Issue: ggplot2 replicates last plot of a list in grid - r

I have some 16 plots. I want to plot all of these in grid manner with ggplot2. But, whenever I plot, I get a grid with all the plots same, i.e, last plot saved in a list gets plotted at all the 16 places of grid. To replicate the same issue, here I am providing a simple example with two files. Although data are entirely different, but plots drawn are similar.
library(ggplot2)
library(grid)
library(gridExtra)
library(scales)
set.seed(1006)
date1<- as.POSIXct(seq(from=1443709107,by=3600,to=1446214707),origin="1970-01-01")
power <- rnorm(length(date1),100,5)#with normal distribution
write.csv(data.frame(date1,power),"file1.csv",row.names = FALSE,quote = FALSE)
# Now another dataset with uniform distribution
write.csv(data.frame(date1,power=runif(length(date1))),"file2.csv",row.names = FALSE,quote = FALSE)
path=getwd()
files=list.files(path,pattern="*.csv")
plist<-list()# for saving intermediate ggplots
for(i in 1:length(files))
{
dframe<-read.csv(paste(path,"/",files[i],sep = ""),head=TRUE,sep=",")
dframe$date1= as.POSIXct(dframe$date1)
plist[[i]]<- ggplot(dframe)+aes(dframe$date1,dframe$power)+geom_line()
}
grid.arrange(plist[[1]],plist[[2]],ncol = 1,nrow=2)

You need to remove the dframe from your call to aes. You should do that anyway because you have provided a data-argument. In this case it's even more important because while you save the ggplot-object, things don't get evaluated until the call to plot/grid.arrange. When you do that, it looks at the current value of dframe, which is the last dataset in your iteration.
You need to plot with:
ggplot(dframe)+aes(date1,power)+geom_line()

Related

Represent a colored polygon in ggplot2

I am using the statspat package because I am working on spatial patterns.
I would like to do in ggplot and with colors instead of numbers (because it is not too readable),
the following graph, produced with the plot.quadratest function: Polygone
The numbers that interest me for the intensity of the colors are those at the bottom of each box.
The test object contains the following data:
Test object
I have looked at the help of the function, as well as the code of the function but I still cannot manage it.
Ideally I would like my final figure to look like this (maybe not with the same colors haha):
Final object
Thanks in advance for your help.
Please provide a reproducible example in the future.
The package reprex may be very helpful.
To use ggplot2 for this my best bet would be to convert
spatstat objects to sf and do the plotting that way,
but it may take some time. If you are willing to use base
graphics and spatstat you could do something like:
library(spatstat)
# Data (using a built-in dataset):
X <- unmark(chorley)
plot(X, main = "")
# Test:
test <- quadrat.test(X, nx = 4)
# Default plot:
plot(test, main = "")
# Extract the the `quadratcount` object (regions with observed counts):
counts <- attr(test, "quadratcount")
# Convert to `tess` (raw regions with no numbers)
regions <- as.tess(counts)
# Add residuals as marks to the tessellation:
marks(regions) <- test$residuals
# Plot regions with marks as colors:
plot(regions, do.col = TRUE, main = "")

Set common y axis limits from a list of ggplots

I am running a function that returns a custom ggplot from an input data (it is in fact a plot with several layers on it). I run the function over several different input data and obtain a list of ggplots.
I want to create a grid with these plots to compare them but they all have different y axes.
I guess what I have to do is extract the maximum and minimum y axes limits from the ggplot list and apply those to each plot in the list.
How can I do that? I guess its through the use of ggbuild. Something like this:
test = ggplot_build(plot_list[[1]])
> test$layout$panel_scales_x
[[1]]
<ScaleContinuousPosition>
Range:
Limits: 0 -- 1
I am not familiar with the structure of a ggplot_build and maybe this one in particular is not a standard one as it comes from a "custom" ggplot.
For reference, these plots are created whit the gseaplot2 function from the enrichplot package.
I dont know how to "upload" an R object but if that would help, let me know how to do it.
Thanks!
edit after comments (thanks for your suggestions!)
Here is an example of the a gseaplot2 plot. GSEA stands for Gene Set Enrichment Analysis, it is a technique used in genomic studies. The gseaplot2 function calculates a running average and then plots it and another bar plot on the bottom.
and here is the grid I create to compare the plots generated from different data:
I would like to have a common scale for the "Running Enrichment Score" part.
I guess I could try to recreate the gseaplot2 function and input all of the datasets and then create the grid by facet_wrap, but I was wondering if there was an easy way of extracting parameters from a plot list.
As a reproducible example (from the enrichplot package):
library(clusterProfiler)
data(geneList, package="DOSE")
gene <- names(geneList)[abs(geneList) > 2]
wpgmtfile <- system.file("extdata/wikipathways-20180810-gmt-Homo_sapiens.gmt", package="clusterProfiler")
wp2gene <- read.gmt(wpgmtfile)
wp2gene <- wp2gene %>% tidyr::separate(term, c("name","version","wpid","org"), "%")
wpid2gene <- wp2gene %>% dplyr::select(wpid, gene) #TERM2GENE
wpid2name <- wp2gene %>% dplyr::select(wpid, name) #TERM2NAME
ewp2 <- GSEA(geneList, TERM2GENE = wpid2gene, TERM2NAME = wpid2name, verbose=FALSE)
gseaplot2(ewp2, geneSetID=1, subplots=1:2)
And this is how I generate the plot list (probably there is a much more elegant way):
plot_list = list()
for(i in 1:3) {
fig_i = gseaplot2(ewp2,
geneSetID=i,
subplots=1:2)
plot_list[[i]] = fig_i
}
ggarrange(plotlist=plot_list)

Using multiple datasets for one graph

I have 2 csv data files. Each file has a "date_time" column and a "temp_c" column. I want to make the x-axis have the "date_time" from both files and then use 2 y-axes to display each "temp_c" with separate lines. I would like to use plot instead of ggplot2 if possible. I haven't been able to find any code help that works with my data and I'm not sure where to really begin. I know how to do 2 separate plots for these 2 datasets, just not combine them into one graph.
plot(grewl$temp_c ~ grewl$date_time)
and
plot(kbll$temp_c ~ kbll$date_time)
work separately but not together.
As others indicated, it is easy to add new data to a graph using points() or lines(). One thing to be careful about is how you format the axes as they will not be automatically adjusted to fit any new data you input using points() and the like.
I've included a small example below that you can copy, paste, run, and examine. Pay attention to why the first plot fails to produce what you want (axes are bad). Also note how I set this example up generally - by making fake data that showcase the same "problem" you are having. Doing this is often a better strategy than simply pasting in your data since it forces you to think about the core component of the problem you are facing.
#for same result each time
set.seed(1234)
#make data
set1<-data.frame("date1" = seq(1,10),
"temp1" = rnorm(10))
set2<-data.frame("date2" = seq(8,17),
"temp2" = rnorm(10, 1, 1))
#first attempt fails
#plot one
plot(set1$date1, set1$temp1, type = "b")
#add points - oops only three showed up bc the axes are all wrong
lines(set2$date2, set2$temp2, type = "b")
#second attempt
#adjust axes to fit everything (set to min and max of either dataset)
plot(set1$date1, set1$temp1,
xlim = c(min(set1$date1,set2$date2),max(set1$date1,set2$date2)),
ylim = c(min(set1$temp1,set2$temp2),max(set1$temp1,set2$temp2)),
type = "b")
#now add the other points
lines(set2$date2, set2$temp2, type = "b")
# we can even add regression lines
abline(reg = lm(set1$temp1 ~ set1$date1))
abline(reg = lm(set2$temp2 ~ set2$date2))

Assigning "beanplot" object to variable in R

I have found that the beanplot is the best way to represent my data. I want to look at multiple beanplots together to visualize my data. Each of my plots contains 3 variables, so each one looks something like what would be generated by this code:
library(beanplot)
a <- rnorm(100)
b <- rnorm(100)
c <- rnorm(100)
beanplot(a, b ,c ,ylim = c(-4, 4), main = "Beanplot",
col = c("#CAB2D6", "#33A02C", "#B2DF8A"), border = "#CAB2D6")
(Would have just included an image but my reputation score is not high enough, sorry)
I have 421 of these that I want to put into one long PDF (EDIT: One plot per page is fine, this was just poor wording on my part). The approach I have taken was to first generate the beanplots in a for loop and store them in a list at each iteration. Then I will use the multiplot function (from the R Cookbook page on multiplot) to display all of my plots on one long column so I can begin my analysis.
The problem is that the beanplot function does not appear to be set up to assign plot objects as a variable. Example:
library(beanplot)
a <- rnorm(100)
b <- rnorm(100)
plot1 <- beanplot(a, b, ylim = c(-5,5), main = "Beanplot",
col = c("#CAB2D6", "#33A02C", "#B2DF8A"), border = "#CAB2D6")
plot1
If you then type plot1 into the R console, you will get back two of the plot parameters but not the plot itself. This means that when I store the plots in the list, I am unable to graph them with multiplot. It will simply return the plot parameters and a blank plot.
This behavior does not seem to be the case with qplot for example which will return a plot when you recall the stored plot. Example:
library(ggplot2)
a <- rnorm(100)
b <- rnorm(100)
plot2 <- qplot(a,b)
plot2
There is no equivalent to the beanplot that I know of in ggplot. Is there some sort of workaround I can use for this issue?
Thank you.
You can simply open a PDF device with pdf() and keep the default parameter onefile=TRUE. Then call all your beanplot()s, one after the other. They will all be in one PDF document, each one on a separate page. See here.

Clearing plotted points in R

I am trying to use the animation package to generate an "evolving" plot of points on a map. The map is generated from shapefiles (from the readShapeSpatial/readShapeLines functions).
The problem is when it's plotted in a for loop, the result is additive, whereas the ideal result is to have it evolve.
Are there ways of using par() that I am missing?
My question is: is there a way to clear just the points ploted from the points function
and not clearing the entire figure thus not having to regraph the shapefiles?
in case someone wants to see code:
# plotting underlying map
newyork <- readShapeSpatial('nycpolygon.shp')
routes <- readShapeLines('nyc.shp')
par(bg="grey25")
plot(newyork, lwd=2, col ="lightgray")
plot(routes,add=TRUE,lwd=0.1,col="lightslategrey")
# plotting points and save to GIF
ani.options(interval=.05)
saveGIF({
par(bg="grey25")
# Begin loop
for (i in 13:44){
infile <-paste("Week",i,".csv",sep='')
mydata <-read.csv(file = infile, header = TRUE, sep=",")
plotvar <- Var$Para
nclr <- 4
plotclr <-brewer.pal(nclr,"RdPu")
class<- classIntervals(plotvar,nclr,style = "pretty")
colcode <- findColours(class,plotclr)
points(Var$Lon,Var$Lat,col=colcode)
}
})
If you can accept a residual shadow or halo of ink, you can over-plot with color ="white" or == to your background choices. We cannot access your shape file but you can try it out by adding this line:
points(Var$Lon, Var$Lat, col="grey25")
It may leave gaps in other previously plotted figures or boundaries, because it's definitely not object-oriented. The lattice and ggplot2 graphics models are more object oriented, so if you want to post a reproducible example, that might be an alternate path to "moving" forward. I seem to remember that the rgl package has animation options in its repetoire.

Resources