In order to use the treemap function on googleVis, data needs to be flattened into two columns. Using their example:
> library(googleVis)
> Regions
Region Parent Val Fac
1 Global <NA> 10 2
2 America Global 2 4
3 Europe Global 99 11
4 Asia Global 10 8
5 France Europe 71 2
6 Sweden Europe 89 3
7 Germany Europe 58 10
8 Mexico America 2 9
9 USA America 38 11
10 China Asia 5 1
11 Japan Asia 48 11
However, in the real world this information more frequently looks like this:
> a <- data.frame(
+ scal=c("Global", "Global", "Global", "Global", "Global", "Global", "Global"),
+ cont=c("Europe", "Europe", "Europe", "America", "America", "Asia", "Asia"),
+ country=c("France", "Sweden", "Germany", "Mexico", "USA", "China", "Japan"),
+ val=c(71, 89, 58, 2, 38, 5, 48),
+ fac=c(2,3,10,9,11,1,11))
> a
scal cont country val fac
1 Global Europe France 71 2
2 Global Europe Sweden 89 3
3 Global Europe Germany 58 10
4 Global America Mexico 2 9
5 Global America USA 38 11
6 Global Asia China 5 1
7 Global Asia Japan 48 11
But how to most efficiently change transform this data?
If we use dplyr, this script will transform the data correctly:
library(dplyr)
cbind(NA,a %>% group_by(scal) %>% summarize(val=sum(val),fac=sum(fac))) -> topLev
names(topLev) <- c("Parent","Region","val","fac")
a %>% group_by(scal,cont) %>% summarize(val=sum(val),fac=sum(fac)) %>%
select(Region=cont,Parent=scal,val,fac) -> midLev
a[,2:5] %>% select(Region=country,Parent=cont,val,fac) -> bottomLev
bind_rows(topLev,midLev,bottomLev) %>% select(2,1,3,4) -> answer
We can verify this by comparing dataframes:
> answer
Source: local data frame [11 x 4]
Region Parent val fac
1 Global NA 311 47
2 America Global 40 20
3 Asia Global 53 12
4 Europe Global 218 15
5 France Europe 71 2
6 Sweden Europe 89 3
7 Germany Europe 58 10
8 Mexico America 2 9
9 USA America 38 11
10 China Asia 5 1
11 Japan Asia 48 11
> Regions
Region Parent Val Fac
1 Global <NA> 10 2
2 America Global 2 4
3 Europe Global 99 11
4 Asia Global 10 8
5 France Europe 71 2
6 Sweden Europe 89 3
7 Germany Europe 58 10
8 Mexico America 2 9
9 USA America 38 11
10 China Asia 5 1
11 Japan Asia 48 11
Interesting that the summaries for the continents and the globe aren't the sum of their components (or min/max/ave/mean/normalized...)
Related
Below is how my code and dataframe looks like.
#Get country counts
countries <- as.data.frame(table(na.omit(co_df$country)))
print(countries)
Var1 Freq
1 Austria 6
2 Canada 4
3 France 1
4 Germany 23
5 India 17
6 Italy 1
7 Russia 2
8 Sweden 1
9 UK 2
10 USA 10
I would like to add 4 new rows to the above countries data frame such that it looks like the below:
Var1 Freq
1 Austria 6
2 Canada 4
3 France 1
4 Germany 23
5 India 17
6 Italy 1
7 Russia 2
8 Sweden 1
9 UK 2
10 USA 10
11 Uruguay 25
12 Saudi Arabia 19
13 Japan 11
14 Australia 10
I performed the below rbind function but it gave me an error; I also tried merge(countries, Addcountries, by = Null) and the as.data.frame function but these too gave me errors.
Addcountries <- data.frame(c(11, 12, 13, 14), c("Uruguay", "Saudi Arabia", "Japan", "Australia"), c("25", "19", "11", "10"))
names(Addcountries) <- c("Var1", "Freq")
countries2 <- rbind(countries, Addcountries)
print(countries2)
This is likely a silly issue but I would appreciate any help here since I'm new to R.
you may also use dplyr::add_row()
countries %>% add_row(Var1 = c("Uruguay", "Saudi Arabia", "Japan", "Australia"),
Freq = c(25, 19, 11, 10))
check it
countries <- read.table(text = " Var1 Freq
Austria 6
Canada 4
France 1
Germany 23
India 17
Italy 1
Russia 2
Sweden 1
UK 2
USA 10", header =T)
countries %>% add_row(Var1 = c("Uruguay", "Saudi Arabia", "Japan", "Australia"),
Freq = c(25, 19, 11, 10))
Var1 Freq
1 Austria 6
2 Canada 4
3 France 1
4 Germany 23
5 India 17
6 Italy 1
7 Russia 2
8 Sweden 1
9 UK 2
10 USA 10
11 Uruguay 25
12 Saudi Arabia 19
13 Japan 11
14 Australia 10
Create a dataframe with two columns and rbind.
Addcountries <- data.frame(Var1 = c("Uruguay", "Saudi Arabia", "Japan", "Australia"),
Freq = c(25, 19, 11, 10), stringsAsFactors = FALSE)
countries2 <- rbind(countries, Addcountries)
Given a dataframe like this
country rest count
Argentina pizza 26
Argentina asador 22
Brazil feijoada 52
Brazil pizza 67
Germany pizza 22
Germany biergarten 52
Germany kebab 20
Let's suppose we want all the unique values in 'rest' column to be represented in as many rows as countries in the dataframe, even if they have no values. My desired output would look like this:
country rest count
Argentina pizza 26
Argentina asador 22
Argentina feijoada 0
Argentina biergarten 0
Argentina kebab 0
Brazil pizza 67
Brazil feijoada 52
Brazil asador 0
Brazil biergarten 0
Brazil kebab 0
Germany pizza 22
Germany biergarten 52
Germany kebab 20
Germany asador 0
Germany feijoada 0
Is there any simple way to reach this output through dplyr?
tidyr::complete(dat, country, rest, fill=list(count=0))
# # A tibble: 15 x 3
# country rest count
# <chr> <chr> <dbl>
# 1 Argentina asador 22
# 2 Argentina biergarten 0
# 3 Argentina feijoada 0
# 4 Argentina kebab 0
# 5 Argentina pizza 26
# 6 Brazil asador 0
# 7 Brazil biergarten 0
# 8 Brazil feijoada 52
# 9 Brazil kebab 0
# 10 Brazil pizza 67
# 11 Germany asador 0
# 12 Germany biergarten 52
# 13 Germany feijoada 0
# 14 Germany kebab 20
# 15 Germany pizza 22
This question already has answers here:
How to sum a variable by group
(18 answers)
Aggregate / summarize multiple variables per group (e.g. sum, mean)
(10 answers)
Closed 4 years ago.
My data set sometimes contains multiple observations for the same year as below.
id country ccode year region protest protestnumber duration
201990001 Canada 20 1990 North America 1 1 1
201990002 Canada 20 1990 North America 1 2 1
201990003 Canada 20 1990 North America 1 3 1
201990004 Canada 20 1990 North America 1 4 57
201990005 Canada 20 1990 North America 1 5 2
201990006 Canada 20 1990 North America 1 6 1
201991001 Canada 20 1991 North America 1 1 8
201991002 Canada 20 1991 North America 1 2 5
201992001 Canada 20 1992 North America 1 1 2
201993001 Canada 20 1993 North America 1 1 1
201993002 Canada 20 1993 North America 1 2 62
201994001 Canada 20 1994 North America 1 1 1
201994002 Canada 20 1994 North America 1 2 1
201995001 Canada 20 1995 North America 1 1 1
201995002 Canada 20 1995 North America 1 2 1
201996001 Canada 20 1996 North America 1 1 1
201997001 Canada 20 1997 North America 1 1 13
201997002 Canada 20 1997 North America 1 2 16
I need to sum up all values for the same year to one value per year. So that I receive one value per year in every column. I want to iterate this through the whole data set for all years and countries. Any help is much appreciated. Thank you!
I have an input output table with the origin (input field) as rows and the destination (output field) as columns. Here's an example:
Mexico Thailand Vietnam
USA 0 3 6
Italy 3 7 8
France 9 3 1
Germany 3 6 7
I want to convert the table so that the origin is in column1, destination is in column 2, and value is in column 3 so that it would look like this:
origin destination value
USA Mexico 0
USA Thailand 3
USA Vietnam 6
Italy Mexico 3
Italy Thailand 7
Italy Vietnam 8
France Mexico 9
France Thailand 3
France Vietnam 1
Germany Mexico 3
Germany Thailand 6
Germany Vietnam 7
There is a simple solution using the melt function from the reshape2 package:
#sample data
Mexico<-c(0, 3, 9,3)
Thailand <-c(3, 7, 3, 6)
Vietnam <-c(6, 8, 1, 7)
names<-c("USA", "Italy", "France", "Germany")
df<-data.frame(names, Mexico, Thailand, Vietnam)
library(reshape2)
melt(df )
The package "tidyr" has a similar functionality.
library(tidyr)
gather(df, "names")
I have 3 data frames from which I have to find the continent with less than 2 countries and remove those countries(rows). The data frames are structured in a manner similar a data frame called x below:
row Country Continent Ranking
1 Kenya Africa 17
2 Gabon Africa 23
3 Spain Europe 04
4 Belgium Europe 03
5 China Asia 10
6 Nigeria Africa 14
7 Holland Europe 01
8 Italy Europe 05
9 Japan Asia 06
First I wanted to know the frequency of each country per continent, so I did
x2<-table(x$Continent)
x2
Africa Europe Asia
3 4 2
Then I wanted to identify the continents with less than 2 countries
x3 <- x2[x2 < 10]
x3
Asia
2
My problem now is how to remove these countries. For the example above it will be the 2 countries in Asia and I want my final data set to look like presented below:
row Country Continent Ranking
1 Kenya Africa 17
2 Gabon Africa 23
3 Spain Europe 04
4 Belgium Europe 03
5 Nigeria Africa 14
6 Holland Europe 01
7 Italy Europe 05
The number of continents with less than 2 countries will vary among the different data frames so I need one universal method that I can apply to all.
Try
library(dplyr)
x %>%
group_by(Continent) %>%
filter(n()>2)
# row Country Continent Ranking
#1 1 Kenya Africa 17
#2 2 Gabon Africa 23
#3 3 Spain Europe 04
#4 4 Belgium Europe 03
#5 6 Nigeria Africa 14
#6 7 Holland Europe 01
#7 8 Italy Europe 05
Or using the x2
subset(x, Continent %in% names(x2)[x2>2])
# row Country Continent Ranking
#1 1 Kenya Africa 17
#2 2 Gabon Africa 23
#3 3 Spain Europe 04
#4 4 Belgium Europe 03
#6 6 Nigeria Africa 14
#7 7 Holland Europe 01
#8 8 Italy Europe 05
A very easy way with "data.table" would be:
library(data.table)
as.data.table(x)[, N := .N, by = Continent][N > 2]
# row Country Continent Ranking N
# 1: 1 Kenya Africa 17 3
# 2: 2 Gabon Africa 23 3
# 3: 3 Spain Europe 4 4
# 4: 4 Belgium Europe 3 4
# 5: 6 Nigeria Africa 14 3
# 6: 7 Holland Europe 1 4
# 7: 8 Italy Europe 5 4
In base R you can try:
x[with(x, ave(rep(TRUE, nrow(x)), Continent, FUN = function(y) length(y) > 2)), ]
# row Country Continent Ranking
# 1 1 Kenya Africa 17
# 2 2 Gabon Africa 23
# 3 3 Spain Europe 4
# 4 4 Belgium Europe 3
# 6 6 Nigeria Africa 14
# 7 7 Holland Europe 1
# 8 8 Italy Europe 5