I've gotten fairly good with the *apply family of functions, and I've recently learned to use the do.call("rbind", by(... as a wrapper for tapply. I'm working with a large data set (Compustat) and I have a function (see below) that generates a new column of lagged variables which I later attach to the main data frame df.
My problem is that it is extremely slow. I create about two dozen lagged variables, and the processing in this function takes approximately 1.5 hours because there are 350,000+ firm-year observations in the data set.
Can anyone help improve the speed of this function without losing the aspects that I find desirable:
#' lag vector of unknown size (for do.call-rbind-by: using datadate to track)
lag.vec <- function(x){
x <- x[order(x$datadate), ] # sort data into ascending by date
var <- x[,2] # the specific variable name in data.frame x hereby ignored
var.name <- paste(names(x)[2], "lag", sep = '.') # keep variable name
if(length(var)>1){ # no lagging if single observation
lagged <- c(NA, var[1:(length(var)-1)])
datelag <- c(x$datadate[1], x$datadate[1:(length(x$datadate) - 1)])
datediff <- x$datadate - datelag
y <- data.frame(x$datadate, datediff, lagged) # join lagged variable and difference in YYYYMMDD data
y$lagged[y$datediff >= 20000 & !is.na(y$datediff)] <- NA # 2 or more full years difference
y <- y[, c('x.datadate', 'lagged')]
names(y) <- c("datadate", var.name)
} else { y <- c(x$datadate[1], NA); names(y) <- c("datadate", var.name) }
return(y)
}
I then call this function in a command separately for each variable that I want to generate a lagged series for (here I use the ni variable as an example):
ni_lag <- do.call('rbind', by(df[ , c('datadate', 'ni')], df$gvkey, lag.vec))
where gvkey is the ID number for the particular firm and datadate is an 8-digit integer of the form YYYYMMDD.
The approach was much faster when I used a simpler function:
lag.vec.seq <- function(x){#' lag vector when all data points are present, in order
if(length(x)>1){
y <- c(NA, x[1:(length(x)-1)])
} else {y <- NA}
return(y)
}
along with the tapply command in something like
ni_lag <- as.vector(unlist(tapply(df$ni, df$gvkey, lag.vec.seq)))
As you can see the main difference is that the tapply approach doesn't include any datadate information and so the function assumes that all data are sequential (i.e., there are no missing years in the dataframe). Since I know there are missing years, I built the do.call-by function to account for that.
Some notes:
1) The first order command in the function is probably unnecessary since my data is ordered by gvkey and datadate in advance (e.g. df <- df[order(df$gvkey, df$datadate), ]). However, I'm always a bit afraid that R messies up my row ordering when I use functional programming like this. Is that an unfounded fear?
2) Identifying what is slowing down the processing would be very helpful. Is it the renaming of variables? The creation of a new data frame in the function? Or is the do.call with by just typically (much) slower than tapply?
Thank you!
Related
I'm trying to store p values from a long nested for loop into an empty column in a data frame. I've tried looking up examples close to my code, but I feel as though my code is really long (and maybe even incorrect) that the same things that can be applied to other for loops can't be applied to mine.
The overview of what I'm trying to do is I'm trying to compare the relatedness of observed paired birds to the relatedness of all possible paired birds in a given year by finding a p value. To do this, I'm writing a for loop where I am selecting a range of years from a huge data set, and then I am applying a bunch of functions to those given years where I'm trying to narrow down the data for observed pairs and then I'm adding a column for relatedness and transferring those relatedness values for the pairs from another data set. I am then applying another for loop function within this in order to create a data frame with all possible paired birds in that given year and also adding and transferring a column of relatedness values for the pairs. From these two data frames of pairs and relatedness within each year, I want to apply the wilcox test to find the p value for each given year. I want to transfer over these p values into a separate data frame that I have created with a year column and a p value column.
Here is my (crazy looking) code:
`year <- c(2000:2013)
pvalue <- c(NA)
results <- data.frame(year, pvalue)
for(j in c(2000:2013)) {
allbr_demo_noEPP_year <- subset(allbr_demo_noEPP, Year == j)
allbr_demo_noEPP_year_geno_obs <- allbr_demo_noEPP_year[allbr_demo_noEPP_year$Pairs %in% c(genome$pair1,genome$pair2),]
allbr_demo_noEPP_year_geno_obs$relatedness <- laply(allbr_demo_noEPP_year_geno_obs$Pairs, function(x) genome[genome$pair1==x|genome$pair2==x,'PI_HAT'])
allbr_demo_noEPP_year_geno <- allbr_demo_noEPP_year[c(allbr_demo_noEPP_year$MB_USFWS,allbr_demo_noEPP_year$FB_USFWS) %in% genotyped$V2,]
breeder_list_males <- allbr_demo_noEPP_year_geno_obs[,8]
breeder_list_females <- allbr_demo_noEPP_year_geno_obs[,10]
unq_breeder_list_males <- unique(breeder_list_males)
unq_breeder_list_females <- unique(breeder_list_females)
all_poss_combo <-list()
for(i in unq_breeder_list_males){
print(i)
all_poss_combo[[i]]<-paste0(i, ",", unq_breeder_list_females)}
lapply(X = all_poss_combo, FUN= function(x) length(unique(x)))
all_poss_df<-unlist(all_poss_combo, use.names = F)
all_poss_df <- data.frame("combo"=all_poss_df, "M"=NA, "F"=NA)
all_poss_df$M <- substr(all_poss_df$combo, start = 1, stop = 10)
all_poss_df$F <- substr(all_poss_df$combo, start = 12, stop = 22)
all_poss_df_geno <- all_poss_df[all_poss_df$combo %in% c(genome$pair1,genome$pair2),]
all_poss_df_geno$relatedness <- laply(all_poss_df_geno$combo, function(x) genome[genome$pair1==x|genome$pair2==x,'PI_HAT'])
wilcox.test(allbr_demo_noEPP_year_geno_obs$relatedness, all_poss_df_geno$relatedness, alternative='greater')}`
To be honest, I'm not even sure if this for loop will work (it seems pretty complex to me, but I am a beginner), but I was told that doing a for loop for this situation should work. I understand there are probably easier or faster ways to do what I am trying to do, which I also welcome, but I would also like to see how I could fix this for loop so it would work and how I could store the results from it into a data frame.
Thank you so much for any help given!
If you are simply looking to save the p value:
str(wilcox.test(rnorm(10), rnorm(10, 2))) # example from running ?Wilcox.test
wilcox.test(rnorm(10), rnorm(10, 2))$p.value #
So with your dataset, perhaps putting this in the bottom of your for loop:
pvalue[j] <- wilcox.test(allbr_demo_noEPP_year_geno_obs$relatedness,
all_poss_df_geno$relatedness, alternative='greater')$p.value
I have a data.table where I have few customers,some day value and pay_day value .
pay_day is a vector of length 5 for each customer and it consists of day values
I want to check each day value with the pay_day vector whether the day is part of the pay_day
Here is a dummy data for this (pardon for the messy way to create the data ) could not think of a better way atm
customers <- c("179288" ,"146506" ,"202287","16207","152979","14421","41395","199103","183467","151902")
mdays <- 1:31
set.seed(1)
data <- sort(rep(customers,100))
days <- sample(mdays,1000,replace=T)
xyz <- cbind(data,days)
x <- vector(length=1000L)
j <- 1
for( i in 1:10){
set.seed(i) ## I wanted diff dates to be picked
m <- sample(mdays,5)
while(j <=100*i){
x[j] <- paste(m,collapse = ",")
j <- j+1
}
}
xyz <- cbind(xyz,x)
require(data.table)
my_data <- setDT(as.data.frame(xyz))
setnames(my_data, c("cust","days","pay_days"))
my_data[,pay:=runif(1000,min = 0,max=10000)]
Now I want for each cust the vector of pays which happens in pay_days.
i have tried various ways but cant seem to figure it out , my initial thought is to create a flag based if days is a subset of pay_days and then take the pays according to the flag
my_data[,ifelse(grepl(days,pay_days),1,0),cust]
this does not work as I expect it to . I dont want to use a native loop as the
actual data is huge .
Using tidyr to split the pay_days column into and then checking if days is in pay_days:
library(tidyr)
library(dplyr)
# creating long-form data
tidier <- my_data %>%
mutate(pay_days = strsplit(as.character(pay_days), ",")) %>%
unnest(pay_days)
# casting as numeric to make factor & character columns comparable
tidier[, days := as.numeric(days)]
tidier[, pay_days := as.numeric(pay_days)]
tidier[days == pay_days, pay, by=cust]
Not sure how this performs for large data, as you multiply your table length by the number of days in pay_days...
Side note: I can't comment yet, but to replicate your data one needs to add library(data.table) and initialize x x<-vector() which is otherwise not found, as Dee also points out.
Another one-liner approach using the data table:
my_data[,result:=sum(unlist(lapply(strsplit(as.character(pay_days),","),match,days)),na.rm=T)>0,by=1:nrow(my_data)]
I am currently trying to use plyr + reshape2 to proccess my data, but it is taking a lot of time.
I have a dataframe (df) with 3 columns: network, user_id and date.
My goal is:
To split df in 2 levels (network and user_id);
apply a function (get_interval) in each split;
bind the results in another dataframe (df2).
get_interval returns a vector of the same length as the number of rows of the input.
Thus, df2 has the same size of df, but with the results computed by get_interval.
The problem is that I cannot use ddply directly, since it only handles vectors of equal length and the results of the function have varied length.
I came up with this solution:
aux <- melt(dlply(df,.(network,user_id), get_interval))
df2 <- cbind(interval=aux$value,colsplit(aux$L1,"\\.",names=c("network","user_id")))
But it is very inefficient, and since df is quite big I waste hours every time I have to run it.
Is there a way of doing this more efficiently?
EDIT
The basic operation of get_interval is as follows:
get_interval <- function(df){
if(nrow(df) < 2)
return (NA)
x <- c(NA,df$date[-1] - df$date[-nrow(df)])
return(x) ## ceiling wont work because some intervals are 0.
}
It is possible to generate this data artificially with:
n <- 1000000
ref_time <- as.POSIXct("2013-12-17 00:00:00")
interval_range <- 86400*10 # 10 days
df <- data.frame(user_id=floor(runif(n,1,n/10)),
network=gl(2,n,labels=c("anet","unet")),
value=as.POSIXct(ref_time - runif(n,0,interval_range)))
Supposing I need to apply an MA(5) to a batch of market data, stored in an xts object. I can easily pull the subset of data I wanted smoothed with xts subsetting:
x['2013-12-05 17:00:01/2013-12-06 17:00:00']
However, I need an additional 5 observations prior to the first one in my subset to "prime" the filter. Is there an easy way to do this?
The only thing I have been able to figure out is really ugly, with explicit row numbers (here using xts sample data):
require(xts)
data(sample_matrix)
x <- as.xts(sample_matrix)
x$rn <- row(x[,1])
frst <- first(x['2007-05-18'])$rn
finl <- last(x['2007-06-09'])$rn
ans <- x[(frst-5):finl,]
Can I just say bleah? Somebody help me.
UPDATE: by popular request, a short example that applies an MA(5) to the daily data in sample_matrix:
require(xts)
data(sample_matrix)
x <- as.xts(sample_matrix)$Close
calc_weights <- function(x) {
##replace rnorm with sophisticated analysis
wgts <- matrix(rnorm(5,0,0.5), nrow=1)
xts(wgts, index(last(x)))
}
smooth_days <- function(x, wgts) {
w <- wgts[index(last(x))]
out <- filter(x, w, sides=1)
xts(out, index(x))
}
set.seed(1.23456789)
wgts <- apply.weekly(x, calc_weights)
lapply(split(x, f='weeks'), smooth_days, wgts)
For brevity, only the final week's output:
[[26]]
[,1]
2007-06-25 NA
2007-06-26 NA
2007-06-27 NA
2007-06-28 NA
2007-06-29 -9.581503
2007-06-30 -9.581208
The NAs here are my problem. I want to recalculate my weights for each week of data, and apply those new weights to the upcoming week. Rinse, repeat. In real life, I replace the lapply with some ugly stuff with row indexes, but I'm sure there's a better way.
In an attempt to define the problem clearly, this appears to be a conflict between the desire to run an analysis on non-overlapping time periods (weeks, in this case) but requiring overlapping time periods of data (2 weeks, in this case) to perform the calculation.
Here's one way to do this using endpoints and a for loop. You could still use the which.i=TRUE suggestion in my comment, but integer subsetting is faster.
y <- x*NA # pre-allocate result
ep <- endpoints(x,"weeks") # time points where parameters change
set.seed(1.23456789)
for(i in seq_along(ep)[-(1:2)]) {
rng1 <- ep[i-1]:ep[i] # obs to calc weights
rng2 <- ep[i-2]:ep[i] # "prime" obs
wgts <- calc_weights(x[rng1])
# calc smooth_days on rng2, but only keep rng1 results
y[rng1] <- smooth_days(x[rng2], wgts)[index(x[rng1])]
}
Update: My NOAA GHCN-Daily weather station data functions have since been cleaned and merged into the rnoaa package, available on CRAN or here: https://github.com/ropensci/rnoaa
I'm designing a R function to calculate statistics across a data set comprised of multiple data frames. In short, I want to pull data frames by class based on a reference data frame containing the names. I then want to apply statistical functions to values for the metrics listed for each given day. In effect, I want to call and then overlay a list of data frames to calculate functions on a vector of values for every unique date and metric where values are not NA.
The data frames are iteratively read into the workspace from file based on a class variable, using the 'by' function. After importing the files for a given class, I want to rbind() the data frames for that class and each user-defined metric within a range of years. I then want to apply a concatenation of user-provided statistical functions to each metric within a class that corresponds to a given value for the year, month, and day (i.e., the mean [function] low temperature [class] on July 1st, 1990 [date] reported across all locations [data frames] within a given region [class]. I want the end result to be new data frames containing values for every date within a region and a year range for each metric and statistical function applied. I am very close to having this result using the aggregate() function, but I am having trouble getting reasonable results out of the aggregate function, which is currently outputting NA and NaN for most functions other than the mean temperature. Any advice would be much appreciated! Here is my code thus far:
# Example parameters
w <- c("mean","sd","scale") # Statistical functions to apply
x <- "C:/Data/" # Folder location of CSV files
y <- c("MaxTemp","AvgTemp","MinTemp") # Metrics to subset the data
z <- c(1970:2000) # Year range to subset the data
CSVstnClass <- data.frame(CSVstations,CSVclasses)
by(CSVstnClass, CSVstnClass[,2], function(a){ # Station list by class
suppressWarnings(assign(paste(a[,2]),paste(a[,1]),envir=.GlobalEnv))
apply(a, 1, function(b){ # Data frame list, row-wise
classData <- data.frame()
sapply(y, function(d){ # Element list
CSV_DF <- read.csv(paste(x,b[2],"/",b[1],".csv",sep="")) # Read in CSV files as data frames
CSV_DF1 <- CSV_DF[!is.na("Value")]
CSV_DF2 <- CSV_DF1[which(CSV_DF1$Year %in% z & CSV_DF1$Element == d),]
assign(paste(b[2],"_",d,sep=""),CSV_DF2,envir=.GlobalEnv)
if(nrow(CSV_DF2) > 0){ # Remove empty data frames
classData <<- rbind(classData,CSV_DF2) # Bind all data frames by row for a class and element
assign(paste(b[2],"_",d,"_bound",sep=""),classData,envir=.GlobalEnv)
sapply(w, function(g){ # Function list
# Aggregate results of bound data frame for each unique date
dataFunc <- aggregate(Value~Year+Month+Day+Element,data=classData,FUN=g,na.action=na.pass)
assign(paste(b[2],"_",d,"_",g,sep=""),dataFunc,envir=.GlobalEnv)
})
}
})
})
})
I think I am pretty close, but I am not sure if rbind() is performing properly, nor why the aggregate() function is outputting NA and NaN for so many metrics. I was concerned that the data frames were not being bound together or that missing values were not being handled well by some of the statistical functions. Thank you in advance for any advice you can offer.
Cheers,
Adam
You've tackled this problem in a way that makes it very hard to debug. I'd recommend switching things around so you can more easily check each step. (Using informative variable names also helps!) The code is unlikely to work as is, but it should be much easier to work iteratively, checking that each step has succeeded before continuing to the next.
paths <- dir("C:/Data/", pattern = "\\.csv$")
# Read in CSV files as data frames
raw <- lapply(paths, read.csv, str)
# Extract needed rows
filter_metrics <- c("MaxTemp", "AvgTemp", "MinTemp")
filter_years <- 1970:2000
filtered <- lapply(raw, subset,
!is.na(Value) & Year %in% filter_years & Element %in% filter_metrics)
# Drop any empty data frames
rows <- vapply(filtered, nrow, integer(1))
filtered <- filtered[rows > 0]
# Compute aggregates
my_aggregate <- function(df, fun) {
aggregate(Value ~ Year + Month + Day + Element, data = df, FUN = fun,
na.action = na.pass)
}
means <- lapply(filtered, my_aggregate, mean)
sds <- lapply(filtered, my_aggregate, sd)
scales <- lapply(filtered, my_aggregate, scale)