Hi I'm working on SparkR. I'm try to calculate a RelativeFrequency of my Data.
SmsInt<-fread("smsCallInt.txt")
setnames(SmsInt,c("V1","V2","V3","V4","V5","V6","V7","V8"),
c("SquareID","TimeInterval","CountryCode","SmsIn","SmsOut","CallIn","CallOut","Internet"))
#Also create a dataFrame from it.
SmsInt$TimeInterval<-as.numeric(SmsInt$TimeInterval)
SmsInt.df<-createDataFrame(sqlContext,SmsInt[1:500,])
str(SmsInt)
Classes ‘data.table’ and 'data.frame': 2459324 obs. of 8 variables:
$ SquareID : int 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 ...
$ TimeInterval: num 1.38e+12 1.38e+12 1.38e+12 1.38e+12 1.38e+12 ...
$ CountryCode : int 0 39 49 0 39 0 39 0 39 49 ...
$ SmsIn : num 0.109 1.001 NA 0.193 0.648 ...
$ SmsOut : num NA 1.26 NA NA 1.06 ...
$ CallIn : num NA 0.0876 NA NA 0.1751 ...
$ CallOut : num 0.0219 0.2196 NA NA 0.1532 ...
$ Internet : num NA 10.1685 0.0219 NA 11.8671 ...
- attr(*, ".internal.selfref")=<externalptr>
What I want to do is create a RelativeFrequency from SmsInt$CountryCode.
When I type Country<-table(SmsInt$CountryCode)
I got this Error:
Errore: class(objId) == "jobj" is not TRUE
What can I do?There is a way to calculate it manually or with some package?
I created an algorithm but i have some trouble .
Country5<-SmsInt$CountryCode[1:90]
UniqueCountry<-unique(Country5)
VectorLen<-c()
Parsed<-c()
Freq<-c()
for(i in 1:length(UniqueCountry)){
CountryCode.i<-UniqueCountry[i]
if(CountryCode.i %in% Parsed){
Vector<-0
VectorLen[i]<-0
Freq[i]<-0
}
else{
Vector<-grep(CountryCode.i,Country5)
Parsed[i]<-CountryCode.i
VectorLen[i]<-length(Vector)
Freq[i]<-VectorLen[i]/90
Vector<-0
}
}
Vector
VectorLen #92 it needs to be 90
Freq
sum(Freq) #1.022222 needs to be 1
With 80 all works.
Ok I did it. The error was the grep function so when I was looking for number 1 it was found on number 10 once, for example.
I post the solution here.
RelativeFrequency<-function(DataSet){
UniqueCountry<-unique(DataSet)
VectorLen<-c()
Parsed<-c()
Freq<-c()
for(i in 1:length(UniqueCountry)){
CountryCode.i<-UniqueCountry[i]
if(CountryCode.i %in% Parsed){
Vector<-0
VectorLen[i]<-0
Freq[i]<-0
}
else{
Vector<-which(DataSet %in% CountryCode.i)
Parsed[i]<-CountryCode.i
VectorLen[i]<-length(Vector)
Freq[i]<-VectorLen[i]/length(DataSet)
}
}
print("Vector of RelativeFrequency")
print(Freq)
print("Frequency Sum (Needs to be 1)")
print(sum(Freq))
print("Parsed element ")
print(Parsed)
barplot(Freq,names=Parsed,space = 0.7,axisnames = TRUE,las=2)
}
Related
I have some metabolomics data I am trying to process (validate the compounds that are actually present).
`'data.frame': 544 obs. of 48 variables:
$ X : int 1 2 3 4 5 6 7 8 9 10 ...
$ No. : int 2 32 34 95 114 141 169 234 236 278 ...
$ RT..min. : num 0.89 3.921 0.878 2.396 0.845 ...
$ Molecular.Weight : num 70 72 72 78 80 ...
$ m.z : num 103 145 114 120 113 ...
$ HMDB.ID : chr "HMDB0006804" "HMDB0031647" "HMDB0006112" "HMDB0001505" ...
$ Name : chr "Propiolic acid" "Acrylic acid" "Malondialdehyde" "Benzene" ...
$ Formula : chr "C3H2O2" "C3H4O2" "C3H4O2" "C6H6" ...
$ Monoisotopic_Mass: num 70 72 72 78 80 ...
$ Delta.ppm. : num 1.295 0.833 1.953 1.023 0.102 ...
$ X1 : num 288.3 16.7 1130.9 3791.5 33.5 ...
$ X2 : num 276.8 13.4 1069.1 3228.4 44.1 ...
$ X3 : num 398.6 19.3 794.8 2153.2 15.8 ...
$ X4 : num 247.6 100.5 1187.5 1791.4 33.4 ...
$ X5 : num 98.4 162.1 1546.4 1646.8 45.3 ...`
I tried to write a loop so that if the Delta.ppm value is larger than (m/z - molecular weight)/molecular weight, the entire row is deleted in the subsequent dataframe.
for (i in 1:nrow(rawdata)) {
ppm <- (rawdata$m.z[i] - rawdata$Molecular.Weight[i]) /
rawdata$Molecular.Weight[i]
if (ppm > rawdata$Delta.ppm[i]) {
filtered_data <- rbind(filtered_data, rawdata[i,])
}
}
Instead of giving me a new df with the validated compounds, under the 'Values' section, it generates a single number for 'ppm'.
Still very new to R, any help is super appreciated!
No need to do this row-by-row, we can remove all undesired rows in one operation:
## base R
good <- with(rawdat, (m.z - Molecular.Weight)/Molecular.Weight < Delta.ppm.)
newdat <- rawdat[good, ]
## dplyr
newdat <- filter(rawdat, (m.z - Molecular.Weight)/Molecular.Weight < Delta.ppm.)
Iteratively adding rows to a frame using rbind(old, newrow) works in practice but scales horribly, see "Growing Objects" in The R Inferno. For each row added, it makes a complete copy of all rows in old, which works but starts to slow down a lot. It is far better to produce a list of these new rows and then rbind them at one time; e.g.,
out <- list()
for (...) {
# ... newrow ...
out <- c(out, list(newrow))
}
alldat <- do.call(rbind, out)
ppm[i] <- NULL
for (i in 1:nrow(rawdata)) {
ppm[i] <- (rawdata$m.z[i] - rawdata$Molecular.Weight[i]) /
rawdata$Molecular.Weight[i]
if (ppm[i] > rawdata$Delta.ppm[i]) {
filtered_data <- rbind(filtered_data, rawdata[i,])
}
}
How do I code this formula:
Simple returns = [(Pt / Pt-1) - 1]
I have tried the below, but keep getting the wrong numbers.
stockindices = read.csv('https://raw.githubusercontent.com/bandcar/Examples/main/stockInd.csv')
library(tidyverse)
simple_returns <- stockindices %>%
mutate(across(3:ncol(.), ~ ((.x / lag(.x-1))-1)))
You had too many -1's in your expression:
simple_returns <- stockindices %>%
mutate(across( 3:ncol(.), ~ .x / lag(.x)-1))
str(simple_returns)
'data.frame': 3978 obs. of 8 variables:
$ X : int 1 2 3 4 5 6 7 8 9 10 ...
$ Date: chr "1999-04-01" "1999-05-01" "1999-06-01" "1999-07-01" ...
$ DJX : num NA 0.01382 0.025107 -0.000755 0.011068 ...
$ SPX : num NA 0.01358 0.02214 -0.00205 0.00422 ...
$ HKX : num NA 0.00835 0.03465 0.04493 0.00272 ...
$ NKX : num NA -0.01365 0.01781 0.00506 -0.01069 ...
$ DAX : num NA 0.000295 0.036108 -0.022119 0.01308 ...
$ UKX : num NA 0.0134 0.03199 -0.00774 0.00754 ...
You could have bracketed the .x/lag(.x) but it's not necessary here because of operator precedence and R's order of operations rules. The default lag-interval is 1 so it doesn't need to be inside the argument to lag. If you had wanted the semi-monthly returns it would have been
~ .x/lag(.x, 2) - 1
And as always it will pay to make sure that you have masked the stats::lag function, which is quite different and doesn't play nicely with the tidyverse.
activity <- mutate(
activity, steps = ifelse(is.na(steps), lookup_mean(interval), steps))
The "steps" variable changes from an int to a list. I want it to stay an "int" so I can aggregate it (aggregate is failing because it is a list type).
Before:
> str(activity)
'data.frame': 17568 obs. of 3 variables:
$ steps : int NA NA NA NA NA NA NA NA NA NA ...
$ date : Factor w/ 61 levels "2012-10-01","2012-10-02",..: 1 1 1 1 1 1 1 1 1 1 ...
$ interval: int 0 5 10 15 20 25 30 35 40 45 ...
After:
> str(activity)
'data.frame': 17568 obs. of 3 variables:
$ steps :List of 17568
..$ : num 1.72
..$ : num 1.72
Lookup mean is defined here:
lookup_mean <- function(i) {
return filter(daily_activity_pattern, interval == 0) %>% select(steps)
}
The problem is that lookup_mean returns a list, so R casts each value in activity$steps to a list. lookup_mean should be:
lookup_mean <- function(i) {
interval <- filter(daily_activity_pattern, interval == 0) %>% select(steps)
return(interval$steps)
}
Implemented:
I am importing a .xlsx file into R.
This file consists of three sheets.
I am binding all the sheets into a list.
Need to Implement
Now I want to combine this matrix lists into a single data.frame. With the header being the --> names(dataset).
I tried using the as.data.frame with read.xlsx as given in the help but it did not work.
I explicitly tried with as.data.frame(as.table(dataset)) but still it generates a long list of data.frame but nothing that I want.
I want to have a structure like
header = names and the values below that, just like how the read.table imports the data.
This is the code I am using:
xlfile <- list.files(pattern = "*.xlsx")
wb <- loadWorkbook(xlfile)
sheet_ct <- wb$getNumberOfSheets()
b <- rbind(list(lapply(1:sheet_ct, function(x) {
res <- read.xlsx(xlfile, x, as.data.frame = TRUE, header = TRUE)
})))
b <- b [-c(1),] # Just want to remove the second header
I want to have the data arrangement something like below.
Ei Mi hours Nphy Cphy CHLphy Nhet Chet Ndet Cdet DON DOC DIN DIC AT dCCHO TEPC Ncocco Ccocco CHLcocco PICcocco par Temp Sal co2atm u10 dicfl co2ppm co2mol pH
1 1 1 1 0.1023488 0.6534707 0.1053458 0.04994161 0.3308593 0.04991916 0.3307085 0.05042275 49.76304 14.99330000 2050.132 2150.007 0.9642220 0.1339044 0.1040715 0.6500288 0.1087667 0.1000664 0.0000000 9.900000 31.31000 370 0.01 -2.963256000 565.1855 0.02562326 7.879427
2 1 1 2 0.1045240 0.6448216 0.1103250 0.04988347 0.3304699 0.04984045 0.3301691 0.05085697 49.52745 14.98729000 2050.264 2150.007 0.9308690 0.1652179 0.1076058 0.6386706 0.1164099 0.1001396 0.0000000 9.900000 31.31000 370 0.01 -2.971632000 565.7373 0.02564828 7.879042
3 1 1 3 0.1064772 0.6369597 0.1148174 0.04982555 0.3300819 0.04976363 0.3296314 0.05130091 49.29323 14.98221000 2050.396 2150.007 0.8997098 0.1941872 0.1104229 0.6291149 0.1225822 0.1007908 0.8695131 9.900000 31.31000 370 0.01 -2.980446000 566.3179 0.02567460 7.878636
4 1 1 4 0.1081702 0.6299084 0.1187672 0.04976784 0.3296952 0.04968840 0.3290949 0.05175249 49.06034 14.97810000 2050.524 2150.007 0.8705440 0.2210289 0.1125141 0.6213265 0.1273103 0.1018360 1.5513170 9.900000 31.31000 370 0.01 -2.989259000 566.8983 0.02570091 7.878231
5 1 1 5 0.1095905 0.6239005 0.1221460 0.04971029 0.3293089 0.04961446 0.3285598 0.05220978 48.82878 14.97485000 2050.641 2150.007 0.8431960 0.2459341 0.1140222 0.6152447 0.1308843 0.1034179 2.7777070 9.900000
Please dont suggest me to have all data on a single sheet and also convert .xlsx to .csv or simple text format. I am trying really hard to have a proper dataframe from a .xlsx file.
Following is the file
And this is the post following : Followup
This is what resulted:
str(full_data)
'data.frame': 0 obs. of 19 variables:
$ Experiment : Factor w/ 2 levels "#","1":
$ Mesocosm : Factor w/ 10 levels "#","1","2","3",..:
$ Exp.day : Factor w/ 24 levels "1","10","11",..:
$ Hour : Factor w/ 24 levels "108","12","132",..:
$ Temperature: Factor w/ 125 levels "10","10.01","10.02",..:
$ Salinity : num
$ pH : num
$ DIC : Factor w/ 205 levels "1582.2925","1588.6475",..:
$ TA : Factor w/ 117 levels "1813","1826",..:
$ DIN : Factor w/ 66 levels "0.2","0.3","0.4",..:
$ Chl.a : Factor w/ 156 levels "0.171","0.22",..:
$ PIC : Factor w/ 194 levels "-0.47","-0.96",..:
$ POC : Factor w/ 199 levels "-0.046","1.733",..:
$ PON : Factor w/ 151 levels "1.675","1.723",..:
$ POP : Factor w/ 110 levels "0.032","0.034",..:
$ DOC : Factor w/ 93 levels "100.1","100.4",..:
$ DON : Factor w/ 1 level "µmol/L":
$ DOP : Factor w/ 1 level "µmol/L":
$ TEP : Factor w/ 100 levels "10.4934","11.0053",..:
[Note: Above is the structure after reading from .xlsx file......the levels makes the calculation and manipulation part tedious and messy.]
This is what I want to achieve:
str(a)
'data.frame': 9936 obs. of 29 variables:
$ Ei : int 1 1 1 1 1 1 1 1 1 1 ...
$ Mi : int 1 1 1 1 1 1 1 1 1 1 ...
$ hours : int 1 2 3 4 5 6 7 8 9 10 ...
$ Cphy : num 0.653 0.645 0.637 0.63 0.624 ...
$ CHLphy : num 0.105 0.11 0.115 0.119 0.122 ...
$ Nhet : num 0.0499 0.0499 0.0498 0.0498 0.0497 ...
$ Chet : num 0.331 0.33 0.33 0.33 0.329 ...
$ Ndet : num 0.0499 0.0498 0.0498 0.0497 0.0496 ...
$ Cdet : num 0.331 0.33 0.33 0.329 0.329 ...
$ DON : num 0.0504 0.0509 0.0513 0.0518 0.0522 ...
$ DOC : num 49.8 49.5 49.3 49.1 48.8 ...
$ DIN : num 15 15 15 15 15 ...
$ DIC : num 2050 2050 2050 2051 2051 ...
$ AT : num 2150 2150 2150 2150 2150 ...
$ dCCHO : num 0.964 0.931 0.9 0.871 0.843 ...
$ TEPC : num 0.134 0.165 0.194 0.221 0.246 ...
$ Ncocco : num 0.104 0.108 0.11 0.113 0.114 ...
$ Ccocco : num 0.65 0.639 0.629 0.621 0.615 ...
$ CHLcocco: num 0.109 0.116 0.123 0.127 0.131 ...
$ PICcocco: num 0.1 0.1 0.101 0.102 0.103 ...
$ par : num 0 0 0.87 1.55 2.78 ...
$ Temp : num 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 ...
$ Sal : num 31.3 31.3 31.3 31.3 31.3 ...
$ co2atm : num 370 370 370 370 370 370 370 370 370 370 ...
$ u10 : num 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 ...
$ dicfl : num -2.96 -2.97 -2.98 -2.99 -3 ...
$ co2ppm : num 565 566 566 567 567 ...
$ co2mol : num 0.0256 0.0256 0.0257 0.0257 0.0257 ...
$ pH : num 7.88 7.88 7.88 7.88 7.88 ...
[Note: sorry for the extra columns, this is another dataset (simple text), which I am reading from read.table]
With NA's handled:
> unique(mydf_1$Exp.num)
[1] # 1
Levels: # 1
> unique(mydf_2$Exp.num)
[1] # 2
Levels: # 2
> unique(mydf_3$Exp.num)
[1] # 3
Levels: # 3
> unique(full_data$Exp.num)
[1] 2 3 4
Without handling NA's:
> unique(full_data$Exp.num)
[1] 1 NA 2 3
> unique(full_data$Mesocosm)
[1] 1 2 3 4 5 6 7 8 9 NA
I think this is what you need. I add a few comments on what I am doing:
xlfile <- list.files(pattern = "*.xlsx")
wb <- loadWorkbook(xlfile)
sheet_ct <- wb$getNumberOfSheets()
for( i in 1:sheet_ct) { #read the sheets into 3 separate dataframes (mydf_1, mydf_2, mydf3)
print(i)
variable_name <- sprintf('mydf_%s',i)
assign(variable_name, read.xlsx(xlfile, sheetIndex=i,startRow=1, endRow=209)) #using this you don't need to use my formula to eliminate NAs. but you need to specify the first and last rows.
}
colnames(mydf_1) <- names(mydf_2) #this here was unclear. I chose the second sheet's
# names as column names but you can chose whichever you want using the same (second and third column had the same names).
#some of the sheets were loaded with a few blank rows (full of NAs) which I remove
#with the following function according to the first column which is always populated
#according to what I see
remove_na_rows <- function(x) {
x <- x[!is.na(x)]
a <- length(x==TRUE)
}
mydf_1 <- mydf_1[1:remove_na_rows(mydf_1$Exp.num),]
mydf_2 <- mydf_2[1:remove_na_rows(mydf_2$Exp.num),]
mydf_3 <- mydf_3[1:remove_na_rows(mydf_3$Exp.num),]
full_data <- rbind(mydf_1[-1,],mydf_2[-1,],mydf_3[-1,]) #making one dataframe here
full_data <- lapply(full_data,function(x) as.numeric(x)) #convert fields to numeric
full_data2$Ei <- as.integer(full_data[['Ei']]) #use this to convert any column to integer
full_data2$Mi <- as.integer(full_data[['Mi']])
full_data2$hours <- as.integer(full_data[['hours']])
#*********code to use for removing NA rows *****************
#so if you rbind not caring about the NA rows you can use the below to get rid of them
#I just tested it and it seems to be working
n_row <- NULL
for ( i in 1:nrow(full_data)) {
x <- full_data[i,]
if ( all(is.na(x)) ) {
n_row <- append(n_row,i)
}
}
full_data <- full_data[-n_row,]
I think now this is what you need
I am trying to read the table from the following URL:
url <- 'http://faculty.chicagobooth.edu/ruey.tsay/teaching/introTS/m-ge3dx-4011.txt'
da <- read.table(url, header = TRUE, fill=FALSE, strip.white=TRUE)
I can look at the data using head:
> head(da)
date ge vw ew sp
1 19400131 -0.061920 -0.024020 -0.019978 -0.035228
2 19400229 -0.009901 0.013664 0.029733 0.006639
3 19400330 0.049333 0.018939 0.026168 0.009893
4 19400430 -0.041667 0.001196 0.013115 -0.004898
5 19400531 -0.197324 -0.220314 -0.269754 -0.239541
6 19400629 0.061667 0.066664 0.066550 0.076591
This works fine for the first 4 columns, for example, I can look at the column ew
> head(da$ew)
[1] -0.019978 0.029733 0.026168 0.013115 -0.269754 0.066550
but when I try to access the last one, I get some extra output which is not in the txt file.
> head(da$sp)
[1] -0.035228 0.006639 0.009893 -0.004898 -0.239541 0.076591
859 Levels: -0.000060 -0.000143 -0.000180 -0.000320 -0.000659 -0.000815 ... 0.163047
How do I get rid of the extra output? Thanks!
This is representation of a factor.
> str(da)
'data.frame': 861 obs. of 5 variables:
$ date: int 19400131 19400229 19400330 19400430 19400531 19400629 19400731 19400831 19400930 19401031 ...
$ ge : num -0.0619 -0.0099 0.0493 -0.0417 -0.1973 ...
$ vw : num -0.024 0.0137 0.0189 0.0012 -0.2203 ...
$ ew : num -0.02 0.0297 0.0262 0.0131 -0.2698 ...
$ sp : Factor w/ 859 levels "-0.000060","-0.000143",..: 226 411 445 42 353 828 613 585 441 684 ...
Row 58 has a dot instead of a number. This is sufficient information for R to handle the variable as a factor. Once you change the dot to NA or fix the error, you will be able to read in the data fine.
Another option would be to change the point to something meaningful after the data has been read in, and coercing to numeric afterwards. The following statement will coerce . to NA.
da$sp <- as.numeric(as.character(da$sp))
> str(da)
'data.frame': 861 obs. of 5 variables:
$ date: int 19400131 19400229 19400330 19400430 19400531 19400629 19400731 19400831 19400930 19401031 ...
$ ge : num -0.0619 -0.0099 0.0493 -0.0417 -0.1973 ...
$ vw : num -0.024 0.0137 0.0189 0.0012 -0.2203 ...
$ ew : num -0.02 0.0297 0.0262 0.0131 -0.2698 ...
$ sp : num -0.03523 0.00664 0.00989 -0.0049 -0.23954 ...