How do I add a prefix to several variable names using dplyr? - r

I'm trying to add a common prefix to each of the variable names in a data.frame. For example, using the mtcars data, I could add the prefix "cars." using the following code:
> data(mtcars)
> names(mtcars)
[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs"
[9] "am" "gear" "carb"
> names(mtcars) <- paste0("cars.", names(mtcars))
> names(mtcars)
[1] "cars.mpg" "cars.cyl" "cars.disp" "cars.hp"
[5] "cars.drat" "cars.wt" "cars.qsec" "cars.vs"
[9] "cars.am" "cars.gear" "cars.carb"
However, I would like to do this as part of a piped operation (i.e., a series of functions strung together using %>%), using some of the dplyr syntax. It seems like some combination of rename and everything() should do the trick, but I don't know how to make it work. Does anyone have any ideas?

Indeed, you can use rename_ (NSE rename itself doesn’t work):
data %>% rename_(.dots = setNames(names(.), paste0('cars.', names(.))))
… but honestly, why? Just assigning names directly is shorter and more readable:
data %>% setNames(paste0('cars.', names(.)))

The latest solution (2020) seems to use rename_with, which is available in dplyr 1.0.0 and higher:
mtcars %>% rename_with(.fn = ~ paste0("Myprefix_", .x, "_Mypostfix")) -> mtcars.custom
Use the .cols = argument to specify a subset of variables, it defaults to everything().

For future readers, dplyr now can do this with the select_if, select_at, and select_all functions:
dplyr::select_all(mtcars, .funs = funs(paste0("cars.", .)))

Another dplyr solution:
I find it easiest with the dplyr rename_all, rename_at, rename_if which from v.1.0.4. have been superseded by rename_with...
Try this for renaming all column names:
mtcars %>% rename_all(function(x){paste0("cars.", x)}) # older dplyr versions
mtcars %>% rename_with(.cols = everything(), function(x){paste0("cars.", x)}) # v.1.0.4.
Try this for renaming "some" column names:
mtcars %>% rename_at(vars(hp:wt) ,function(x){paste0("cars.", x)}) # older dplyr versions
mtcars %>% rename_with(.cols = hp:wt, function(x){paste0("cars.", x)}) # v.1.0.4.

dplyr now expects lists and will throw a warning:
Warning message:
funs() is soft deprecated as of dplyr 0.8.0
Please use a list of either functions or lambdas:
# Simple named list:
list(mean = mean, median = median)
# Auto named with `tibble::lst()`:
tibble::lst(mean, median)
# Using lambdas
list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
you can solve this example as follows:
dplyr::select_all(mtcars, list(~ paste0("cars.", .)))
#> cars.mpg cars.cyl cars.disp cars.hp cars.drat cars.wt
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875
#> Datsun 710 22.8 4 108.0 93 3.85 2.320
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440
#> Valiant 18.1 6 225.0 105 2.76 3.460
#> Duster 360 14.3 8 360.0 245 3.21 3.570
#> Merc 240D 24.4 4 146.7 62 3.69 3.190
#> Merc 230 22.8 4 140.8 95 3.92 3.150
#> Merc 280 19.2 6 167.6 123 3.92 3.440
#> Merc 280C 17.8 6 167.6 123 3.92 3.440
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345
#> Fiat 128 32.4 4 78.7 66 4.08 2.200
#> Honda Civic 30.4 4 75.7 52 4.93 1.615
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780
#> cars.qsec cars.vs cars.am cars.gear cars.carb
#> Mazda RX4 16.46 0 1 4 4
#> Mazda RX4 Wag 17.02 0 1 4 4
#> Datsun 710 18.61 1 1 4 1
#> Hornet 4 Drive 19.44 1 0 3 1
#> Hornet Sportabout 17.02 0 0 3 2
#> Valiant 20.22 1 0 3 1
#> Duster 360 15.84 0 0 3 4
#> Merc 240D 20.00 1 0 4 2
#> Merc 230 22.90 1 0 4 2
#> Merc 280 18.30 1 0 4 4
#> Merc 280C 18.90 1 0 4 4
#> Merc 450SE 17.40 0 0 3 3
#> Merc 450SL 17.60 0 0 3 3
#> Merc 450SLC 18.00 0 0 3 3
#> Cadillac Fleetwood 17.98 0 0 3 4
#> Lincoln Continental 17.82 0 0 3 4
#> Chrysler Imperial 17.42 0 0 3 4
#> Fiat 128 19.47 1 1 4 1
#> Honda Civic 18.52 1 1 4 2
#> Toyota Corolla 19.90 1 1 4 1
#> Toyota Corona 20.01 1 0 3 1
#> Dodge Challenger 16.87 0 0 3 2
#> AMC Javelin 17.30 0 0 3 2
#> Camaro Z28 15.41 0 0 3 4
#> Pontiac Firebird 17.05 0 0 3 2
#> Fiat X1-9 18.90 1 1 4 1
#> Porsche 914-2 16.70 0 1 5 2
#> Lotus Europa 16.90 1 1 5 2
#> Ford Pantera L 14.50 0 1 5 4
#> Ferrari Dino 15.50 0 1 5 6
#> Maserati Bora 14.60 0 1 5 8
#> Volvo 142E 18.60 1 1 4 2
Created on 2019-07-31 by the reprex package (v0.3.0)

Related

Using a variable to select a column in case_when

I'd like to dynamically select the column to operate on in a case_when statement. Within dplyr, my usual go to is to wrap the column name variable in !!sym(). However, this doesn't seem to work with case_when(). I've also tried using ifelse() and if(){}else{} statements, but none seem to work with !!sym(). Any ideas?
Here's an example that doesn't work!
col = "cyl"
mtcars %>%
mutate(new_col = case_when(!!sym(col) == 6 ~ "Standard",
TRUE ~ "Sample"))
You could use .data with [[ to dynamically select the column you want like this:
library(dplyr)
col = "cyl"
mtcars %>%
mutate(new_col = case_when(.data[[col]] == 6 ~ "Standard",
TRUE ~ "Sample"))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#> new_col
#> Mazda RX4 Standard
#> Mazda RX4 Wag Standard
#> Datsun 710 Sample
#> Hornet 4 Drive Standard
#> Hornet Sportabout Sample
#> Valiant Standard
#> Duster 360 Sample
#> Merc 240D Sample
#> Merc 230 Sample
#> Merc 280 Standard
#> Merc 280C Standard
#> Merc 450SE Sample
#> Merc 450SL Sample
#> Merc 450SLC Sample
#> Cadillac Fleetwood Sample
#> Lincoln Continental Sample
#> Chrysler Imperial Sample
#> Fiat 128 Sample
#> Honda Civic Sample
#> Toyota Corolla Sample
#> Toyota Corona Sample
#> Dodge Challenger Sample
#> AMC Javelin Sample
#> Camaro Z28 Sample
#> Pontiac Firebird Sample
#> Fiat X1-9 Sample
#> Porsche 914-2 Sample
#> Lotus Europa Sample
#> Ford Pantera L Sample
#> Ferrari Dino Standard
#> Maserati Bora Sample
#> Volvo 142E Sample
Created on 2023-02-04 with reprex v2.0.2

Calculate row sums exclude the first n columns

I need to calculate row sums for a data frame except for the first 5 columns. The output will consist of these first 5 columns and the row sums.
I tried this:
df1$rowsums <- rowSums(df1[,-c(1:5)], na.rm= T)
But I get this error message:
Error in rowSums(df1[, c(1:5)], na.rm = T) : 'x' must be numeric
without data my guess is, that the columns you are using are not numeric. Then it will be hard to calculate the rowsum. Make sure, that columns you use for summing (except 1:5) are indeed numeric, then the following code should work:
library(tidyverse)
df2 <- df1[,-c(1:5)] %>%
rowwise() %>%
mutate(rowsum = sum(c_across(everything()), na.rm = T))
df_result <- cbind(df1[,c(1:5)], df2$rowsum)
EDIT: I added na.rm = T (dont know if necessary). And you might want to rename the resulting "df2$rowsum" column of the resulting df_result dataframe this can be done using
df_result <- df_result %>% rename(rowsum_name = "df2$rowsum")
You could select the columns except the first 5 by -c(1:5) and use rowSums like this (I use mtcars as an example):
library(dplyr)
mtcars %>%
mutate(rowsums = select(., -c(1:5)) %>%
rowSums(na.rm = TRUE))
#> mpg cyl disp hp drat wt qsec vs am gear carb rowsums
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 28.080
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 28.895
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 27.930
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 27.655
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 25.460
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 28.680
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 26.410
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 30.190
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 33.050
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 30.740
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 31.340
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 27.470
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 27.330
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 27.780
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 30.230
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 30.244
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 29.765
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 28.670
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 28.135
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 28.735
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 27.475
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 25.390
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 25.735
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 26.250
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 25.895
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 27.835
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 26.840
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 27.413
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 27.670
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 30.270
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 32.170
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 29.380
Created on 2022-07-09 by the reprex package (v2.0.1)

Parsing string as column name in dplyr

I need to pass a string as a column name using dplyr (code below). I can't get it to work. I've tried using [[name]] and .data[[name]] and this doesn't work. I need a solution specifically that allows me to rename a column as the string I've specified in the variable name.
colnames(mtcars) -> cols
rename_cols <- function(col) {
name = paste0(col, "_new") #I want to be able to parse this into the rename function below
mtcars %>%
rename(
name = col,
)
}
lapply(cols, rename_cols)
I would use a named vector instead of trying to mess around with the dplyr programming nuances. A benefit is that this method is already vectorized.
rename_cols <- function(col) {
name = paste0(col, "_new") #I want to be able to parse this into the rename function below
mtcars %>%
rename(setNames(col, name))
}
rename_cols(colnames(mtcars))
# mpg_new cyl_new disp_new hp_new drat_new wt_new qsec_new vs_new am_new gear_new carb_new
# Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
# Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
# Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
# Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
# Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
# Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
# ...
Edit
In this case, you might also find rename_with() to be what you need.
library(dplyr)
colnames(mtcars) -> cols
mtcars %>%
rename_with(~ paste0(., "_new"), any_of(cols))
# which is the same as the more concise but maybe less clear...
mtcars %>%
rename_with(paste0, any_of(cols), "_new")
Another option using some glue magic and the := assignment operator:
library(dplyr)
colnames(mtcars) -> cols
rename_cols <- function(col) {
name = paste0(col, "_new") #I want to be able to parse this into the rename function below
mtcars %>%
rename(
"{name}" := col,
)
}
lapply(cols, rename_cols)[1:2]
#> Note: Using an external vector in selections is ambiguous.
#> ℹ Use `all_of(col)` instead of `col` to silence this message.
#> ℹ See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
#> This message is displayed once per session.
#> [[1]]
#> mpg_new cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#>
#> [[2]]
#> mpg cyl_new disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
This seems like doing things the hard way: you can replace the whole code with:
mtcars %>% setNames(paste0(cols, "_new"))
Or, if you only want to rename some columns:
names(mtcars[cols]) <- paste0(names(mtcars[cols]), "_new")
If for some reason this isn't what you want, you can turn name into a symbol and use !!name :=
colnames(mtcars) -> cols
rename_cols <- function(col) {
name = paste0(col, "_new")
name <- rlang::ensym(name)
mtcars[col] %>%
rename(
!!name := all_of(col),
)
}
as.data.frame(lapply(cols, rename_cols))
#> mpg_new cyl_new disp_new hp_new drat_new wt_new qsec_new
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60
#> vs_new am_new gear_new carb_new
#> Mazda RX4 0 1 4 4
#> Mazda RX4 Wag 0 1 4 4
#> Datsun 710 1 1 4 1
#> Hornet 4 Drive 1 0 3 1
#> Hornet Sportabout 0 0 3 2
#> Valiant 1 0 3 1
#> Duster 360 0 0 3 4
#> Merc 240D 1 0 4 2
#> Merc 230 1 0 4 2
#> Merc 280 1 0 4 4
#> Merc 280C 1 0 4 4
#> Merc 450SE 0 0 3 3
#> Merc 450SL 0 0 3 3
#> Merc 450SLC 0 0 3 3
#> Cadillac Fleetwood 0 0 3 4
#> Lincoln Continental 0 0 3 4
#> Chrysler Imperial 0 0 3 4
#> Fiat 128 1 1 4 1
#> Honda Civic 1 1 4 2
#> Toyota Corolla 1 1 4 1
#> Toyota Corona 1 0 3 1
#> Dodge Challenger 0 0 3 2
#> AMC Javelin 0 0 3 2
#> Camaro Z28 0 0 3 4
#> Pontiac Firebird 0 0 3 2
#> Fiat X1-9 1 1 4 1
#> Porsche 914-2 0 1 5 2
#> Lotus Europa 1 1 5 2
#> Ford Pantera L 0 1 5 4
#> Ferrari Dino 0 1 5 6
#> Maserati Bora 0 1 5 8
#> Volvo 142E 1 1 4 2
Created on 2022-03-08 by the reprex package (v2.0.1)

How do I omit rows in a ggplot?

I have a dataframe and the top row contains the names of my variables. The following two rows are other information about the variables (questions asked in the survey, answer form), and then the fourth row begins the actual data from respondents. I want to generate a simple scatterplot, but I don't know how to omit the second and third rows. I'm assuming I can do this with filter, but I can't quite figure it out. The code I have is giving me an error saying it doesn't recognize the row names I'm using. Can anyone help with an example? Thank you!
COVID_survey_data %>%
filter(answer_form, respondent_id) %>%
ggplot(aes(q063, q064)) + geom_point()
The dplyr::slice function can be helpful in this situation
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
head(mtcars) # first 6 rows
#> mpg cyl disp hp drat wt qsec vs am
#> Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1
#> Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1
#> Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1
#> Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0
#> Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0
#> Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0
#> gear carb
#> Mazda RX4 4 4
#> Mazda RX4 Wag 4 4
#> Datsun 710 4 1
#> Hornet 4 Drive 3 1
#> Hornet Sportabout 3 2
#> Valiant 3 1
# Note the first two are Mazda RX
# assume you do not want these 2 rows in the dataset
dim(mtcars) # dimensions
#> [1] 32 11
slice(mtcars, 3:n()) # rows 3-32
#> mpg cyl disp hp drat wt qsec vs
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1
#> am gear carb
#> Datsun 710 1 4 1
#> Hornet 4 Drive 0 3 1
#> Hornet Sportabout 0 3 2
#> Valiant 0 3 1
#> Duster 360 0 3 4
#> Merc 240D 0 4 2
#> Merc 230 0 4 2
#> Merc 280 0 4 4
#> Merc 280C 0 4 4
#> Merc 450SE 0 3 3
#> Merc 450SL 0 3 3
#> Merc 450SLC 0 3 3
#> Cadillac Fleetwood 0 3 4
#> Lincoln Continental 0 3 4
#> Chrysler Imperial 0 3 4
#> Fiat 128 1 4 1
#> Honda Civic 1 4 2
#> Toyota Corolla 1 4 1
#> Toyota Corona 0 3 1
#> Dodge Challenger 0 3 2
#> AMC Javelin 0 3 2
#> Camaro Z28 0 3 4
#> Pontiac Firebird 0 3 2
#> Fiat X1-9 1 4 1
#> Porsche 914-2 1 5 2
#> Lotus Europa 1 5 2
#> Ford Pantera L 1 5 4
#> Ferrari Dino 1 5 6
#> Maserati Bora 1 5 8
#> Volvo 142E 1 4 2
slice(mtcars, 3:32) # rows 3-32
#> mpg cyl disp hp drat wt qsec vs
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1
#> am gear carb
#> Datsun 710 1 4 1
#> Hornet 4 Drive 0 3 1
#> Hornet Sportabout 0 3 2
#> Valiant 0 3 1
#> Duster 360 0 3 4
#> Merc 240D 0 4 2
#> Merc 230 0 4 2
#> Merc 280 0 4 4
#> Merc 280C 0 4 4
#> Merc 450SE 0 3 3
#> Merc 450SL 0 3 3
#> Merc 450SLC 0 3 3
#> Cadillac Fleetwood 0 3 4
#> Lincoln Continental 0 3 4
#> Chrysler Imperial 0 3 4
#> Fiat 128 1 4 1
#> Honda Civic 1 4 2
#> Toyota Corolla 1 4 1
#> Toyota Corona 0 3 1
#> Dodge Challenger 0 3 2
#> AMC Javelin 0 3 2
#> Camaro Z28 0 3 4
#> Pontiac Firebird 0 3 2
#> Fiat X1-9 1 4 1
#> Porsche 914-2 1 5 2
#> Lotus Europa 1 5 2
#> Ford Pantera L 1 5 4
#> Ferrari Dino 1 5 6
#> Maserati Bora 1 5 8
#> Volvo 142E 1 4 2
Created on 2020-05-19 by the reprex package (v0.3.0)
If you want to keep some rows out, you can use [] and use the minus simbol "-" to specify which row to "exclude".
Using your example, if you don't need the first 3 rows in COVID_survey_data:
COVID_survey_data[-c(1:3),] %>%
ggplot(aes(q063, q064)) + geom_point()
If you prefer the tidyverse way, you can use slice function
COVID_survey_data %>%
slice(-1:-3) %>%
ggplot(aes(q063, q064)) + geom_point()
Maybe this can help:
COVID_survey_data <- COVID_survey_data[complete.cases(COVID_survey_data),]

How to compare two columns with assertr

I want to assert that one column in my data is always greater than the other column using the assertr package. As an example let's day that mtcars mpg should always be greater than cyl. Here is what I've tried but it throws an error. Am I making a simple mistake?
library(assertr)
greater_than <- function(x, y){if(x <= y) return(FALSE)}
assert(mtcars, greater_than, x = mpg, y = cyl)
> Error in improper.predicate(x) : argument "y" is missing, with no default
I don't think you want assert - instead I think you want assert_rows. That means you need a row reduction function (takes a row and results in a single value) in addition to the predicate function. Here the reduction function just finds the difference between the first two columns of a data frame. Then the last argument in assert_rows tells it to essentially use a data frame only consisting of mpg and cyl (in that order) for passing to the row reduction function.
I will say, the documentation is not great for this package. I had to go to their GitHub and then consult the code of assert_rows directly to come up with this answer.
library(assertr)
greater_than_0 <- function(x){if(x <= 0) return(FALSE)}
row_redux <- function(df){df[[1]] - df[[2]]}
assert_rows(mtcars, row_redux, greater_than_0, c(mpg, cyl))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Created on 2019-09-17 by the reprex package (v0.3.0)

Resources