1) , ]
For completeness, I'll add that this can be done with dplyr as well using slice. The advantage of using this is that it can be part of a piped workflow.
df <- df %>%
.
.
slice(-c(2, 4, 6)) %>%
.
.
Of course, you can also use it without pipes.
df <- slice(df, -c(2, 4, 6))
The "not vector" format, -c(2, 4, 6) means to get everything that is not at rows 2, 4 and 6. For an example using a range, let's say you wanted to remove the first 5 rows, you could do slice(df, 6:n()). For more examples, see the docs.
Delete Dan from employee.data - No need to manage a new data.frame.
employee.data <- subset(employee.data, name!="Dan")
Here's a quick and dirty function to remove a row by index.
removeRowByIndex <- function(x, row_index) {
nr <- nrow(x)
if (nr < row_index) {
print('row_index exceeds number of rows')
} else if (row_index == 1)
{
return(x[2:nr, ])
} else if (row_index == nr) {
return(x[1:(nr - 1), ])
} else {
return (x[c(1:(row_index - 1), (row_index + 1):nr), ])
}
}
It's main flaw is it the row_index argument doesn't follow the R pattern of being a vector of values. There may be other problems as I only spent a couple of minutes writing and testing it, and have only started using R in the last few weeks. Any comments and improvements on this would be very welcome!
To identify by a name:
Call out the unique ID and identify the location in your data frame (DF).
Mark to delete. If the unique ID applies to multiple rows, all these rows will be removed.
Code:
Rows<-which(grepl("unique ID", DF$Column))
DF2<-DF[-c(Rows),]
DF2
Another approach when working with Unique IDs is to subset data:
*This came from an actual report where I wanted to remove the chemical standard
Chem.Report<-subset(Chem.Report, Chem_ID!="Standard")
Chem_ID is the column name.
The ! is important for excluding

How do I delete rows in a data frame?

I have a data frame named "mydata" that looks like this this:
A B C D
1. 5 4 4 4
2. 5 4 4 4
3. 5 4 4 4
4. 5 4 4 4
5. 5 4 4 4
6. 5 4 4 4
7. 5 4 4 4
I'd like to delete row 2,4,6. For example, like this:
A B C D
1. 5 4 4 4
3. 5 4 4 4
5. 5 4 4 4
7. 5 4 4 4
The key idea is you form a set of the rows you want to remove, and keep the complement of that set.
In R, the complement of a set is given by the '-' operator.
So, assuming the data.frame is called myData:
myData[-c(2, 4, 6), ] # notice the -
Of course, don't forget to "reassign" myData if you wanted to drop those rows entirely---otherwise, R just prints the results.
myData <- myData[-c(2, 4, 6), ]
You can also work with a so called boolean vector, aka logical:
row_to_keep = c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)
myData = myData[row_to_keep,]
Note that the ! operator acts as a NOT, i.e. !TRUE == FALSE:
myData = myData[!row_to_keep,]
This seems a bit cumbersome in comparison to #mrwab's answer (+1 btw :)), but a logical vector can be generated on the fly, e.g. where a column value exceeds a certain value:
myData = myData[myData$A > 4,]
myData = myData[!myData$A > 4,] # equal to myData[myData$A <= 4,]
You can transform a boolean vector to a vector of indices:
row_to_keep = which(myData$A > 4)
Finally, a very neat trick is that you can use this kind of subsetting not only for extraction, but also for assignment:
myData$A[myData$A > 4,] <- NA
where column A is assigned NA (not a number) where A exceeds 4.
Problems with deleting by row number
For quick and dirty analyses, you can delete rows of a data.frame by number as per the top answer. I.e.,
newdata <- myData[-c(2, 4, 6), ]
However, if you are trying to write a robust data analysis script, you should generally avoid deleting rows by numeric position. This is because the order of the rows in your data may change in the future. A general principle of a data.frame or database tables is that the order of the rows should not matter. If the order does matter, this should be encoded in an actual variable in the data.frame.
For example, imagine you imported a dataset and deleted rows by numeric position after inspecting the data and identifying the row numbers of the rows that you wanted to delete. However, at some later point, you go into the raw data and have a look around and reorder the data. Your row deletion code will now delete the wrong rows, and worse, you are unlikely to get any errors warning you that this has occurred.
Better strategy
A better strategy is to delete rows based on substantive and stable properties of the row. For example, if you had an id column variable that uniquely identifies each case, you could use that.
newdata <- myData[ !(myData$id %in% c(2,4,6)), ]
Other times, you will have a formal exclusion criteria that could be specified, and you could use one of the many subsetting tools in R to exclude cases based on that rule.
Create id column in your data frame or use any column name to identify the row. Using index is not fair to delete.
Use subset function to create new frame.
updated_myData <- subset(myData, id!= 6)
print (updated_myData)
updated_myData <- subset(myData, id %in% c(1, 3, 5, 7))
print (updated_myData)
By simplified sequence :
mydata[-(1:3 * 2), ]
By sequence :
mydata[seq(1, nrow(mydata), by = 2) , ]
By negative sequence :
mydata[-seq(2, nrow(mydata), by = 2) , ]
Or if you want to subset by selecting odd numbers:
mydata[which(1:nrow(mydata) %% 2 == 1) , ]
Or if you want to subset by selecting odd numbers, version 2:
mydata[which(1:nrow(mydata) %% 2 != 0) , ]
Or if you want to subset by filtering even numbers out:
mydata[!which(1:nrow(mydata) %% 2 == 0) , ]
Or if you want to subset by filtering even numbers out, version 2:
mydata[!which(1:nrow(mydata) %% 2 != 1) , ]
For completeness, I'll add that this can be done with dplyr as well using slice. The advantage of using this is that it can be part of a piped workflow.
df <- df %>%
.
.
slice(-c(2, 4, 6)) %>%
.
.
Of course, you can also use it without pipes.
df <- slice(df, -c(2, 4, 6))
The "not vector" format, -c(2, 4, 6) means to get everything that is not at rows 2, 4 and 6. For an example using a range, let's say you wanted to remove the first 5 rows, you could do slice(df, 6:n()). For more examples, see the docs.
Delete Dan from employee.data - No need to manage a new data.frame.
employee.data <- subset(employee.data, name!="Dan")
Here's a quick and dirty function to remove a row by index.
removeRowByIndex <- function(x, row_index) {
nr <- nrow(x)
if (nr < row_index) {
print('row_index exceeds number of rows')
} else if (row_index == 1)
{
return(x[2:nr, ])
} else if (row_index == nr) {
return(x[1:(nr - 1), ])
} else {
return (x[c(1:(row_index - 1), (row_index + 1):nr), ])
}
}
It's main flaw is it the row_index argument doesn't follow the R pattern of being a vector of values. There may be other problems as I only spent a couple of minutes writing and testing it, and have only started using R in the last few weeks. Any comments and improvements on this would be very welcome!
To identify by a name:
Call out the unique ID and identify the location in your data frame (DF).
Mark to delete. If the unique ID applies to multiple rows, all these rows will be removed.
Code:
Rows<-which(grepl("unique ID", DF$Column))
DF2<-DF[-c(Rows),]
DF2
Another approach when working with Unique IDs is to subset data:
*This came from an actual report where I wanted to remove the chemical standard
Chem.Report<-subset(Chem.Report, Chem_ID!="Standard")
Chem_ID is the column name.
The ! is important for excluding

Resources