Unable to plot weekly data with ggplot2 - r

I can plot Daily but Week yields
Error: geom_path: Each group consist of only one observation.
Do you need to adjust the group aesthetic? Yes.
With this type of data:
DailyDF2 <-
structure(list(Group.date = structure(c(15023, 15024, 15027,
15029, 15031, 15035, 15036, 15037, 15039, 15040, 15041, 15043,
15046, 15048, 15050, 15054, 15056, 15057, 15059, 15061, 15062,
15063, 15064, 15068, 15070, 15071, 15073, 15078, 15079, 15080,
15085, 15089, 15090, 15092, 15095, 15099, 15100, 15103, 15104,
15105, 15106, 15107, 15109, 15110, 15111, 15112, 15113, 15120,
15121, 15122, 15124, 15127, 15128, 15132, 15133, 15134, 15141,
15142, 15146, 15148, 15153, 15155, 15156, 15161, 15162, 15169,
15173, 15174, 15177, 15180, 15181, 15182, 15183, 15186, 15187,
15188, 15190, 15195, 15196, 15197, 15198, 15199, 15201, 15202,
15203, 15204, 15205, 15206, 15207, 15208, 15209, 15211, 15212,
15213, 15214, 15215, 15216, 15218, 15219, 15220, 15223, 15224,
15225, 15226, 15227, 15228, 15229, 15230, 15231, 15232, 15233,
15235, 15236, 15237, 15239, 15241, 15243, 15244, 15245, 15246,
15247, 15248, 15249, 15250, 15251, 15252, 15253, 15254, 15255,
15257, 15258, 15259, 15260, 15261, 15262, 15263, 15264, 15265,
15266, 15267, 15268, 15269, 15271, 15274, 15275, 15276, 15278,
15279, 15280, 15281, 15282, 15283, 15284, 15285, 15286, 15287,
15288, 15289, 15290, 15291, 15292, 15293, 15294, 15295, 15296,
15297, 15298, 15299, 15300, 15301, 15302, 15303, 15304, 15305,
15306, 15307, 15308, 15309, 15310, 15311, 15313, 15314, 15315,
15316, 15317, 15318, 15320, 15321, 15322, 15323, 15325, 15327,
15328, 15329, 15330, 15331, 15332, 15333, 15334, 15335, 15336,
15337, 15338, 15342, 15343, 15344, 15345, 15346, 15347, 15348,
15350, 15351, 15352, 15353, 15354, 15356, 15357, 15358, 15359,
15361, 15362, 15363, 15364, 15365, 15367, 15368, 15369, 15370,
15372, 15373, 15374, 15375, 15376, 15377, 15378, 15379, 15380,
15381, 15382, 15383, 15384, 15385, 15386, 15387, 15389, 15390,
15391, 15392, 15393, 15394, 15398, 15399, 15400, 15401, 15403,
15404, 15405, 15406, 15407, 15408, 15409, 15410, 15411, 15412,
15413, 15414, 15415, 15416, 15417, 15418, 15419, 15420, 15421,
15422, 15423, 15424, 15425, 15428, 15429, 15430, 15433, 15434,
15435, 15437, 15438, 15439, 15440, 15441, 15442, 15443, 15444,
15446, 15447, 15448, 15449, 15450, 15451, 15454, 15455, 15456,
15457, 15459, 15460, 15462, 15463, 15464, 15465, 15466, 15467,
15468, 15469, 15470, 15471, 15474, 15475, 15476, 15477, 15478,
15481, 15482, 15483, 15484, 15485, 15488, 15489, 15490, 15491,
15492, 15495, 15496, 15497, 15498, 15500, 15501, 15502, 15503,
15504, 15505, 15506, 15507, 15508, 15509, 15510, 15511, 15512,
15514, 15515, 15516, 15518, 15519, 15520, 15522, 15525, 15526,
15527, 15528, 15529, 15530, 15531, 15532, 15533, 15534, 15536,
15537, 15539, 15540, 15541, 15542, 15544, 15545, 15546, 15547,
15548, 15549, 15550, 15551, 15552, 15553, 15554, 15555, 15558,
15559, 15560, 15561, 15562, 15563, 15565, 15566, 15568, 15569,
15572, 15573, 15574, 15575, 15576, 15578, 15579, 15580, 15581,
15582, 15583, 15584, 15587, 15588, 15589, 15590, 15591, 15593,
15594, 15595, 15596, 15597, 15600, 15602, 15603, 15604, 15605,
15606, 15607, 15609, 15610, 15611, 15612, 15614, 15615, 15616,
15617, 15618, 15621, 15622, 15623, 15624, 15625, 15626, 15628,
15629, 15630, 15631, 15632, 15633, 15634, 15636, 15637, 15638,
15639, 15641, 15642, 15643, 15644, 15645, 15646, 15647, 15649,
15650, 15651, 15652, 15654, 15655, 15656, 15657, 15658, 15659,
15660, 15661, 15662, 15663, 15664, 15665, 15666, 15667, 15670,
15672, 15673, 15674, 15675, 15676, 15677, 15678, 15679, 15680,
15681, 15682, 15684, 15685, 15686, 15687, 15688, 15689, 15690,
15693, 15694, 15695, 15696, 15699, 15700, 15701, 15702, 15703,
15708, 15709, 15712, 15713, 15715, 15716, 15717, 15719, 15720,
15722, 15723, 15724, 15726, 15727, 15728, 15730, 15731, 15733,
15734, 15735, 15736, 15737, 15738, 15739, 15740, 15741, 15742,
15743, 15744, 15745, 15746, 15747, 15748, 15749, 15750, 15751,
15752, 15753, 15754, 15755, 15756, 15757, 15758, 15759, 15760,
15761, 15762), class = "Date"), X.hpm = c(4, 5, 3, 1, 3, 1, 2,
1, 2, 3, 1, 4, 1, 1, 14, 1, 1, 5, 1, 1, 1, 1, 5, 2, 2, 9, 0,
5, 1, 1, 1, 3, 1, 8, 1, 6, 5, 1, 2, 2, 3, 4, 1, 2, 2, 4, 4, 3,
1, 1, 1, 11, 2, 1, 5, 4, 5, 1, 1, 3, 1, 2, 1, 1, 4, 6, 1, 0,
0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 3, 2, 0, 0, 0, 1, 4, 1, 0, 1,
0, 1, 2, 1, 1, 0, 0, 0, 27, 5, 2, 1, 0, 13, 1, 0, 0, 1, 0, 2,
3, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 1, 3, 0, 0, 1, 3, 0, 0,
1, 0, 15, 1, 0, 0, 1, 0, 4, 16, 0, 0, 4, 3, 3, 0, 0, 1, 1, 2,
2, 0, 2, 1, 2, 0, 1, 4, 0, 4, 0, 3, 3, 14, 7, 2, 2, 2, 0, 6,
5, 0, 0, 0, 1, 3, 1, 2, 0, 1, 0, 1, 1, 5, 1, 1, 0, 1, 0, 0, 0,
0, 0, 1, 4, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 5,
2, 1, 0, 3, 1, 6, 3, 0, 1, 0, 2, 1, 0, 3, 0, 0, 0, 1, 0, 0, 1,
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 1, 0, 1, 1,
1, 0, 2, 3, 3, 0, 15, 0, 1, 3, 1, 1, 3, 5, 4, 0, 4, 4, 5, 4,
1, 0, 0, 3, 2, 0, 0, 0, 2, 0, 1, 2, 6, 0, 0, 5, 0, 0, 0, 0, 2,
0, 1, 0, 1, 3, 0, 3, 0, 4, 0, 1, 0, 1, 2, 3, 3, 4, 0, 5, 3, 3,
1, 3, 1, 0, 1, 36, 2, 0, 1, 1, 10, 1, 2, 1, 3, 0, 0, 0, 1, 0,
2, 9, 1, 0, 0, 2, 0, 1, 34, 0, 1, 0, 2, 1, 0, 0, 0, 0, 0, 2,
0, 5, 2, 4, 22, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 3, 4, 0, 1, 1,
2, 1, 6, 1, 0, 0, 0, 0, 5, 1, 0, 8, 1, 2, 0, 2, 1, 56, 1, 2,
0, 3, 6, 10, 0, 2, 0, 0, 4, 6, 4, 0, 1, 8, 2, 2, 1, 0, 7, 3,
1, 0, 2, 1, 2, 1, 1, 2, 1, 5, 1, 3, 1, 2, 1, 5, 2, 0, 1, 2, 1,
32, 0, 0, 2, 0, 1, 17, 3, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1,
0, 1, 0, 2, 3, 4, 0, 2, 1, 4, 3, 0, 0, 0, 2, 5, 0, 0, 1, 2, 1,
2, 1, 1, 0, 1, 1, 0, 6, 0, 2, 1, 0, 0, 1, 0, 0, 3, 2, 0, 0, 6,
1, 0, 1, 13, 0, 0, 0, 1, 24, 4, 1, 0, 4, 3, 1, 1, 1, 0, 2, 3,
0, 3, 0, 2, 0, 1, 4, 0, 1, 0, 6, 1, 5, 9, 4, 0, 0, 0, 0, 1, 2,
0, 0, 0, 0, 0), X.hospice = c(2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 3, 1, 0, 0, 0, 0, 0, 0,
1, 2, 0, 0, 1, 0, 0, 0, 2, 1, 1, 0, 0, 0, 2, 2, 3, 2, 2, 2, 0,
2, 2, 3, 2, 7, 3, 3, 2, 2, 3, 6, 2, 3, 1, 1, 2, 1, 0, 0, 1, 1,
2, 0, 10, 0, 0, 3, 3, 12, 2, 0, 1, 1, 3, 0, 0, 1, 1, 0, 1, 0,
1, 2, 6, 3, 3, 2, 0, 0, 5, 3, 0, 3, 1, 1, 0, 0, 0, 0, 0, 0, 1,
2, 2, 4, 0, 0, 1, 2, 1, 2, 1, 2, 0, 5, 5, 0, 0, 1, 2, 0, 0, 0,
6, 1, 0, 2, 0, 0, 3, 4, 1, 0, 1, 2, 0, 2, 1, 2, 1, 0, 5, 1, 0,
1, 0, 2, 3, 1, 1, 1, 0, 3, 3, 2, 4, 1, 2, 1, 1, 2, 3, 2, 1, 2,
1, 1, 0, 2, 0, 6, 3, 1, 2, 2, 0, 1, 1, 2, 0, 1, 2, 0, 1, 1, 1,
0, 1, 3, 6, 0, 0, 1, 2, 3, 0, 1, 1, 2, 6, 1, 2, 1, 0, 2, 4, 1,
1, 5, 1, 0, 2, 1, 1, 1, 1, 0, 2, 2, 0, 0, 4, 4, 1, 1, 3, 1, 0,
0, 1, 0, 3, 5, 0, 2, 3, 3, 10, 2, 4, 0, 1, 3, 0, 0, 0, 2, 4,
3, 0, 0, 0, 0, 1, 0, 3, 2, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 0, 3,
1, 4, 0, 1, 2, 0, 4, 0, 1, 1, 9, 3, 3, 2, 2, 0, 1, 1, 0, 3, 1,
5, 1, 1, 0, 2, 2, 1, 3, 2, 3, 3, 1, 1, 3, 2, 1, 1, 0, 1, 0, 0,
1, 0, 0, 0, 1, 1, 1, 1, 2, 0, 1, 2, 3, 1, 0, 0, 0, 1, 3, 1, 0,
1, 1, 2, 0, 2, 0, 0, 1, 0, 0, 1, 1, 4, 0, 2, 1, 3, 1, 2, 2, 0,
6, 2, 1, 1, 2, 4, 2, 1, 0, 2, 1, 2, 1, 0, 0, 2, 4, 0, 2, 0, 2,
3, 2, 2, 0, 1, 2, 10, 5, 0, 0, 2, 1, 2, 2, 0, 2, 2, 1, 0, 1,
1, 1, 4, 5, 3, 0, 0, 1, 1, 2, 2, 0, 0, 0, 1, 1, 2, 2, 1, 1, 1,
1, 1, 0, 1, 3, 1, 1, 0, 1, 0, 2, 1, 2, 5, 0, 0, 3, 6, 7, 1, 1,
4, 4, 2, 2, 0, 1, 4, 1, 4, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 1, 0,
1, 1, 1, 0, 0, 1, 0, 0, 2, 1, 2, 2, 2, 1, 2, 2, 5, 1, 0, 1, 1,
0, 3, 0, 1, 4, 3, 0, 2, 0, 2, 4, 6, 1, 2, 1, 1, 1, 2, 3, 1, 2,
6, 3, 0, 0, 7, 6, 2, 1, 2, 1, 1, 19), X.palliative = c(1, 0,
3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 1, 2,
1, 0, 1, 1, 0, 0, 0, 0, 2, 1, 3, 4, 0, 1, 1, 1, 1, 1, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 6, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 0, 0, 0, 6, 0, 1, 0, 0,
0, 2, 1, 0, 0, 1, 1, 0, 1, 0, 3, 2, 1, 1, 0, 0, 0, 2, 1, 2, 7,
0, 1, 1, 2, 0, 0, 2, 1, 3, 1, 0, 0, 2, 0, 7, 0, 4, 0, 1, 0, 0,
1, 1, 1, 0, 0, 1, 3, 1, 6, 0, 4, 0, 2, 2, 8, 3, 1, 1, 1, 0, 3,
0, 0, 0, 0, 0, 1, 2, 0, 5, 0, 0, 1, 1, 0, 1, 1, 0, 0, 2, 4, 0,
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 4, 1, 0, 0, 0, 0, 0, 0,
1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0,
0, 2, 0, 0, 1, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 1, 3, 0, 0, 2,
0, 0, 2, 2, 0, 1, 3, 1, 1, 1, 0, 0, 3, 4, 4, 3, 4, 1, 6, 1, 0,
0, 0, 2, 2, 2, 0, 0, 0, 1, 1, 1, 0, 0, 4, 3, 1, 2, 0, 0, 3, 0,
2, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 2, 1, 0, 1, 0, 0,
0, 0, 0, 2, 4, 0, 3, 1, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0,
1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 5, 0, 4, 2,
2, 1, 1, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 1, 0, 0, 1, 0, 0, 8, 0, 0, 2, 4, 2, 0, 0, 3, 0, 7, 9, 12,
0, 2, 0, 0, 0, 0, 0, 1, 0, 7, 7, 1, 2, 6, 2, 2, 0, 2, 1, 1, 0,
0, 0, 0, 0, 3, 1, 2, 0, 2, 2, 3, 2, 1, 0, 0, 1, 1, 0, 4, 0, 1,
0, 0, 0, 2, 0, 1, 4, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1,
0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 1,
1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1,
0, 1, 3, 3, 0, 0, 4, 2, 1, 0, 1, 2, 4, 2, 1, 0, 0, 3, 1, 1, 0,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 3, 1, 0, 4, 0), X.pedpc = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 4, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 8, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 7, 1, 1, 1, 0,
4, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 2, 2, 2, 0, 1, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0,
1, 1, 1, 0, 3, 1, 1, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 1, 0, 0, 6, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, 2, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2,
0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0,
1, 0, 0, 1, 1, 0, 1, 1, 2, 0, 2, 2, 0, 1, 0, 1, 2, 0, 0, 2, 0,
0, 0, 0, 0, 0, 0, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), X.pediatric = c(1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 5, 0, 0, 0, 1, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
3, 0, 1, 1, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0,
0, 1, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 4, 2, 3, 2, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 4, 0, 0, 0, 1, 0, 1, 1, 0, 0, 2, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 2, 0, 0, 5, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 0, 3,
0, 2, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 2, 2,
0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 2, 1, 3, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 2, 0, 0, 0, 0), HashTag = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)), .Names = c("Group.date",
"X.hpm", "X.hospice", "X.palliative", "X.pedpc", "X.pediatric",
"HashTag"), row.names = c(NA, -545L), class = "data.frame")
And by plotting with this code:
ggplot(DailyDF2, aes(Group.date)) +
geom_line(aes(y = HashTag, colour = "HashTag")) +
geom_line(aes(y = X.hpm, colour = "#hpm")) +
geom_line(aes(y = X.hospice, colour = "#hospice")) +
geom_line(aes(y = X.palliative, colour="#palliative")) +
geom_line(aes(y = X.pedpc, colour = "#pedpc")) +
geom_line(aes(y = X.pediatric, colour="#pediatric")) +
ylab(label="Top 5 Hash Tags Frequency") +
xlab("Day")+
theme(axis.text.x=element_text(angle=-45, hjust=0.001))
I get this:
When I use my weekly data:
WeeklyDF2 <-
structure(list(Group.date = c("2011-07", "2011-08", "2011-09",
"2011-10", "2011-11", "2011-12", "2011-13", "2011-14", "2011-15",
"2011-16", "2011-17", "2011-18", "2011-19", "2011-20", "2011-21",
"2011-22", "2011-23", "2011-24", "2011-25", "2011-26", "2011-27",
"2011-28", "2011-29", "2011-30", "2011-31", "2011-32", "2011-33",
"2011-34", "2011-35", "2011-36", "2011-37", "2011-38", "2011-39",
"2011-40", "2011-41", "2011-42", "2011-43", "2011-44", "2011-45",
"2011-46", "2011-47", "2011-48", "2011-49", "2011-50", "2011-51",
"2011-52", "2012-01", "2012-02", "2012-03", "2012-04", "2012-05",
"2012-06", "2012-07", "2012-08", "2012-09", "2012-10", "2012-11",
"2012-12", "2012-13", "2012-14", "2012-15", "2012-16", "2012-17",
"2012-18", "2012-19", "2012-20", "2012-21", "2012-22", "2012-23",
"2012-24", "2012-25", "2012-26", "2012-27", "2012-28", "2012-29",
"2012-30", "2012-31", "2012-32", "2012-33", "2012-34", "2012-35",
"2012-36", "2012-37", "2012-38", "2012-39", "2012-40", "2012-41",
"2012-42", "2012-43", "2012-44", "2012-45", "2012-46", "2012-47",
"2012-48", "2012-49", "2012-50", "2012-51", "2012-52", "2013-00",
"2013-01", "2013-02", "2013-03", "2013-04", "2013-05", "2013-06",
"2013-07", "2013-08"), X.hpm = c(9, 7, 4, 10, 16, 8, 8, 13, 7,
1, 12, 12, 12, 13, 5, 14, 10, 6, 4, 4, 5, 6, 1, 2, 3, 5, 6, 6,
34, 15, 6, 1, 4, 8, 17, 21, 10, 6, 10, 33, 15, 8, 9, 1, 5, 4,
1, 9, 13, 4, 4, 3, 0, 5, 3, 24, 14, 22, 5, 2, 14, 3, 4, 8, 13,
15, 40, 13, 6, 13, 37, 4, 2, 34, 4, 7, 12, 6, 11, 60, 23, 14,
13, 12, 7, 12, 11, 36, 23, 5, 2, 10, 10, 7, 8, 10, 2, 5, 7, 14,
30, 9, 9, 8, 25, 3, 0), X.hospice = c(2, 0, 0, 4, 2, 1, 0, 0,
0, 0, 4, 0, 3, 7, 0, 0, 3, 1, 0, 3, 1, 0, 4, 9, 7, 17, 17, 5,
13, 20, 6, 3, 16, 13, 0, 10, 6, 12, 10, 10, 8, 8, 8, 13, 11,
7, 12, 6, 5, 11, 7, 13, 14, 6, 4, 14, 9, 24, 4, 9, 6, 4, 3, 9,
8, 19, 5, 8, 10, 14, 3, 2, 5, 6, 7, 5, 6, 11, 9, 10, 6, 8, 9,
18, 7, 6, 14, 6, 4, 7, 6, 11, 18, 12, 11, 6, 3, 2, 2, 8, 10,
5, 10, 17, 18, 18, 21), X.palliative = c(1, 3, 0, 0, 1, 0, 0,
1, 0, 0, 0, 0, 5, 5, 1, 2, 8, 1, 2, 2, 1, 0, 0, 0, 1, 7, 2, 0,
7, 7, 3, 3, 7, 12, 6, 7, 11, 4, 11, 20, 5, 8, 4, 6, 1, 2, 6,
2, 0, 4, 4, 3, 2, 4, 5, 8, 10, 19, 6, 1, 10, 7, 2, 2, 6, 1, 6,
4, 4, 2, 3, 1, 6, 10, 3, 1, 1, 2, 8, 8, 33, 0, 16, 12, 4, 6,
10, 6, 1, 9, 2, 2, 2, 3, 5, 2, 2, 3, 0, 2, 7, 7, 10, 7, 0, 11,
4), X.pedpc = c(0, 0, 0, 0, 0, 0, 0, 0, 5, 1, 0, 2, 1, 0, 0,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 9, 0, 0, 0, 0, 1, 1,
0, 0, 0, 11, 6, 4, 8, 0, 1, 5, 2, 3, 8, 1, 0, 4, 0, 0, 1, 7,
1, 2, 0, 0, 1, 0, 0, 0, 3, 0, 5, 2, 0, 1, 0, 0, 0, 7, 1, 1, 3,
0, 2, 0, 6, 2, 0, 2, 2, 3, 7, 4, 2, 6, 0, 1, 3, 1, 4, 0, 1, 0,
0, 0, 0, 2, 1, 0, 1, 1, 0), X.pediatric = c(1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 6, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 2, 1, 3, 4, 3, 1, 3, 4, 11, 0, 5, 3, 2, 0, 2, 0,
0, 0, 0, 0, 1, 0, 1, 0, 1, 4, 9, 0, 1, 2, 0, 1, 1, 0, 0, 0, 1,
0, 0, 0, 0, 5, 5, 3, 0, 0, 1, 1, 1, 7, 0, 3, 1, 0, 4, 3, 0, 1,
2, 0, 1, 6, 1, 4, 0, 0, 4, 0, 1, 1, 2, 0, 1, 1, 8, 0), HashTag = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0)), .Names = c("Group.date", "X.hpm", "X.hospice", "X.palliative",
"X.pedpc", "X.pediatric", "HashTag"), row.names = c(NA, -107L
), class = "data.frame")
And when I plot with a similar code:
ggplot(WeeklyDF2, aes(Group.date))+
geom_line(aes(y = HashTag, colour = "HashTag")) +
geom_line(aes(y = X.hpm, colour = "#hpm")) +
geom_line(aes(y = X.hospice, colour = "#hospice")) +
geom_line(aes(y = X.palliative, colour="#palliative")) +
geom_line(aes(y = X.pedpc, colour = "#pedpc")) +
geom_line(aes(y = X.pediatric, colour="#pediatric")) +
ylab(label="Top 5 Hash Tags Frequency") +
xlab("Week")+
theme(axis.text.x=element_text(angle=-45, hjust=0.001))
I get the following warnings:
geom_path: Each group consist of only one observation. Do you need to adjust the group aesthetic?
geom_path: Each group consist of only one observation. Do you need to adjust the group aesthetic?
geom_path: Each group consist of only one observation. Do you need to adjust the group aesthetic?
geom_path: Each group consist of only one observation. Do you need to adjust the group aesthetic?
geom_path: Each group consist of only one observation. Do you need to adjust the group aesthetic?
geom_path: Each group consist of only one observation. Do you need to adjust the group aesthetic?
And my plot looks like this:
Any ideas?
UPDATE My WeeklyDF2$Group.date is a character vector. My DailyDF2$Group.date is a "double". Should WeeklyDF2$Group.date <- as.double.POSIXlt(WeeklyDF2$Group.date) or WeeklyDF2$Group.date <- as.double(WeeklyDF2$Group.date) fix the issue?

Ista was correct: WeeklyDF2$Group.date <- as.numeric(as.factor(WeeklyDF$Group.date))
Was what I need to do to correct the issue so plotting with :
ggplot(WeeklyDF2, aes(Group.date))+
geom_line(aes(y = HashTag, colour = "HashTag")) +
geom_line(aes(y = X.hpm, colour = "#hpm")) +
geom_line(aes(y = X.hospice, colour = "#hospice")) +
geom_line(aes(y = X.palliative, colour="#palliative")) +
geom_line(aes(y = X.pedpc, colour = "#pedpc")) +
geom_line(aes(y = X.pediatric, colour="#pediatric")) +
ylab(label="Top 5 Hash Tags Frequency") +
xlab("Week")+
theme(axis.text.x=element_text(angle=-45, hjust=0.001))
The solution yielded a sequence (1,2,3,4,5,6,7.......) but better than nothing.
It would be nice to know how to plot the variables by the proper week date format in R. Would any one know how to do so? I mean, would anyone know how to convert a excel date (MM/DD/YY) as well as the odd date format pulled from an api (18FEB2011:16:24:00.00) to a week date format for R?

Related

Representing a correlation matrix without a "classical" heatmap

I'm doing some analysis on a complex network. I have computed the degree correlation matrix, which looks like this:
data[1:5, 1:5]
1 2 3 4 5
1 6 19 11 16 5
2 19 10 16 12 6
3 11 16 7 11 10
4 16 12 11 5 9
5 5 6 10 9 8
And I'd like to plot it to obtain something akin to this:
I've tried to use ggplot but the results are not at all satisfying, this is my code:
library(reshape2)
library(ggplot2)
data = melt(data)
#The "melt" function was used to turn the matrix in a three column dataframe with columns named "Var1",
"Var2", and "value"
ggplot(data = data) +
theme_bw() +
geom_tile(aes(x = Var1, y = Var2, fill = value)) +
scale_fill_viridis(name = "") +
labs(x = "k2", y = "k1")
And this is what I get:
Is there any way to fix it?
P.S. Sorry if I couldn't post the images directly, but my reputation is not high enough
EDIT: I'm putting here the dput() output of my matrix, as asked in the comments:
structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0,
0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0,
0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,
0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 1, 1, 1, 0, 0, 1,
2, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1,
0, 0, 2, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 2, 0,
0, 1, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 0, 0, 0,
1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 3, 2, 1, 0, 3, 3, 3, 1, 2, 2, 1,
1, 3, 3, 3, 2, 2, 1, 0, 1, 3, 2, 1, 1, 2, 0, 4, 1, 1, 1, 0, 0,
0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2,
3, 0, 3, 6, 3, 2, 2, 3, 0, 2, 4, 2, 0, 6, 3, 1, 0, 3, 1, 2, 5,
6, 2, 3, 0, 2, 0, 0, 1, 0, 0, 0, 1, 3, 1, 1, 0, 2, 0, 0, 0, 0,
0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 3, 2, 7, 2, 1, 6, 3, 1,
3, 2, 2, 3, 2, 3, 9, 0, 1, 2, 4, 0, 6, 0, 3, 0, 4, 0, 2, 0, 2,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
0, 0, 0, 1, 6, 7, 3, 6, 0, 5, 0, 1, 0, 5, 1, 3, 4, 1, 5, 0, 0,
0, 4, 1, 5, 1, 2, 1, 1, 1, 5, 1, 4, 1, 0, 0, 1, 0, 0, 1, 1, 0,
2, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 3, 2, 6, 1, 5,
3, 0, 0, 2, 3, 0, 3, 2, 4, 5, 1, 1, 3, 2, 3, 4, 0, 2, 0, 2, 3,
0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 1, 1, 0, 0,
0, 1, 1, 1, 0, 0, 3, 2, 1, 0, 5, 3, 2, 6, 1, 3, 3, 1, 4, 2, 1,
6, 1, 2, 0, 4, 2, 4, 0, 1, 0, 3, 3, 4, 2, 3, 4, 1, 0, 3, 3, 0,
1, 1, 0, 4, 0, 2, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 2, 3, 2, 6,
5, 3, 2, 0, 2, 2, 4, 9, 3, 0, 4, 1, 5, 4, 7, 2, 1, 3, 5, 4, 1,
4, 3, 6, 3, 1, 0, 2, 0, 1, 3, 1, 1, 0, 1, 1, 2, 0, 0, 0, 0, 1,
2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 3, 3, 0, 0, 6, 2, 1, 0, 1, 5, 1,
0, 5, 1, 7, 1, 4, 2, 3, 2, 6, 1, 3, 1, 0, 0, 2, 1, 0, 2, 1, 0,
0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 0, 0, 0, 4, 0, 1, 0, 0, 1, 1, 0,
3, 1, 1, 0, 2, 0, 3, 0, 1, 2, 0, 0, 0, 2, 0, 1, 1, 0, 6, 1, 0,
0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 2, 2, 3, 0, 2, 3, 4, 1, 1,
0, 3, 0, 2, 3, 1, 2, 3, 3, 5, 6, 2, 6, 3, 4, 1, 4, 1, 3, 3, 3,
3, 1, 0, 2, 1, 0, 1, 6, 3, 6, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 2, 2, 4, 2, 5, 3, 3, 9, 5, 0, 3, 2, 1, 4, 7, 4, 2, 4, 6,
3, 4, 3, 12, 0, 3, 2, 3, 2, 2, 3, 1, 1, 0, 1, 5, 3, 2, 1, 2,
0, 6, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 2, 2, 1, 0,
1, 3, 1, 0, 0, 1, 0, 1, 4, 2, 1, 1, 0, 2, 1, 1, 1, 1, 2, 2, 3,
2, 0, 1, 2, 2, 3, 0, 1, 1, 0, 1, 4, 1, 3, 0, 1, 0, 3, 0, 1, 0,
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 3, 3, 4, 0, 0, 0, 2, 4, 1, 1, 3,
3, 1, 3, 2, 1, 3, 3, 2, 0, 1, 0, 2, 2, 0, 1, 2, 0, 0, 0, 2, 2,
1, 0, 3, 0, 5, 0, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 6,
2, 4, 2, 2, 4, 5, 4, 3, 7, 4, 3, 0, 3, 4, 1, 4, 4, 3, 6, 6, 1,
5, 3, 6, 2, 3, 1, 1, 2, 2, 2, 1, 2, 0, 2, 5, 2, 3, 0, 2, 0, 2,
0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 3, 3, 3, 1, 4, 1, 1, 1, 0, 1, 4,
2, 3, 3, 0, 1, 1, 4, 3, 3, 3, 5, 1, 3, 1, 7, 5, 3, 6, 2, 1, 1,
0, 6, 1, 1, 2, 3, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 3, 1, 9, 5, 5, 6, 5, 7, 1, 2, 2, 1, 1, 4, 1, 0, 2, 10, 5,
7, 5, 8, 3, 7, 3, 6, 5, 4, 3, 3, 7, 2, 0, 4, 3, 0, 1, 1, 0, 5,
0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 1, 4,
1, 0, 3, 4, 1, 3, 1, 1, 2, 1, 6, 6, 4, 4, 3, 2, 5, 2, 4, 3, 2,
2, 4, 4, 2, 1, 2, 3, 1, 1, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 2, 1, 2, 3, 1, 0, 1, 2, 7, 4, 0, 3, 6, 0, 2, 4, 4, 10,
6, 3, 7, 5, 5, 10, 3, 11, 5, 6, 12, 11, 10, 6, 9, 2, 5, 12, 9,
2, 5, 1, 1, 4, 4, 1, 0, 0, 2, 1, 1, 3, 0, 1, 3, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1,
2, 0, 3, 0, 2, 2, 1, 5, 3, 2, 1, 4, 3, 5, 6, 7, 2, 5, 4, 12,
1, 3, 3, 3, 8, 3, 1, 6, 1, 1, 2, 3, 4, 0, 0, 1, 0, 3, 0, 0, 0,
0, 0, 2, 1, 2, 0, 1, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 4, 4, 2, 4, 1, 3, 1, 6,
4, 1, 3, 3, 3, 7, 4, 5, 5, 1, 6, 7, 3, 3, 3, 5, 4, 4, 3, 4, 3,
1, 1, 3, 2, 1, 2, 1, 4, 4, 1, 1, 0, 0, 2, 2, 0, 1, 0, 3, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
1, 2, 1, 5, 0, 1, 3, 2, 3, 2, 0, 2, 3, 1, 3, 6, 3, 5, 4, 5, 4,
6, 3, 9, 6, 4, 3, 9, 4, 4, 6, 3, 1, 2, 2, 7, 5, 1, 1, 4, 3, 6,
1, 1, 0, 3, 4, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 6, 6, 5, 4, 4, 5,
6, 3, 6, 12, 1, 2, 6, 5, 8, 3, 10, 12, 7, 9, 6, 3, 11, 4, 13,
7, 7, 12, 2, 1, 5, 3, 9, 11, 0, 9, 11, 0, 17, 3, 3, 0, 4, 6,
3, 1, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 4, 1, 1, 3, 0, 1,
0, 1, 1, 3, 2, 3, 1, 3, 6, 3, 0, 7, 4, 3, 3, 0, 1, 5, 2, 1, 1,
2, 5, 1, 2, 3, 1, 5, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 3, 3, 2, 2, 1, 1, 3, 1, 4, 3, 2, 1, 5, 3, 7, 5, 11, 3, 3,
4, 11, 7, 7, 8, 5, 8, 7, 7, 9, 8, 2, 4, 8, 3, 0, 3, 10, 4, 7,
0, 3, 0, 3, 4, 2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 4,
1, 0, 1, 2, 2, 0, 3, 1, 3, 2, 5, 3, 3, 3, 4, 4, 8, 1, 6, 10,
4, 8, 7, 8, 4, 6, 4, 5, 0, 3, 3, 1, 8, 2, 1, 0, 2, 1, 3, 1, 2,
0, 2, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 2, 2, 4, 1, 2, 3, 3, 0, 2, 4, 3, 3, 2, 6, 7,
6, 4, 6, 3, 5, 9, 13, 3, 5, 6, 4, 4, 9, 7, 11, 8, 3, 5, 15, 6,
1, 5, 3, 8, 14, 4, 3, 0, 3, 4, 1, 2, 5, 0, 3, 4, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 3, 3, 6, 0, 0, 1, 2, 2, 2, 2, 5, 5, 3, 12, 8, 4, 4,
7, 3, 8, 10, 4, 4, 4, 13, 9, 8, 4, 5, 13, 9, 1, 6, 7, 3, 7, 3,
0, 0, 1, 1, 1, 4, 3, 0, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 5, 0, 4, 3, 2,
3, 3, 2, 0, 0, 3, 3, 4, 2, 11, 3, 4, 4, 7, 0, 7, 4, 9, 4, 2,
4, 8, 4, 0, 0, 6, 9, 0, 2, 3, 4, 9, 0, 4, 0, 7, 2, 1, 1, 2, 0,
3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 3, 3, 1, 1, 1, 6, 3,
2, 10, 1, 3, 6, 12, 1, 7, 8, 7, 13, 4, 2, 6, 6, 8, 2, 10, 9,
1, 4, 7, 5, 12, 2, 2, 0, 6, 5, 5, 3, 1, 3, 5, 7, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
0, 2, 4, 1, 3, 0, 0, 1, 3, 1, 2, 2, 1, 2, 3, 4, 6, 6, 4, 3, 2,
5, 9, 7, 11, 9, 8, 6, 2, 5, 6, 5, 9, 8, 1, 3, 5, 3, 10, 3, 3,
0, 4, 3, 4, 3, 4, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 4, 2, 2, 2,
3, 1, 2, 0, 2, 1, 7, 4, 9, 1, 3, 1, 1, 2, 8, 8, 8, 8, 4, 6, 5,
2, 4, 2, 6, 6, 0, 5, 4, 1, 8, 3, 1, 0, 3, 1, 2, 2, 0, 0, 4, 2,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 0, 2, 1, 2, 2, 2,
1, 1, 2, 5, 1, 2, 4, 3, 4, 0, 8, 6, 4, 0, 4, 2, 6, 0, 3, 5, 3,
9, 3, 1, 0, 6, 5, 4, 3, 1, 1, 2, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 5, 2, 1, 2, 3, 1, 4, 6, 5, 5,
0, 2, 5, 2, 4, 0, 3, 4, 0, 0, 5, 1, 2, 1, 0, 0, 1, 1, 0, 0, 0,
0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 0, 3, 1, 1, 1, 3, 3, 0, 0, 2, 5, 1, 2, 1, 6,
4, 2, 12, 3, 3, 7, 9, 2, 8, 4, 15, 13, 6, 10, 9, 6, 2, 3, 5,
8, 3, 8, 9, 7, 20, 6, 4, 0, 7, 6, 2, 2, 4, 1, 5, 2, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 0, 2, 3, 1, 0, 2, 1, 3, 1, 2, 2, 1, 3, 3, 9, 4, 2, 5,
11, 5, 3, 5, 6, 9, 9, 9, 8, 6, 6, 4, 8, 3, 2, 3, 6, 4, 14, 2,
2, 0, 2, 4, 3, 4, 2, 2, 2, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1,
0, 0, 2, 0, 1, 0, 1, 0, 1, 2, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1,
1, 0, 0, 0, 3, 2, 0, 0, 4, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 2, 2, 1, 1,
5, 0, 2, 1, 9, 2, 3, 3, 5, 6, 2, 4, 3, 5, 3, 0, 8, 3, 0, 1, 5,
2, 6, 2, 2, 0, 1, 4, 4, 2, 1, 1, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 1, 2,
1, 1, 1, 1, 6, 2, 4, 3, 5, 3, 1, 2, 1, 1, 1, 4, 11, 3, 10, 3,
3, 7, 3, 7, 5, 4, 5, 5, 9, 6, 4, 5, 4, 6, 14, 2, 4, 0, 8, 2,
3, 2, 5, 3, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 1,
0, 2, 1, 0, 0, 1, 0, 4, 3, 0, 1, 4, 1, 8, 3, 4, 5, 3, 1, 3, 1,
7, 4, 1, 2, 6, 4, 6, 7, 5, 0, 6, 1, 2, 4, 1, 2, 2, 6, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 2, 2, 4, 2, 1, 6, 6, 6, 3, 5, 3, 1, 5, 0, 4, 3, 4, 6,
17, 5, 7, 8, 14, 7, 9, 12, 10, 8, 9, 2, 20, 14, 1, 6, 14, 6,
10, 5, 6, 0, 9, 9, 10, 7, 9, 4, 7, 10, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 1, 1, 3, 0, 0, 2, 4,
3, 0, 2, 3, 3, 3, 1, 6, 2, 0, 2, 2, 7, 5, 0, 1, 0, 2, 1, 2, 1,
1, 0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2,
1, 1, 0, 1, 0, 1, 1, 3, 0, 3, 1, 3, 0, 4, 2, 3, 1, 1, 0, 4, 2,
1, 2, 4, 5, 6, 1, 0, 0, 3, 1, 3, 4, 1, 2, 1, 6, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 1,
3, 1, 2, 1, 1, 0, 0, 0, 0, 3, 4, 0, 3, 2, 3, 1, 7, 6, 4, 3, 6,
1, 7, 2, 0, 1, 8, 6, 9, 2, 3, 0, 0, 2, 2, 5, 2, 1, 2, 7, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 2, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 2, 0, 0, 0, 2, 2, 0, 2,
4, 6, 1, 4, 1, 4, 1, 2, 5, 3, 1, 5, 1, 6, 4, 1, 4, 2, 1, 9, 1,
1, 0, 2, 0, 1, 1, 1, 2, 1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,
1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 2, 2, 0, 3, 1, 2, 3, 1, 1, 1, 5,
4, 2, 4, 0, 2, 3, 0, 4, 3, 2, 10, 2, 3, 0, 2, 1, 0, 2, 2, 2,
2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 4, 1, 3, 3, 2, 3, 0, 2, 4, 0, 2,
2, 4, 7, 1, 4, 0, 5, 1, 2, 0, 2, 0, 3, 10, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 2, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 3, 2, 1, 0, 0, 0, 2,
2, 5, 3, 2, 1, 4, 0, 1, 0, 4, 2, 1, 1, 5, 1, 9, 1, 1, 0, 2, 1,
2, 2, 0, 2, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0,
1, 2, 0, 1, 3, 2, 4, 0, 2, 0, 1, 2, 2, 0, 2, 0, 0, 3, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 2, 0, 0, 2, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 3, 2,
4, 0, 1, 2, 3, 4, 3, 5, 2, 4, 2, 1, 5, 2, 1, 2, 4, 2, 7, 3, 1,
0, 2, 1, 2, 3, 1, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 2, 0, 3, 2, 1, 0, 4, 0, 0, 7, 4, 3, 2, 7, 3,
2, 7, 1, 2, 5, 0, 4, 3, 6, 10, 2, 6, 0, 7, 5, 3, 10, 4, 3, 4,
6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), dim = c(75L, 75L), dimnames = list(
c("2", "3", "5", "6", "7", "8", "9", "10", "11", "12", "13",
"14", "15", "16", "18", "19", "20", "21", "22", "23", "24",
"25", "26", "27", "28", "29", "30", "31", "32", "33", "34",
"35", "36", "37", "38", "39", "40", "41", "42", "43", "44",
"45", "46", "47", "48", "49", "50", "51", "52", "53", "54",
"55", "56", "57", "58", "59", "60", "61", "62", "63", "64",
"65", "66", "67", "68", "69", "70", "71", "72", "73", "74",
"75", "77", "79", "81"), c("2", "3", "5", "6", "7", "8",
"9", "10", "11", "12", "13", "14", "15", "16", "18", "19",
"20", "21", "22", "23", "24", "25", "26", "27", "28", "29",
"30", "31", "32", "33", "34", "35", "36", "37", "38", "39",
"40", "41", "42", "43", "44", "45", "46", "47", "48", "49",
"50", "51", "52", "53", "54", "55", "56", "57", "58", "59",
"60", "61", "62", "63", "64", "65", "66", "67", "68", "69",
"70", "71", "72", "73", "74", "75", "77", "79", "81")))
You get the lines because you have missing values. The full range is not represented in your data. Here's one way to fill in the missing values using tidyr
library(dplyr)
library(tidyr)
full_range <- function(x) seq(min(x), max(x))
data %>%
as.data.frame() %>%
tibble::rownames_to_column("Var1") %>%
pivot_longer(-Var1, names_to="Var2") %>%
mutate(across(Var1:Var2, as.numeric)) %>% {
d <- .
expand_grid(Var1=full_range(d$Var1), Var2=full_range(d$Var2)) %>%
left_join(d) %>%
replace_na(list(value=0))
} %>%
ggplot() +
theme_bw() +
geom_tile(aes(x = Var1, y = Var2, fill = value)) +
scale_fill_viridis_c(name = "") +
labs(x = "k2", y = "k1")
that looks like this

Missing value where TRUE/FALSE needed error in smcure model

I'm creating a cure model in R to predict Loan Default. I'm seeking someone to help me debug this error. I think it may have to do with my columns.
library(smcure)
smcure(Surv(DURATION, DEFAULT) ~ CHK_ACCT+HISTORY+NEW_CAR+USED_CAR+FURNITURE+`RADIO/TV`+EDUCATION+
RETRAINING+AMOUNT+SAV_ACCT+EMPLOYMENT+INSTALL_RATE+MALE_DIV+MALE_SINGLE+MALE_MAR_or_WID+
`CO-APPLICANT`+GUARANTOR+PRESENT_RESIDENT+REAL_ESTATE+PROP_UNKN_NONE+AGE+OTHER_INSTALL+RENT+
OWN_RES+NUM_CREDITS+JOB+NUM_DEPENDENTS+TELEPHONE+FOREIGN,
cureform=~CHK_ACCT+HISTORY+NEW_CAR+USED_CAR+FURNITURE+`RADIO/TV`+EDUCATION+RETRAINING+AMOUNT+SAV_ACCT+
EMPLOYMENT+INSTALL_RATE+MALE_DIV+MALE_SINGLE+MALE_MAR_or_WID+`CO-APPLICANT`+GUARANTOR+PRESENT_RESIDENT+
REAL_ESTATE+PROP_UNKN_NONE+AGE+OTHER_INSTALL+RENT+OWN_RES+NUM_CREDITS+JOB+NUM_DEPENDENTS+
TELEPHONE+FOREIGN,
model="ph", data = CD)
Error in while (convergence > eps & i < emmax) { :
missing value where TRUE/FALSE needed
Does anyone know what this error may mean?
Attached I have a subset of the data I used.
Data
structure(list(CHK_ACCT = c(0, 1, 3, 0, 0, 3, 3, 1, 3, 1, 1,
0, 1, 0, 0, 0, 3, 0, 1, 3, 3, 0, 0, 1, 3, 0, 3, 2, 1, 0, 1, 0,
1, 3, 2, 1, 3, 2, 2, 1, 3, 1, 1, 0, 0, 3, 3, 0, 3, 3, 1, 1, 3,
3, 1, 3, 1, 3, 2, 0, 1, 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 3, 0, 1,
0, 0, 0, 1, 3, 1, 3, 3, 3, 0, 0, 3, 1, 1, 0, 0, 3, 0, 3, 2, 1,
1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 0, 1, 1, 2, 1, 3, 0, 3,
0, 0, 0, 1, 0, 3, 3, 2, 1, 0, 0, 1, 1, 0, 1, 0, 3, 3, 3, 3, 3,
1, 1, 2, 2, 1, 0, 0, 3, 1, 0, 3, 0, 3, 3, 3, 2, 1, 1, 0, 0, 0,
1, 3, 3, 3, 3, 1, 3, 3, 0, 1, 3, 1, 0, 3, 1, 1, 0, 3, 0, 0, 3,
0, 3, 1, 0, 3, 1, 3, 1, 1, 0, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1
), DURATION = c(6, 48, 12, 42, 24, 36, 24, 36, 12, 30, 12, 48,
12, 24, 15, 24, 24, 30, 24, 24, 9, 6, 10, 12, 10, 6, 6, 12, 7,
60, 18, 24, 18, 12, 12, 45, 48, 18, 10, 9, 30, 12, 18, 30, 48,
11, 36, 6, 11, 12, 24, 27, 12, 18, 36, 6, 12, 36, 18, 36, 9,
15, 36, 48, 24, 27, 12, 12, 36, 36, 36, 7, 8, 42, 36, 12, 42,
11, 54, 30, 24, 15, 18, 24, 10, 12, 18, 36, 18, 12, 12, 12, 12,
24, 12, 54, 12, 18, 36, 20, 24, 36, 6, 9, 12, 24, 18, 12, 24,
14, 6, 15, 18, 36, 12, 48, 42, 10, 33, 12, 21, 24, 12, 10, 18,
12, 12, 12, 12, 12, 48, 36, 15, 18, 60, 12, 27, 12, 15, 12, 6,
36, 27, 18, 21, 48, 6, 12, 36, 18, 6, 10, 36, 24, 24, 12, 9,
12, 24, 6, 24, 18, 15, 10, 36, 6, 18, 11, 24, 24, 15, 12, 24,
8, 21, 30, 12, 6, 12, 21, 36, 36, 21, 24, 18, 15, 9, 16, 12,
18, 24, 48, 27, 6, 45, 9, 6, 12, 24, 18), HISTORY = c(4, 2, 4,
2, 3, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 4, 0, 2, 2, 4, 2, 4, 4,
4, 2, 0, 1, 2, 3, 2, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 2, 3, 4, 4,
4, 2, 2, 4, 2, 3, 3, 2, 2, 3, 1, 2, 4, 2, 4, 2, 4, 0, 0, 2, 2,
2, 2, 2, 2, 2, 4, 4, 4, 2, 4, 2, 3, 0, 2, 2, 2, 2, 2, 2, 4, 4,
2, 2, 0, 4, 4, 4, 4, 2, 0, 4, 2, 4, 3, 2, 2, 3, 4, 2, 4, 1, 2,
2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 2, 4,
4, 2, 3, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 2, 4, 1, 4, 4, 4, 4,
2, 2, 2, 4, 3, 2, 4, 1, 2, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 4, 0,
2, 3, 2, 3, 1, 2, 4, 2, 4, 3, 3, 1, 4, 4, 4, 1, 4, 2, 0, 2, 0,
2, 2, 2, 4, 4, 2, 2, 3), NEW_CAR = c(0, 0, 0, 0, 1, 0, 0, 0,
0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0), USED_CAR = c(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), FURNITURE = c(0,
0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 1, 0, 1), `RADIO/TV` = c(1, 1, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,
1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1,
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0,
0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0,
0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1,
1, 0, 1, 0, 0, 0), EDUCATION = c(0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0), RETRAINING = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0), AMOUNT = c(1169,
5951, 2096, 7882, 4870, 9055, 2835, 6948, 3059, 5234, 1295, 4308,
1567, 1199, 1403, 1282, 2424, 8072, 12579, 3430, 2134, 2647,
2241, 1804, 2069, 1374, 426, 409, 2415, 6836, 1913, 4020, 5866,
1264, 1474, 4746, 6110, 2100, 1225, 458, 2333, 1158, 6204, 6187,
6143, 1393, 2299, 1352, 7228, 2073, 2333, 5965, 1262, 3378, 2225,
783, 6468, 9566, 1961, 6229, 1391, 1537, 1953, 14421, 3181, 5190,
2171, 1007, 1819, 2394, 8133, 730, 1164, 5954, 1977, 1526, 3965,
4771, 9436, 3832, 5943, 1213, 1568, 1755, 2315, 1412, 1295, 12612,
2249, 1108, 618, 1409, 797, 3617, 1318, 15945, 2012, 2622, 2337,
7057, 1469, 2323, 932, 1919, 2445, 11938, 6458, 6078, 7721, 1410,
1449, 392, 6260, 7855, 1680, 3578, 7174, 2132, 4281, 2366, 1835,
3868, 1768, 781, 1924, 2121, 701, 639, 1860, 3499, 8487, 6887,
2708, 1984, 10144, 1240, 8613, 766, 2728, 1881, 709, 4795, 3416,
2462, 2288, 3566, 860, 682, 5371, 1582, 1346, 1924, 5848, 7758,
6967, 1282, 1288, 339, 3512, 1898, 2872, 1055, 1262, 7308, 909,
2978, 1131, 1577, 3972, 1935, 950, 763, 2064, 1414, 3414, 7485,
2577, 338, 1963, 571, 9572, 4455, 1647, 3777, 884, 1360, 5129,
1175, 674, 3244, 4591, 3844, 3915, 2108, 3031, 1501, 1382, 951,
2760, 4297), SAV_ACCT = c(4, 0, 0, 0, 0, 4, 2, 0, 3, 0, 0, 0,
0, 0, 0, 1, 4, 4, 0, 2, 0, 2, 0, 1, 4, 0, 0, 3, 0, 0, 3, 0, 1,
4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 2, 2, 0, 1, 4, 0, 0, 4,
0, 4, 4, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 3, 0, 4, 0, 4, 0, 0, 4,
0, 0, 0, 4, 0, 4, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 4, 4, 3, 0,
4, 1, 0, 4, 1, 0, 0, 0, 4, 0, 0, 0, 4, 2, 1, 0, 0, 0, 2, 4, 4,
4, 2, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 1, 4, 3, 2,
4, 0, 3, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 0, 0, 3, 1, 0, 1, 0, 1,
4, 1, 0, 2, 0, 2, 2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0,
0, 0, 4, 3, 0, 0, 0, 0, 1, 0, 3, 1, 0, 0, 1, 0, 0, 1, 4, 0),
EMPLOYMENT = c(4, 2, 3, 3, 2, 2, 4, 2, 3, 0, 1, 1, 2, 4,
2, 2, 4, 1, 4, 4, 2, 2, 1, 1, 2, 2, 4, 2, 2, 4, 1, 2, 2,
4, 1, 1, 2, 2, 2, 2, 4, 2, 2, 3, 4, 1, 4, 0, 2, 2, 1, 4,
2, 2, 4, 2, 0, 2, 4, 1, 2, 4, 4, 2, 1, 4, 1, 2, 2, 2, 2,
4, 4, 3, 4, 4, 1, 3, 2, 1, 1, 4, 2, 4, 4, 2, 1, 2, 3, 3,
4, 4, 4, 4, 4, 1, 3, 2, 4, 3, 4, 3, 2, 3, 1, 2, 4, 3, 1,
4, 4, 1, 3, 2, 4, 4, 3, 1, 2, 3, 2, 4, 2, 4, 1, 2, 2, 2,
0, 2, 3, 2, 1, 2, 3, 4, 2, 2, 3, 2, 1, 1, 2, 2, 1, 3, 4,
3, 2, 4, 4, 2, 2, 4, 3, 2, 4, 4, 3, 2, 4, 1, 3, 0, 4, 2,
0, 1, 3, 4, 4, 2, 0, 2, 1, 0, 2, 4, 3, 4, 1, 2, 2, 2, 4,
2, 4, 0, 3, 2, 2, 3, 2, 3, 2, 4, 2, 1, 4, 4), INSTALL_RATE = c(4,
2, 2, 2, 3, 2, 3, 2, 2, 4, 3, 3, 1, 4, 2, 4, 4, 2, 4, 3,
4, 2, 1, 3, 2, 1, 4, 3, 3, 3, 3, 2, 2, 4, 4, 4, 1, 4, 2,
4, 4, 3, 2, 1, 4, 4, 4, 1, 1, 4, 4, 1, 3, 2, 4, 1, 2, 2,
3, 4, 2, 4, 4, 2, 4, 4, 2, 4, 4, 4, 1, 4, 3, 2, 4, 4, 4,
2, 2, 2, 1, 4, 3, 4, 3, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 3,
4, 4, 4, 3, 4, 4, 3, 4, 2, 2, 2, 2, 1, 1, 1, 4, 3, 4, 3,
4, 4, 2, 1, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 3, 1, 4, 2, 4,
2, 4, 2, 4, 4, 2, 2, 4, 3, 2, 4, 4, 1, 4, 3, 4, 2, 1, 4,
2, 4, 2, 3, 4, 2, 1, 3, 4, 4, 2, 4, 1, 4, 4, 2, 4, 4, 4,
3, 4, 2, 4, 2, 4, 4, 4, 1, 2, 4, 4, 4, 4, 2, 2, 4, 1, 2,
4, 4, 2, 4, 2, 1, 4, 4, 4), MALE_DIV = c(0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1), MALE_SINGLE = c(1, 0, 1, 1, 1, 1, 1, 1, 0, 0,
0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1,
1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0,
0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0,
0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0,
1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1,
1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0,
1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0,
0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0),
MALE_MAR_or_WID = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), `CO-APPLICANT` = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0), GUARANTOR = c(0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0), PRESENT_RESIDENT = c(4, 2, 3, 4, 4, 4, 4,
2, 4, 2, 1, 4, 1, 4, 4, 2, 4, 3, 2, 2, 4, 3, 3, 4, 1, 2,
4, 3, 2, 4, 3, 2, 2, 4, 1, 2, 3, 2, 2, 3, 2, 1, 4, 4, 4,
4, 4, 2, 4, 2, 2, 2, 2, 1, 4, 2, 1, 2, 2, 4, 1, 4, 4, 2,
4, 4, 2, 1, 4, 4, 2, 2, 4, 1, 4, 4, 3, 4, 2, 1, 1, 3, 4,
4, 4, 2, 1, 4, 3, 3, 4, 3, 3, 4, 4, 4, 2, 4, 4, 4, 4, 4,
2, 3, 4, 3, 4, 2, 2, 2, 2, 4, 3, 2, 1, 1, 3, 3, 4, 3, 2,
2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 2, 2, 3, 2, 2,
2, 1, 2, 2, 4, 2, 4, 3, 2, 4, 4, 4, 1, 4, 4, 4, 4, 1, 3,
2, 4, 1, 3, 4, 4, 2, 2, 1, 4, 4, 3, 1, 2, 2, 1, 1, 1, 4,
2, 4, 1, 2, 2, 4, 4, 2, 4, 3, 1, 4, 3, 4, 2, 2, 4, 3, 1,
4, 4, 3), REAL_ESTATE = c(1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,
0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1,
0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0,
0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), PROP_UNKN_NONE = c(0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 1, 1), AGE = c(67, 22, 49, 45, 53, 35,
53, 35, 61, 28, 25, 24, 22, 60, 28, 32, 53, 25, 44, 31, 48,
44, 48, 44, 26, 36, 39, 42, 34, 63, 36, 27, 30, 57, 33, 25,
31, 37, 37, 24, 30, 26, 44, 24, 58, 35, 39, 23, 39, 28, 29,
30, 25, 31, 57, 26, 52, 31, 23, 23, 27, 50, 61, 25, 26, 48,
29, 22, 37, 25, 30, 46, 51, 41, 40, 66, 34, 51, 39, 22, 44,
47, 24, 58, 52, 29, 27, 47, 30, 28, 56, 54, 33, 20, 54, 58,
61, 34, 36, 36, 41, 24, 24, 35, 26, 39, 39, 32, 30, 35, 31,
23, 28, 25, 35, 47, 30, 27, 23, 36, 25, 41, 24, 63, 27, 30,
40, 30, 34, 29, 24, 29, 27, 47, 21, 38, 27, 66, 35, 44, 27,
30, 27, 22, 23, 30, 39, 51, 28, 46, 42, 38, 24, 29, 36, 20,
48, 45, 38, 34, 36, 30, 36, 70, 36, 32, 33, 20, 25, 31, 33,
26, 34, 33, 26, 53, 42, 52, 31, 65, 28, 30, 40, 50, 36, 31,
74, 68, 20, 33, 54, 34, 36, 29, 21, 34, 28, 27, 36, 40),
OTHER_INSTALL = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1,
0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0,
1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), RENT = c(0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 0, 0, 1, 0, 0), OWN_RES = c(1, 1, 1, 0, 0, 0,
1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,
1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0,
0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0,
1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0,
0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1,
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1), NUM_CREDITS = c(2, 1, 1, 1, 2, 1, 1, 1, 1, 2,
1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 1, 2, 1,
2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1,
2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1,
1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2,
2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1,
2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2,
1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 3, 1, 1, 1, 1,
1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2,
2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2,
2, 2, 1, 1, 2, 1, 3, 1, 2, 3, 1, 1, 1, 1, 2, 2, 4, 1, 1),
JOB = c(2, 2, 1, 2, 2, 1, 2, 3, 1, 3, 2, 2, 2, 1, 2, 1, 2,
2, 3, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 3, 1,
2, 2, 2, 2, 3, 2, 1, 2, 1, 3, 2, 0, 1, 2, 1, 3, 2, 2, 2,
1, 3, 2, 3, 1, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 1,
3, 3, 2, 2, 1, 2, 2, 2, 1, 1, 1, 3, 2, 2, 3, 2, 2, 2, 1,
2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2,
1, 2, 2, 2, 3, 2, 2, 3, 2, 3, 1, 2, 2, 2, 1, 2, 3, 2, 2,
2, 1, 2, 2, 2, 2, 1, 2, 1, 0, 3, 3, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 2, 3, 2, 2, 2, 2, 2,
2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 1, 2, 2, 2, 3, 0,
2, 2, 3, 1, 2, 2, 2, 3, 2, 2, 2, 3), NUM_DEPENDENTS = c(1,
1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1,
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1,
2, 2, 1, 1, 1, 1, 1, 1, 1), TELEPHONE = c(1, 0, 0, 0, 0,
1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0,
0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1,
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1,
1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1,
1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0,
1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0,
1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0,
0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1,
0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0,
1, 1, 0, 1, 1), FOREIGN = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
DEFAULT = c(0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0,
1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0,
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0,
1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1)), row.names = c(NA,
-200L), class = c("tbl_df", "tbl", "data.frame"))

Why is auto.arima() giving me the Error: "'by' argument is much too small"

I am working on predicting intra-day sales for a retailer. We want to know if we can predict sales through the rest of the day, based off sales within that day. I'm working with roughly 3 years of data in a time series, which has given me roughly 26,000 rows of data.
I've never worked with a time series this large so my approach might be off. Or auto.arima() may not have been made to handle data this large.
I've tried limiting my data down to even 300 rows and had marginal success, but have not found anything that works with my larger data set. auto.arima() doesn't even have a by = argument from what I can find.
my_ts <- structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3,
3, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 4, 1,
1, 0, 3, 1, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,
1, 9, 1, 6, 5, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 3, 1, 0, 3, 5, 2, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 3, 1, 0, 0, 6, 0, 6, 0, 1, 2, 3, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 2, 4, 6, 5, 0, 1, 0, 2, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 2, 0, 2, 0, 0, 0, 1, 1,
3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 0, 1, 0,
3, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 0,
8, 2, 7, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,
0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 6, 2, 0, 1, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, -1, 2, 3, 1, 0, 0, 2, 5, 7, 0, -1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -1, 6, 1, 2, 2, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 0, 2, 0,
4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 4, 0, 0,
2, 2, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2,
2, 0, 2, 3, 6, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 2, 2, 2, 1, 4, 3, 2, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 3, 4, 0, 4, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 3, 2, 1, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 0, 3, 4, 3, 0, 0, 2, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 5, 1, 1, 1, 0, 3,
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 2,
0, 1, 1, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1,
1, 4, 1, 2, 9, 1, 4, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 4, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 3, 1, 2, 1, 1, 4, 0, 3, 3, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 2, 2, 1, 6, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 2, 0, 1, 2, 1, 4, 0, 0, 5,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 1, 1, 3, 3,
4, 4, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,
3, 0, 2, 8, 0, 2, 3, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 1, 1, 2, 0, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 3, 1, 2, 2, 3, 1, 4, 4, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 4, 1, 2, 0, 0, 5, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 0, 1, 1, 4, 0, 4, 3,
2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 1, 0, 0, 0,
3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 8,
1, 2, 0, 4, 2, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
1, 6, 7, 0, 1, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 5, 0, 2, 1, 4, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 2, 1, 4, 7, 5, 0, 7, 4, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 0, 4, 6, 2, 1, 3, 5, 3, 3, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 3, 0, 1, 1, 3,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 6, 0, 0), index = structure(c(1435190400,
1435194000, 1435197600, 1435201200, 1435204800, 1435208400, 1435212000,
1435215600, 1435219200, 1435222800, 1435226400, 1435230000, 1435233600,
1435237200, 1435240800, 1435244400, 1435248000, 1435251600, 1435255200,
1435258800, 1435262400, 1435266000, 1435269600, 1435273200, 1435276800,
1435280400, 1435284000, 1435287600, 1435291200, 1435294800, 1435298400,
1435302000, 1435305600, 1435309200, 1435312800, 1435316400, 1435320000,
1435323600, 1435327200, 1435330800, 1435334400, 1435338000, 1435341600,
1435345200, 1435348800, 1435352400, 1435356000, 1435359600, 1435363200,
1435366800, 1435370400, 1435374000, 1435377600, 1435381200, 1435384800,
1435388400, 1435392000, 1435395600, 1435399200, 1435402800, 1435406400,
1435410000, 1435413600, 1435417200, 1435420800, 1435424400, 1435428000,
1435431600, 1435435200, 1435438800, 1435442400, 1435446000, 1435449600,
1435453200, 1435456800, 1435460400, 1435464000, 1435467600, 1435471200,
1435474800, 1435478400, 1435482000, 1435485600, 1435489200, 1435492800,
1435496400, 1435500000, 1435503600, 1435507200, 1435510800, 1435514400,
1435518000, 1435521600, 1435525200, 1435528800, 1435532400, 1435536000,
1435539600, 1435543200, 1435546800, 1435550400, 1435554000, 1435557600,
1435561200, 1435564800, 1435568400, 1435572000, 1435575600, 1435579200,
1435582800, 1435586400, 1435590000, 1435593600, 1435597200, 1435600800,
1435604400, 1435608000, 1435611600, 1435615200, 1435618800, 1435622400,
1435626000, 1435629600, 1435633200, 1435636800, 1435640400, 1435644000,
1435647600, 1435651200, 1435654800, 1435658400, 1435662000, 1435665600,
1435669200, 1435672800, 1435676400, 1435680000, 1435683600, 1435687200,
1435690800, 1435694400, 1435698000, 1435701600, 1435705200, 1435708800,
1435712400, 1435716000, 1435719600, 1435723200, 1435726800, 1435730400,
1435734000, 1435737600, 1435741200, 1435744800, 1435748400, 1435752000,
1435755600, 1435759200, 1435762800, 1435766400, 1435770000, 1435773600,
1435777200, 1435780800, 1435784400, 1435788000, 1435791600, 1435795200,
1435798800, 1435802400, 1435806000, 1435809600, 1435813200, 1435816800,
1435820400, 1435824000, 1435827600, 1435831200, 1435834800, 1435838400,
1435842000, 1435845600, 1435849200, 1435852800, 1435856400, 1435860000,
1435863600, 1435867200, 1435870800, 1435874400, 1435878000, 1435881600,
1435885200, 1435888800, 1435892400, 1435896000, 1435899600, 1435903200,
1435906800, 1435910400, 1435914000, 1435917600, 1435921200, 1435924800,
1435928400, 1435932000, 1435935600, 1435939200, 1435942800, 1435946400,
1435950000, 1435953600, 1435957200, 1435960800, 1435964400, 1435968000,
1435971600, 1435975200, 1435978800, 1435982400, 1435986000, 1435989600,
1435993200, 1435996800, 1436000400, 1436004000, 1436007600, 1436011200,
1436014800, 1436018400, 1436022000, 1436025600, 1436029200, 1436032800,
1436036400, 1436040000, 1436043600, 1436047200, 1436050800, 1436054400,
1436058000, 1436061600, 1436065200, 1436068800, 1436072400, 1436076000,
1436079600, 1436083200, 1436086800, 1436090400, 1436094000, 1436097600,
1436101200, 1436104800, 1436108400, 1436112000, 1436115600, 1436119200,
1436122800, 1436126400, 1436130000, 1436133600, 1436137200, 1436140800,
1436144400, 1436148000, 1436151600, 1436155200, 1436158800, 1436162400,
1436166000, 1436169600, 1436173200, 1436176800, 1436180400, 1436184000,
1436187600, 1436191200, 1436194800, 1436198400, 1436202000, 1436205600,
1436209200, 1436212800, 1436216400, 1436220000, 1436223600, 1436227200,
1436230800, 1436234400, 1436238000, 1436241600, 1436245200, 1436248800,
1436252400, 1436256000, 1436259600, 1436263200, 1436266800, 1436270400,
1436274000, 1436277600, 1436281200, 1436284800, 1436288400, 1436292000,
1436295600, 1436299200, 1436302800, 1436306400, 1436310000, 1436313600,
1436317200, 1436320800, 1436324400, 1436328000, 1436331600, 1436335200,
1436338800, 1436342400, 1436346000, 1436349600, 1436353200, 1436356800,
1436360400, 1436364000, 1436367600, 1436371200, 1436374800, 1436378400,
1436382000, 1436385600, 1436389200, 1436392800, 1436396400, 1436400000,
1436403600, 1436407200, 1436410800, 1436414400, 1436418000, 1436421600,
1436425200, 1436428800, 1436432400, 1436436000, 1436439600, 1436443200,
1436446800, 1436450400, 1436454000, 1436457600, 1436461200, 1436464800,
1436468400, 1436472000, 1436475600, 1436479200, 1436482800, 1436486400,
1436490000, 1436493600, 1436497200, 1436500800, 1436504400, 1436508000,
1436511600, 1436515200, 1436518800, 1436522400, 1436526000, 1436529600,
1436533200, 1436536800, 1436540400, 1436544000, 1436547600, 1436551200,
1436554800, 1436558400, 1436562000, 1436565600, 1436569200, 1436572800,
1436576400, 1436580000, 1436583600, 1436587200, 1436590800, 1436594400,
1436598000, 1436601600, 1436605200, 1436608800, 1436612400, 1436616000,
1436619600, 1436623200, 1436626800, 1436630400, 1436634000, 1436637600,
1436641200, 1436644800, 1436648400, 1436652000, 1436655600, 1436659200,
1436662800, 1436666400, 1436670000, 1436673600, 1436677200, 1436680800,
1436684400, 1436688000, 1436691600, 1436695200, 1436698800, 1436702400,
1436706000, 1436709600, 1436713200, 1436716800, 1436720400, 1436724000,
1436727600, 1436731200, 1436734800, 1436738400, 1436742000, 1436745600,
1436749200, 1436752800, 1436756400, 1436760000, 1436763600, 1436767200,
1436770800, 1436774400, 1436778000, 1436781600, 1436785200, 1436788800,
1436792400, 1436796000, 1436799600, 1436803200, 1436806800, 1436810400,
1436814000, 1436817600, 1436821200, 1436824800, 1436828400, 1436832000,
1436835600, 1436839200, 1436842800, 1436846400, 1436850000, 1436853600,
1436857200, 1436860800, 1436864400, 1436868000, 1436871600, 1436875200,
1436878800, 1436882400, 1436886000, 1436889600, 1436893200, 1436896800,
1436900400, 1436904000, 1436907600, 1436911200, 1436914800, 1436918400,
1436922000, 1436925600, 1436929200, 1436932800, 1436936400, 1436940000,
1436943600, 1436947200, 1436950800, 1436954400, 1436958000, 1436961600,
1436965200, 1436968800, 1436972400, 1436976000, 1436979600, 1436983200,
1436986800, 1436990400, 1436994000, 1436997600, 1437001200, 1437004800,
1437008400, 1437012000, 1437015600, 1437019200, 1437022800, 1437026400,
1437030000, 1437033600, 1437037200, 1437040800, 1437044400, 1437048000,
1437051600, 1437055200, 1437058800, 1437062400, 1437066000, 1437069600,
1437073200, 1437076800, 1437080400, 1437084000, 1437087600, 1437091200,
1437094800, 1437098400, 1437102000, 1437105600, 1437109200, 1437112800,
1437116400, 1437120000, 1437123600, 1437127200, 1437130800, 1437134400,
1437138000, 1437141600, 1437145200, 1437148800, 1437152400, 1437156000,
1437159600, 1437163200, 1437166800, 1437170400, 1437174000, 1437177600,
1437181200, 1437184800, 1437188400, 1437192000, 1437195600, 1437199200,
1437202800, 1437206400, 1437210000, 1437213600, 1437217200, 1437220800,
1437224400, 1437228000, 1437231600, 1437235200, 1437238800, 1437242400,
1437246000, 1437249600, 1437253200, 1437256800, 1437260400, 1437264000,
1437267600, 1437271200, 1437274800, 1437278400, 1437282000, 1437285600,
1437289200, 1437292800, 1437296400, 1437300000, 1437303600, 1437307200,
1437310800, 1437314400, 1437318000, 1437321600, 1437325200, 1437328800,
1437332400, 1437336000, 1437339600, 1437343200, 1437346800, 1437350400,
1437354000, 1437357600, 1437361200, 1437364800, 1437368400, 1437372000,
1437375600, 1437379200, 1437382800, 1437386400, 1437390000, 1437393600,
1437397200, 1437400800, 1437404400, 1437408000, 1437411600, 1437415200,
1437418800, 1437422400, 1437426000, 1437429600, 1437433200, 1437436800,
1437440400, 1437444000, 1437447600, 1437451200, 1437454800, 1437458400,
1437462000, 1437465600, 1437469200, 1437472800, 1437476400, 1437480000,
1437483600, 1437487200, 1437490800, 1437494400, 1437498000, 1437501600,
1437505200, 1437508800, 1437512400, 1437516000, 1437519600, 1437523200,
1437526800, 1437530400, 1437534000, 1437537600, 1437541200, 1437544800,
1437548400, 1437552000, 1437555600, 1437559200, 1437562800, 1437566400,
1437570000, 1437573600, 1437577200, 1437580800, 1437584400, 1437588000,
1437591600, 1437595200, 1437598800, 1437602400, 1437606000, 1437609600,
1437613200, 1437616800, 1437620400, 1437624000, 1437627600, 1437631200,
1437634800, 1437638400, 1437642000, 1437645600, 1437649200, 1437652800,
1437656400, 1437660000, 1437663600, 1437667200, 1437670800, 1437674400,
1437678000, 1437681600, 1437685200, 1437688800, 1437692400, 1437696000,
1437699600, 1437703200, 1437706800, 1437710400, 1437714000, 1437717600,
1437721200, 1437724800, 1437728400, 1437732000, 1437735600, 1437739200,
1437742800, 1437746400, 1437750000, 1437753600, 1437757200, 1437760800,
1437764400, 1437768000, 1437771600, 1437775200, 1437778800, 1437782400,
1437786000, 1437789600, 1437793200, 1437796800, 1437800400, 1437804000,
1437807600, 1437811200, 1437814800, 1437818400, 1437822000, 1437825600,
1437829200, 1437832800, 1437836400, 1437840000, 1437843600, 1437847200,
1437850800, 1437854400, 1437858000, 1437861600, 1437865200, 1437868800,
1437872400, 1437876000, 1437879600, 1437883200, 1437886800, 1437890400,
1437894000, 1437897600, 1437901200, 1437904800, 1437908400, 1437912000,
1437915600, 1437919200, 1437922800, 1437926400, 1437930000, 1437933600,
1437937200, 1437940800, 1437944400, 1437948000, 1437951600, 1437955200,
1437958800, 1437962400, 1437966000, 1437969600, 1437973200, 1437976800,
1437980400, 1437984000, 1437987600, 1437991200, 1437994800, 1437998400,
1438002000, 1438005600, 1438009200, 1438012800, 1438016400, 1438020000,
1438023600, 1438027200, 1438030800, 1438034400, 1438038000, 1438041600,
1438045200, 1438048800, 1438052400, 1438056000, 1438059600, 1438063200,
1438066800, 1438070400, 1438074000, 1438077600, 1438081200, 1438084800,
1438088400, 1438092000, 1438095600, 1438099200, 1438102800, 1438106400,
1438110000, 1438113600, 1438117200, 1438120800, 1438124400, 1438128000,
1438131600, 1438135200, 1438138800, 1438142400, 1438146000, 1438149600,
1438153200, 1438156800, 1438160400, 1438164000, 1438167600, 1438171200,
1438174800, 1438178400, 1438182000, 1438185600, 1438189200, 1438192800,
1438196400, 1438200000, 1438203600, 1438207200, 1438210800, 1438214400,
1438218000, 1438221600, 1438225200, 1438228800, 1438232400, 1438236000,
1438239600, 1438243200, 1438246800, 1438250400, 1438254000, 1438257600,
1438261200, 1438264800, 1438268400, 1438272000, 1438275600, 1438279200,
1438282800, 1438286400, 1438290000, 1438293600, 1438297200, 1438300800,
1438304400, 1438308000, 1438311600, 1438315200, 1438318800, 1438322400,
1438326000, 1438329600, 1438333200, 1438336800, 1438340400, 1438344000,
1438347600, 1438351200, 1438354800, 1438358400, 1438362000, 1438365600,
1438369200, 1438372800, 1438376400, 1438380000, 1438383600, 1438387200,
1438390800, 1438394400, 1438398000, 1438401600, 1438405200, 1438408800,
1438412400, 1438416000, 1438419600, 1438423200, 1438426800, 1438430400,
1438434000, 1438437600, 1438441200, 1438444800, 1438448400, 1438452000,
1438455600, 1438459200, 1438462800, 1438466400, 1438470000, 1438473600,
1438477200, 1438480800, 1438484400, 1438488000, 1438491600, 1438495200,
1438498800, 1438502400, 1438506000, 1438509600, 1438513200, 1438516800,
1438520400, 1438524000, 1438527600, 1438531200, 1438534800, 1438538400,
1438542000, 1438545600, 1438549200, 1438552800, 1438556400, 1438560000,
1438563600, 1438567200, 1438570800, 1438574400, 1438578000, 1438581600,
1438585200, 1438588800, 1438592400, 1438596000, 1438599600, 1438603200,
1438606800, 1438610400, 1438614000, 1438617600, 1438621200, 1438624800,
1438628400, 1438632000, 1438635600, 1438639200, 1438642800, 1438646400,
1438650000, 1438653600, 1438657200, 1438660800, 1438664400, 1438668000,
1438671600, 1438675200, 1438678800, 1438682400, 1438686000, 1438689600,
1438693200, 1438696800, 1438700400, 1438704000, 1438707600, 1438711200,
1438714800, 1438718400, 1438722000, 1438725600, 1438729200, 1438732800,
1438736400, 1438740000, 1438743600, 1438747200, 1438750800, 1438754400,
1438758000, 1438761600, 1438765200, 1438768800, 1438772400, 1438776000,
1438779600, 1438783200, 1438786800), class = c("POSIXct", "POSIXt"
), tzone = "UTC"), class = c("zooreg", "zoo"), frequency = 24)
fit1 <-auto.arima(my_ts,seasonal = TRUE)
I was hoping to get a model through arima, but I'm only getting the error:
"Error in seq.default(head(tt, 1), tail(tt, 1), deltat) :
'by' argument is much too small"

y-axis label of highest value not printed

I want to plot the hourly visits to a certain webpage of my website. The x-axis shows the hours (0 to 23), the y-axis shows the number of unique visits.
I'm supressing axes in plot() and adding them with axis(). I want only the lowest and highest y-values labelled:
axis(2,
at = seq(min(...), max(...), 1),
labels = c(min(...),
rep.int("", max(...) - min(...) - 1),
max(...)
)
)
(Ellipses in the code sample represend the column. I left this out for better visual clarity of the code structure.)
But in the plot, the label in the highest value does not appear:
Sometimes (depending on the range of values) I can get the highest value label to appear by changing rep.int("" ... to rep.int(" ", i.e., labelling the ticks with a space, but this doesn't work always.
Why does R not print the hightest label? And, more importantly:
How can I force R to print the highest label?
Complete code example:
sitzungen <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 8, 4, 0, 8, 3, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 0, 0, 2, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 2, 1, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 4, 1, 2, 1, 7, 7, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 3, 8, 4, 1, 2, 0, 1, 1, 0, 0, 5, 0, 3, 3, 2, 3, 1, 2, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 3, 0, 0, 3, 1, 6, 3, 9, 1, 0, 2, 1, 4, 8, 2, 2, 2, 0, 0, 0, 2, 1, 3, 1, 1, 2, 1, 2, 3, 1, 4, 3, 0, 2, 3, 1, 3, 1, 5, 2, 0, 0, 1, 0, 1, 2, 1, 0, 3, 0, 1, 0, 3, 7, 2, 2, 1, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 15, 2, 2, 1, 0, 0, 0, 0, 0, 2, 3, 0, 3, 0, 2, 1, 1, 2, 2, 4, 2, 1, 4, 2, 1, 2, 2, 1, 0, 0, 0, 7, 0, 2, 4, 2, 0, 2, 3, 5, 2, 1, 4, 4, 2, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 2, 1, 2, 1, 1, 2, 1, 4, 1, 1, 1, 0, 0, 3, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
stunde <- rep(0:23, 20)
stuendlich <- data.frame(cbind(stunde, sitzungen))
aggr <- aggregate(sitzungen ~ stunde, stuendlich, sum)
aggr <- rbind(aggr, c(24, aggr[which(aggr$stunde == "23"),]$sitzungen))
plot(aggr, type = "s", xlim = c(0, 24), axes = FALSE, xlab = "Stunde", ylab = "Sitzungen", main = "Sitzungen pro Stunde (kumuliert)")
axis(1, at = seq(0.5, 23.5, 1), labels = 0:23)
axis(2, at = seq(min(aggr$sitzungen), max(aggr$sitzungen), 1), labels = c(min(aggr$sitzungen), rep.int(" ", max(aggr$sitzungen) - min(aggr$sitzungen) - 1), max(aggr$sitzungen)))
Don't use " " or ""; use NA:
axis(2, at = seq(min(aggr$sitzungen), max(aggr$sitzungen), 1),
labels = c(min(aggr$sitzungen),
rep.int(NA, max(aggr$sitzungen) - min(aggr$sitzungen) - 1),
max(aggr$sitzungen)))

Stacked barplot with partitioned main and sub x label

I'm new to R. I want to create a stacked barplot based on the following data. I want to plot these data into a stacked barplot that describes percentage of disease score for each combination of genotype and race in x axis, e.g. 76R-race 1, rmc-race 1. As well how to simplify the x axis, by splitting each race to have 76R and rmc combination instead of labelling each combination, i.e. instead of labelling each bar with 76R-race 1, rmc-race 1, etc, how to label race 1 as main axis and have 76R and rmc as sub-axis, and so on.
disease.nov <- data.frame(disease.score = c(0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 5, 5, 4, 4, 6, 5, 8, 5, 5, 5, 6, 4, 7, 5, 8, 6, 1, 2, 2, 4, 5, 8, 5, 6, 7, 4, 4, 4, 2, 3, 5, 6, 7, 7, 5, 2, 6, 6, 6, 4, 5, 8, 7, 5, 2, 5, 6, 3, 7, 4, 7, 7, 8, 6, 8, 8, 7, 9, 9, 7, 4, 9, 9, 5, 3, 8, 8, 6, 5, 7, 7, 8, 6, 6, 5, 7, 7, 8, 8, 8, 8, 7, 6, 6, 8, 4, 7, 7, 8, 6, 7, 7, 8, 6, 5, 6, 7, 7, 4, 6, 8, 7, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
genotype=gl(2,52,624, labels=c("76R","rmc")),
race=gl(6,104,624, labels=c("race 1","race 2","race 3","WAC 7673","WAC 7591","control")))
I'm not sure if this is what you're looking for:
library(ggplot2)
library(scales)
ggplot(disease.nov, aes(x=genotype, fill=factor(disease.score))) +
geom_bar(position="fill") +
facet_wrap(~ race) +
scale_y_continuous(labels = percent_format())
Which produces:

Resources