Running in R this code:
# example data
x = runif(14, 0.0, 1.0)
norm = x/sum(x)
data = data.frame(replicate(17,sample(norm)))
require(ggplot2)
require(reshape2)
data$no <- seq_len(nrow(data))
data_molten <- melt(data, id.vars = "no")
data_molten[data_molten == 0] <- NA
View(data_molten)
# ggplot
ggplot(data_molten[!is.na(data_molten$value),], aes(x = variable, y = value, fill = factor(no))) +
geom_bar(stat = "identity") +
scale_fill_hue(l=40) + facet_grid(no~.) + theme_minimal() +
theme(legend.position="none",
axis.text.x = element_text(angle = 90, colour="black", vjust = 0.5, hjust=1, size=16),
axis.title.x = element_blank(), axis.title.y = element_blank(),
axis.line.y=element_blank(), axis.text.y=element_blank(), axis.ticks.y=element_blank(),
strip.text.y=element_text(size = 16, colour="black", family="", angle=00,hjust = 0),
panel.grid=element_blank(),
axis.line=element_line(size = 1, colour = "black", linetype = "solid"),
axis.ticks.x=element_line(size = 1, colour = "black", linetype = "solid"),
panel.background=element_blank())
produces this plot:
Anybody knows how can I add a vertical line between the right side of the plot and the layers' labels (the 1, 2, 3, ..., 14) which have a tick per layer's label, keeping enough space between the plot, the axis and the labels?
EDIT:
Running
num_var_x = 14
num_var_y = 17
x = runif(num_var_x, 0.0, 1.0)
norm = x/sum(x)
data = data.frame(replicate(num_var_y,sample(norm)))
## preparing dataset for ggplot
require(ggplot2)
require(reshape2)
data$no <- seq_len(nrow(data))
data_molten <- melt(data, id.vars = "no")
data_molten_sort = data_molten[with(data_molten,order(no)),]
## removing elements from variable 'no' whose max. value is e.g. < 0.025
sequence = seq(from=1, to=(num_var_y*num_var_x-num_var_x)+1, by=num_var_x)
for(i in 1:length(sequence))
{
if(isTRUE((max(data_molten_sort$value[(sequence[i]):((num_var_x+sequence[i])-(1))])) < 0.025))
{
data_molten_sort$value[(sequence[i]):((num_var_x+sequence[i])-(1))] = NA
}
}
View(data_molten)
## preparing posterior exporting
#install.packages("Cairo"); "cairo" type in png() has a better quality
library("Cairo")
#preparing exporting
png(file="ggplot.png",type="cairo", width = 4, height = 5, units = 'in',pointsize=8,res=600)
## plotting
ggplot(data_molten[!is.na(data_molten$value),], aes(x = variable, y = value, fill = factor(no))) +
geom_bar(stat = "identity") +
scale_fill_hue(l=40) + facet_grid(no~., as.table=FALSE, scale="free_y", space = "free_y") + theme_minimal() +
geom_vline(xintercept=max(as.numeric(data_molten$variable)) + 0.586, size=0.3) +
theme(legend.position="none",
axis.text.x = element_text(angle = 90, colour="black", vjust = 0.4, hjust=1, size=8),
axis.title.x = element_blank(), axis.title.y = element_blank(),
axis.line.y=element_blank(), axis.text.y=element_blank(), axis.ticks.y=element_blank(),
strip.text.y=element_text(size = 8, colour="black", family="", angle=00,hjust = 0.1),
panel.grid=element_blank(),
axis.line=element_line(size = 0.3, colour = "black", linetype = "solid"),
axis.ticks.x=element_line(size = 0.3, colour = "black", linetype = "solid"),
panel.background=element_blank(), panel.margin = unit(0, "lines"))
## exporting barplot "ggplot.png" to directory
dev.off()
now the y line is continuous, plus other additions such as an exporting command.
http://i.imgur.com/C6h5fPg.png?1
Assuming that your original plot is saved in an object p1, this could be a solution:
p1 + geom_vline(xintercept=max(as.numeric(data_molten$variable))+0.5, size=1) + #data-dependent
scale_x_discrete(expand=c(0,0))+ #create nicer corner
theme(
#move labels slightly to the right with hjust
strip.text.y=element_text(size = 16, colour="black", family="", angle=00,hjust = 0.5)
)
Related
I am trying to finish this graph, and what I need is to add the R-squared to each graph individually.
However, the labels are superimposed on each graph.
I used p + geom_text and p + geom_label without positive results.
Trajectories$date<-as.POSIXct(Trajectories$date,"%Y-%m-%d",tz = "UTC")
# Reorder names in a new variable
Trajectories$variable_f = factor(Trajectories$variable,
levels=c("canopy_cover", "Leaf_litter", "Chla", "Shrimps", "macroinvertebrates"))
levels(Trajectories$variable_f) <-
c("textstyle('Canopy openness')",
"textstyle('Leaf litter')",
"textstyle('Chlorophyll-')*italic('a')",
"textstyle('Shrimps')",
"atop(NA,atop(textstyle('Macroinvertebrate'),textstyle('density')))")
# Changes names in Facet_grid ---- es una manera buena, pero no la voy a usar --- Habria que labeller(variable_f = variable_f
#variable_f <- c("Canopy openness", "Leaf litter", "Chlorophyll-a","Shrimps","Macroinvertebrates")
#names(variable_f) <- c("canopy_cover", "Leaf_litter", "Chla", "Shrimps", "macroinvertebrates")
streams <- c("Prieta A", "Prieta B")
names(streams) <- c("QPA", "QPB")
# General graph -----------------------------------------------------------
p<- ggplot(Trajectories, aes(date,value)) +
geom_point(shape = 21, fill = "#bdd7e7", color = "#2171b5", size = 3) +
geom_smooth(se = T, size=1.7, color= "gray20", method = "gam", formula = y ~s(x)) +
geom_hline(yintercept = 0, color="gray20") +
xlab('Year') + ylab("Change in magnitude") +
theme(axis.title.x = element_text(size = 14, angle = 0)) + # axis x
theme(axis.title.y = element_text(size = 14, angle = 90)) + # axis 7
theme(axis.text.x=element_text(angle=0, size=10, vjust=0.5, color="black")) + #subaxis x
theme(axis.text.y=element_text(angle=0, size=10, vjust=0.5, color="black")) + #subaxis y
ylim(-3,3) +
theme(legend.position="none")+
theme(panel.grid.major = element_line(colour = "gray95"), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black")) +
theme(panel.border = element_rect(colour = "black", fill=NA, size=0.5)) +
facet_grid(vars(stream), vars(variable_f),
labeller = labeller(variable_f = label_parsed, stream = streams)) +
theme(
strip.text.x = element_text(size = 10, color = "black"),
strip.text.y = element_text(size = 10, color = "black"),
strip.placement = "outside") +
theme(strip.background=element_rect(color= "black", fill="gray85")) +
theme(strip.text.x = element_text(margin = margin(0.001,0,0.001,0, "cm"))) +
geom_vline(aes(xintercept=as.POSIXct("2017-09-21")), # Hurricane Maria
col= "red",linetype=4, alpha=0.9) +
geom_vline(aes(xintercept=as.POSIXct("2017-09-6")), # Hurricane Irma
col= "blue",linetype=4, alpha=0.9)
p
I tried to build a data frame with the labels. But it doesn't work, and it overlaps the labels.
labels <- data.frame(variable =c("canopy_cover","Leaf_litter","Chla","Shrimps","macroinvertebrates",
"canopy_cover","Leaf_litter","Chla","Shrimps","macroinvertebrates"),
label=c("R1","R2","R3","R4","R5","R6","R7","R8","R9","R10"),
stream= c("QPA","QPA","QPA","QPA","QPA",
"QPB","QPB","QPB","QPB","QPB"))
labels
p + geom_text(
size = 5,
data = labels,
mapping = aes(x = as.POSIXct("2017-09-6"), y = Inf, label = label),
hjust = 1.05,
vjust = 1.5
)
Thanks in advance
How can I increase vertical spacing between legend keys:
p1 <- ggplot(data = HSS, mapping = aes(x = EVENT, y = HSS, fill = TIME)) +
geom_bar(stat = "identity",width=0.7, colour = "black", position = position_dodge(0.7)) +
scale_fill_manual("HSS", values = c("deepskyblue3", "indianred2"),
labels = c("1200 UTC (0.049)", "0000 UTC (0.031)")) + theme_bw()
p1 <- p1 + scale_y_continuous(expand = expansion(mult = c(0.0085, -0.085)),
limits = c(-0.03,0.5), breaks = c(-0.03,-0.01, 0.01, 0.03, 0.05, 0.07,0.09,0.11,0.13,0.15,0.17,
0.19, 0.21,0.23,0.25,0.27,0.29,0.31,0.33,0.45),
labels = c("-0.03","-0.01","0.01","0.03","0.05","0.07","0.09","0.11","0.13","0.15","0.17",
"0.19","0.21","0.23","0.25","0.27","0.29","0.31","0.33","0.45")) +
theme(axis.text.x=element_text(color = "black", size=12, face = "bold", angle=90, vjust=.5,
hjust=0.8)) +
theme(axis.text.y = element_text(color = "black", size=12, face = "bold"))
p1 <- p1 + theme( axis.line = element_line(colour = "black", size = 0.5, linetype = "solid")) +
labs( y = "HSS")
p1 <- p1 + theme(axis.title=element_text(colour = "blue2" ,size=14,face="bold", vjust = 0.1))
p1 <- p1 + theme(legend.position=c(0.98,0.98)) + theme(legend.title=element_blank(),
legend.text = element_text(face = "bold", size = "12"),
legend.box.background = element_rect(size=0.7, linetype="solid"),
legend.justification = c("right", "top"),
legend.box.margin = margin(1, 1, 1, 1)
)
p1
I tried using legend.key.height legend.spacing.y guide but it only stretched legend keys without adding space between them. Also how can I remove alternate lables (encircled) of Y-axis keeping tickmark with plot.
After browsing ggplot2's source code for a bit, I come to the conclusion that the legend.spacing.y is only applied when the byrow = TRUE as argument to the legend.
Simplied example below.
library(ggplot2)
ggplot(iris, aes(Sepal.Width)) +
geom_density(aes(fill = Species)) +
guides(fill = guide_legend(byrow = TRUE)) +
theme(legend.spacing.y = unit(1, "cm"))
With regards to the labels, just remove the values from the breaks argument in scale_y_continuous() that you don't want to show, you're already specifying them manually.
I am creating faceted box plots that are grouped by a variable. Instead of having the x-axis text be the factors for the x-axis variable I'd like the x-axis text to be the grouping variable.
However, I don't just want to use the grouping variable as my x-axis variable because I'd like the boxplots to cluster. Its hard to explain well. But I think its clear from the code and comments below.
Let me know if you have any suggestions or can help and thanks in advance!
library(ggplot2)
library(scales)
ln_clr <- "black"
bk_clr <- "white"
set.seed(1)
# Creates variables for a dataset
donor = rep(paste0("Donor",1:3), each=40)
machine = sample(rep(rep(paste0("Machine",1:4), each=1),30))
gene = rep(paste0("Gene",LETTERS[1:5]), each=24)
value = rnorm(24*5, mean=rep(c(0.5,10,1000,25000,8000), each=24),
sd=rep(c(0.5,8,900,9000,3000), each=24))
# Makes all values positive
for(m in 1:length(value)){
if(value[m]<0){
value[m] <- sqrt(value[m]*value[m])
}
}
# Creates a data frame from variables
df = data.frame(donor, machine, gene, value)
# Adds a clone variable
clns <- LETTERS[1:4]
k=1
for(i in 1:nrow(df)/4){
for(j in 1:length(clns)){
df$clone[k] <- paste(df$donor[k],clns[j],sep="")
k = k+1
}
}
df$clone <- as.factor(df$clone)
#*************************************************************************************************************************************
# Creates the facet of the machine but what I want on the x-axis is clone, not donor.
# However, if I set x to clone it doesn't group the boxplots and its harder to read
# the graph.
bp1 <- ggplot(df, aes(x=donor, y=value, group=clone)) +
stat_boxplot(geom ='errorbar', position = position_dodge(width = .83),
width = 0.25, size = 0.7, coef = 1) +
geom_boxplot(coef=1, outlier.shape = NA, position = position_dodge(width = .83),
lwd = 0.3, alpha = 1, colour = ln_clr) +
geom_point(position = position_dodge(width = 0.83), size = 1.8, alpha = 0.9,
mapping=aes(group=clone)) +
facet_wrap(~ machine, ncol=2, scales="free_x")
bp1 + scale_y_log10(expand = c(0, 0)) +
theme(axis.text.x= element_text(size=rel(1), colour = "black", angle=45, hjust=1),
strip.background = element_rect(colour = ln_clr, fill = bk_clr, size = 1))
# Creates the facet of the Donor and clusters the clones but doesn't facet the
# machine. This could be okay if I could put spaces in between the different
# machine values but not the donors and could remove the donor facet labels, and
# only have the machine values show up once.
bp2 <- ggplot(df, aes(x=clone, y=value)) +
stat_boxplot(geom ='errorbar', position = position_dodge(width = .83),
width = 0.25, size = 0.7, coef = 1) +
geom_boxplot(coef=1, outlier.shape = NA, position = position_dodge(width = .83),
lwd = 0.3, alpha = 1, colour = ln_clr) +
geom_point(position = position_dodge(width = 0.83), size = 1.8, alpha = 0.9) +
facet_wrap(machine ~ donor, scales="free_x", ncol=6)
bp2 + scale_y_log10(expand = c(0, 0)) +
theme(axis.text.x= element_text(size=rel(1), colour = "black", angle=45, hjust=1),
strip.background = element_rect(colour = ln_clr, fill = bk_clr, size = 1),
panel.spacing = unit(0, "lines"))
Below is an example comparing what I'd like in an ideal world (Top two facets) as compared to what I'm getting (bottom two facets).
I'm not sure I understand exactly what you're trying to do, so let me know if this is on the right track:
library(dplyr)
pd = position_dodge(width=0.83)
ggplot(df %>% mutate(clone=gsub("Donor[1-3]","",clone),
donor=gsub("Donor", "", donor)),
aes(x=clone, y=value, color=donor, group=interaction(clone,donor))) +
geom_boxplot(coef=1, outlier.shape=NA, position=pd, lwd=0.3) +
geom_point(position=pd, size=1.8, alpha=0.9) +
facet_wrap(~ machine, ncol=2, scales="free_x") +
scale_y_log10(expand = c(0.02, 0)) +
theme(strip.background=element_rect(colour=ln_clr, fill=bk_clr, size=1))
How about this:
ggplot(df, aes(x=clone, y=value, group=interaction(clone,donor))) +
geom_boxplot(coef=1, outlier.shape=NA, lwd=0.3) +
geom_point(size=1.8, alpha=0.9) +
facet_wrap(~ machine, ncol=2, scales="free_x") +
scale_y_log10(expand = c(0.02, 0)) +
theme(axis.text.x= element_text(size=rel(1), colour = "black", angle=45, hjust=1),
strip.background=element_rect(colour=ln_clr, fill=bk_clr, size=1))
I found a work around for this problem but its not very elegant. I'd be super happy if some one came up with a better solution. Using the code to create a function for a "multiplot" found here and adding the code below I was able to do what I wanted. However, This is a slightly wonky solution in that I can't really format my titles with boxes around them and there are still two "clone" titles on the x axis that I can't replace easily with a single x-axis title. Also, had I of had many "machines" in my example this solution would have been painful to scale. All-in-all not ideal but passible for what I need. Special thanks to Eipi10 for their help, I appreciate it.
# Creates a multi-plot function for use in the graphs below
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
library(grid)
# Make a list from the ... arguments and plotlist
plots <- c(list(...), plotlist)
numPlots = length(plots)
# If layout is NULL, then use 'cols' to determine layout
if (is.null(layout)) {
# Make the panel
# ncol: Number of columns of plots
# nrow: Number of rows needed, calculated from # of cols
layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
ncol = cols, nrow = ceiling(numPlots/cols))
}
if (numPlots==1) {
print(plots[[1]])
} else {
# Set up the page
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
# Make each plot, in the correct location
for (i in 1:numPlots) {
# Get the i,j matrix positions of the regions that contain this subplot
matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
layout.pos.col = matchidx$col))
}
}
}
# Call multiplot function after storing each of the below plots as variables
ln_clr <- "black"
bk_clr <- "white"
bp3 <- ggplot(df[df$machine=="Machine1",], aes(x=clone, y=value)) +
geom_boxplot(coef=1, outlier.shape=NA, lwd=0.3) +
geom_point(size=1.8, alpha=0.9) +
ggtitle("Machine 1") +
expand_limits(y=c(0.001,10^5)) +
facet_wrap(~ donor, nrow=1, scales="free_x") + scale_y_log10(expand = c(0, 0)) +
theme(axis.text.x= element_text(size=rel(1), color = ln_clr, angle=45, hjust=1),
panel.spacing = unit(0.25, "lines"), axis.title.x= element_blank(),
plot.title = element_text(hjust=0.5),
strip.text.x = element_text(size=rel(1), face="bold", colour = ln_clr),
strip.background = element_rect(colour = ln_clr, fill = bk_clr, size = 1),
axis.line.x= element_line(size = 1.25, colour = ln_clr),
axis.line.y= element_line(size = 1.25, colour = ln_clr),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_rect(fill = bk_clr),
panel.border = element_blank(),
plot.background = element_rect(fill = bk_clr))
bp4 <- ggplot(df[df$machine=="Machine2",], aes(x=clone, y=value)) +
geom_boxplot(coef=1, outlier.shape=NA, lwd=0.3) +
geom_point(size=1.8, alpha=0.9) +
ggtitle("Machine 2") +
expand_limits(y=c(0.001,10^5)) +
facet_wrap(~ donor, nrow=1, scales="free_x") + scale_y_log10(expand = c(0, 0)) +
theme(axis.text.x= element_text(size=rel(1), colour = ln_clr, angle=45, hjust=1),
panel.spacing = unit(0.25, "lines"), plot.title = element_text(hjust=0.5),
strip.text.x = element_text(size=rel(1), face="bold", colour = ln_clr),
strip.background = element_rect(colour = ln_clr, fill = bk_clr, size = 1),
axis.line.x= element_line(size = 1.25, colour = ln_clr),
axis.line.y= element_line(size = 1.25, colour = ln_clr),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_rect(fill = bk_clr),
panel.border = element_blank(),
plot.background = element_rect(fill = bk_clr))
bp5 <- ggplot(df[df$machine=="Machine3",], aes(x=clone, y=value)) +
geom_boxplot(coef=1, outlier.shape=NA, lwd=0.3) +
geom_point(size=1.8, alpha=0.9) +
ggtitle("Machine 3") +
expand_limits(y=c(0.001,10^5)) +
facet_wrap(~ donor, nrow=1, scales="free_x") + scale_y_log10(expand = c(0, 0)) +
theme(panel.spacing = unit(0.25, "lines"), axis.title.y= element_blank(),
axis.title.x= element_blank(),axis.line.y= element_blank(),
axis.text.y=element_blank(),
axis.text.x= element_text(size=rel(1), colour = ln_clr, angle=45, hjust=1),
axis.ticks.y=element_blank(), plot.title = element_text(hjust=0.5),
strip.text.x = element_text(size=rel(1), face="bold", colour = ln_clr),
strip.background = element_rect(colour = ln_clr, fill = bk_clr, size = 1),
axis.line.x= element_line(size = 1.25, colour = ln_clr),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_rect(fill = bk_clr),
panel.border = element_blank(),
plot.background = element_rect(fill = bk_clr))
bp6 <- ggplot(df[df$machine=="Machine4",], aes(x=clone, y=value)) +
geom_boxplot(coef=1, outlier.shape=NA, lwd=0.3) +
geom_point(size=1.8, alpha=0.9) +
ggtitle("Machine 4") +
expand_limits(y=c(0.001,10^5)) +
facet_wrap(~ donor, nrow=1, scales="free_x") + scale_y_log10(expand = c(0, 0)) +
theme(axis.text.x= element_text(size=rel(1), colour = ln_clr, angle=45, hjust=1),
panel.spacing = unit(0.25, "lines"), plot.title = element_text(hjust=0.5),
strip.text.x = element_text(size=rel(1), face="bold", colour = ln_clr),
strip.background = element_rect(colour = ln_clr, fill = bk_clr, size = 1),
axis.line.x= element_line(size = 1.25, colour = ln_clr),
axis.line.y= element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank(),
axis.title.y= element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_rect(fill = bk_clr),
panel.border = element_blank(),
plot.background = element_rect(fill = bk_clr))
# Plot all 4 graphs and saves them as a output file
png(filename="graph3.png", width= 9, height= 7.5, units = "in", res=600)
multiplot(bp3, bp4, bp5, bp6, cols=2)
dev.off()
Alternatively, if I set the "strip.text.x = " and the "strip.background =" as element_blank(). I can generate the below:
I have small data frame of statistical values obtained from different method. you can download from here.Dataset is look like this:
I need to facet (two plot side by side with same y axis labels) two plot of RMSE.SD and MB variable using ggplot2 package in R like the following example figure.
I wrote this code for plotting 1 plot for RMSE.SD variable.
library(ggplot2)
comparison_korea <- read.csv("comparison_korea.csv")
ggplot(data=comparison_korea, aes(R,X))+
geom_point(color = "black", pch=17, alpha=1,na.rm=T, size=4)+
labs(title = "", y = "")+
theme(plot.title= element_text(hjust = 0.5,size = 15, vjust = 0.5, face= c("bold")),
axis.ticks.length = unit(0.2,"cm") ,
panel.border = element_rect(colour = "black", fill=NA, size=0.5),
axis.text.x = element_text(angle = 0, vjust = 0.5, size = 14, hjust = 0.5,margin=margin(4,0,0,0), colour = "black"),
axis.text.y = element_text(angle = 0, vjust = 0.5, size = 14, hjust = 1,margin=margin(0,5,0,0), colour = "black"),
plot.margin = unit(c(1, 1.5, 1, 0.5), "lines"))
You should be able to do something like this:
library(ggplot2)
ds <- read.csv("comparison_korea.csv")
dat <- data.frame(labels = as.character(ds$X),
RMSE.SD = ds$RMSE.SD,
MB = ds$MB)
dat <- reshape2::melt(dat)
ggplot(dat, aes(y = labels, x = value)) +
geom_point(shape = "+", size = 5) +
facet_wrap(~variable) +
xlab("value / reference (mm)") +
ylab("") +
theme_bw()
I'm trying to plot a stacked bar graph in R using ggplot. I also want to include percentage in each piece of bars for that piece. I tried to follow the posts 1, 2, 3 but the values are not exactly in their respective blocks. My data is a file in dropbox.
My code is as follows:
f<-read.table("Input.txt", sep="\t", header=TRUE)
ggplot(data=f, aes(x=Form, y=Percentage, fill=Position)) +
geom_bar(stat="identity", colour="black") +
geom_text(position="stack", aes(x=Form, y=Percentage, ymax=Percentage, label=Percentage, hjust=0.5)) +
facet_grid(Sample_name ~ Sample_type, scales="free", space="free") +
opts(title = "Input_profile",
axis.text.x = theme_text(angle = 90, hjust = 1, size = 8, colour = "grey50"),
plot.title = theme_text(face="bold", size=11),
axis.title.x = theme_text(face="bold", size=9),
axis.title.y = theme_text(face="bold", size=9, angle=90),
panel.grid.major = theme_blank(),
panel.grid.minor = theme_blank()) +
scale_fill_hue(c=45, l=80)
ggsave("Output.pdf")
The output is-
Any help is greatly appreciated.
Thank you for your help and time!
I think you're using an older version of ggplot2. Because with your code modified for ggplot2 v 0.9.3, I get this:
p <- ggplot(data = df, aes(x = Form, y = Percentage, fill = Position))
p <- p + geom_bar(stat = "identity", colour = "black")
p <- p + geom_text(position = "stack", aes(x = Form, y = Percentage, ymax = Percentage, label = Percentage, hjust = 0.5))
p <- p + facet_grid(Sample_name ~ Sample_type, scales="free", space="free")
p <- p + theme(plot.title = element_text("Input_profile"),
axis.text.x = element_text(angle = 90, hjust = 1, size = 8, colour = "grey50"),
plot.title = element_text(face="bold", size=11),
axis.title.x = element_text(face="bold", size=9),
axis.title.y = element_text(face="bold", size=9, angle=90),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
p <- p + scale_fill_hue(c=45, l=80)
p
You see that the text objects are normally placed properly. There are places where the bars are just too short so that the numbers overlap. You can also play with the size parameter.
To rectify that, you could do something like this to add up the numbers by yourself.
df <- ddply(df, .(Form, Sample_type, Sample_name), transform,
cum.perc = Reduce('+', list(Percentage/2,cumsum(c(0,head(Percentage,-1))))))
p <- ggplot(data = df, aes(x = Form, y = Percentage, fill = Position))
p <- p + geom_bar(stat = "identity", colour = "black")
p <- p + geom_text(aes(x = Form, y = cum.perc, ymax = cum.perc, label = Percentage, hjust = 0.5), size=2.7)
p <- p + facet_grid(Sample_name ~ Sample_type, scales="free", space="free")
p <- p + theme(plot.title = element_text("Input_profile"),
axis.text.x = element_text(angle = 90, hjust = 1, size = 8, colour = "grey50"),
plot.title = element_text(face="bold", size=11),
axis.title.x = element_text(face="bold", size=9),
axis.title.y = element_text(face="bold", size=9, angle=90),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
p <- p + scale_fill_hue(c=45, l=80)
p
This gives:
Here a solution using barchart from lattice.
library(latticeExtra)
barchart(Percentage~Form|Sample_type*Sample_name,data=dat,
groups =Position,stack=T,
panel=function(...){
panel.barchart(...)
ll <- list(...)
keep <- !is.na(ll$groups[ll$subscripts])
x <- as.numeric(ll$x[keep])
y <- as.numeric(ll$y[keep])
groups <- as.numeric(factor(ll$groups)[ll$subscripts[keep]])
for (i in unique(x)) {
ok <- x == i
ord <- sort.list(groups[ok])
pos <- y[ok][ord] > 0
nok <- sum(pos, na.rm = TRUE)
h <- y[ok][ord][pos]
panel.text(x = rep(i, nok),y = cumsum(h)-0.5*h,
label = h,cex=1.5)
}
},
auto.key = list(columns = 5),
par.settings = ggplot2like(n = 5),
lattice.options = ggplot2like.opts())