ASCII equivalent to \eqn{\bar{x}} in Rd files - r

I am writing the documentation for a function of an R package I am building.
In order to have a moderately nice aspect for the help file, I need the equivalent of \bar{x} in ASCII:
\eqn{\bar{x}}{ASCII equivalent}

Not sure there's a consensus on the best way to do this, it's more a matter of taste and clarity.
Having faced this issue myself, two solutions I have used are:
y = \eqn{\bar{x}}{xbar}
y = \eqn{\bar{x}}{mean(x)}
The advantage of the latter is that when the help is displayed as ASCII, the user can copy/paste (send) the text to an R process, getting an example value for y. This assumes that \bar{x} is shorthand for the mean, as is often the case.

Related

CRAN package submission: "Error: C stack usage is too close to the limit"

Right upfront: this is an issue I encountered when submitting an R package to CRAN. So I
dont have control of the stack size (as the issue occured on one of CRANs platforms)
I cant provide a reproducible example (as I dont know the exact configurations on CRAN)
Problem
When trying to submit the cSEM.DGP package to CRAN the automatic pretest (for Debian x86_64-pc-linux-gnu; not for Windows!) failed with the NOTE: C stack usage 7975520 is too close to the limit.
I know this is caused by a function with three arguments whose body is about 800 rows long. The function body consists of additions and multiplications of these arguments. It is the function varzeta6() which you find here (from row 647 onwards).
How can I adress this?
Things I cant do:
provide a reproducible example (at least I would not know how)
change the stack size
Things I am thinking of:
try to break the function into smaller pieces. But I dont know how to best do that.
somehow precompile? the function (to be honest, I am just guessing) so CRAN doesnt complain?
Let me know your ideas!
Details / Background
The reason why varzeta6() (and varzeta4() / varzeta5() and even more so varzeta7()) are so long and R-inefficient is that they are essentially copy-pasted from mathematica (after simplifying the mathematica code as good as possible and adapting it to be valid R code). Hence, the code is by no means R-optimized (which #MauritsEvers righly pointed out).
Why do we need mathematica? Because what we need is the general form for the model-implied construct correlation matrix of a recursive strucutral equation model with up to 8 constructs as a function of the parameters of the model equations. In addition there are constraints.
To get a feel for the problem, lets take a system of two equations that can be solved recursivly:
Y2 = beta1*Y1 + zeta1
Y3 = beta2*Y1 + beta3*Y2 + zeta2
What we are interested in is the covariances: E(Y1*Y2), E(Y1*Y3), and E(Y2*Y3) as a function of beta1, beta2, beta3 under the constraint that
E(Y1) = E(Y2) = E(Y3) = 0,
E(Y1^2) = E(Y2^2) = E(Y3^3) = 1
E(Yi*zeta_j) = 0 (with i = 1, 2, 3 and j = 1, 2)
For such a simple model, this is rather trivial:
E(Y1*Y2) = E(Y1*(beta1*Y1 + zeta1) = beta1*E(Y1^2) + E(Y1*zeta1) = beta1
E(Y1*Y3) = E(Y1*(beta2*Y1 + beta3*(beta1*Y1 + zeta1) + zeta2) = beta2 + beta3*beta1
E(Y2*Y3) = ...
But you see how quickly this gets messy when you add Y4, Y5, until Y8.
In general the model-implied construct correlation matrix can be written as (the expression actually looks more complicated because we also allow for up to 5 exgenous constructs as well. This is why varzeta1() already looks complicated. But ignore this for now.):
V(Y) = (I - B)^-1 V(zeta)(I - B)'^-1
where I is the identity matrix and B a lower triangular matrix of model parameters (the betas). V(zeta) is a diagonal matrix. The functions varzeta1(), varzeta2(), ..., varzeta7() compute the main diagonal elements. Since we constrain Var(Yi) to always be 1, the variances of the zetas follow. Take for example the equation Var(Y2) = beta1^2*Var(Y1) + Var(zeta1) --> Var(zeta1) = 1 - beta1^2. This looks simple here, but is becomes extremly complicated when we take the variance of, say, the 6th equation in such a chain of recursive equations because Var(zeta6) depends on all previous covariances betwenn Y1, ..., Y5 which are themselves dependend on their respective previous covariances.
Ok I dont know if that makes things any clearer. Here are the main point:
The code for varzeta1(), ..., varzeta7() is copy pasted from mathematica and hence not R-optimized.
Mathematica is required because, as far as I know, R cannot handle symbolic calculations.
I could R-optimze "by hand" (which is extremly tedious)
I think the structure of the varzetaX() must be taken as given. The question therefore is: can I somehow use this function anyway?
Once conceivable approach is to try to convince the CRAN maintainers that there's no easy way for you to fix the problem. This is a NOTE, not a WARNING; The CRAN repository policy says
In principle, packages must pass R CMD check without warnings or significant notes to be admitted to the main CRAN package area. If there are warnings or notes you cannot eliminate (for example because you believe them to be spurious) send an explanatory note as part of your covering email, or as a comment on the submission form
So, you could take a chance that your well-reasoned explanation (in the comments field on the submission form) will convince the CRAN maintainers. In the long run it would be best to find a way to simplify the computations, but it might not be necessary to do it before submission to CRAN.
This is a bit too long as a comment, but hopefully this will give you some ideas for optimising the code for the varzeta* functions; or at the very least, it might give you some food for thought.
There are a few things that confuse me:
All varzeta* functions have arguments beta, gamma and phi, which seem to be matrices. However, in varzeta1 you don't use beta, yet beta is the first function argument.
I struggle to link the details you give at the bottom of your post with the code for the varzeta* functions. You don't explain where the gamma and phi matrices come from, nor what they denote. Furthermore, seeing that beta are the model's parameter etimates, I don't understand why beta should be a matrix.
As I mentioned in my earlier comment, I would be very surprised if these expressions cannot be simplified. R can do a lot of matrix operations quite comfortably, there shouldn't really be a need to pre-calculate individual terms.
For example, you can use crossprod and tcrossprod to calculate cross products, and %*% implements matrix multiplication.
Secondly, a lot of mathematical operations in R are vectorised. I already mentioned that you can simplify
1 - gamma[1,1]^2 - gamma[1,2]^2 - gamma[1,3]^2 - gamma[1,4]^2 - gamma[1,5]^2
as
1 - sum(gamma[1, ]^2)
since the ^ operator is vectorised.
Perhaps more fundamentally, this seems somewhat of an XY problem to me where it might help to take a step back. Not knowing the full details of what you're trying to model (as I said, I can't link the details you give to the cSEM.DGP code), I would start by exploring how to solve the recursive SEM in R. I don't really see the need for Mathematica here. As I said earlier, matrix operations are very standard in R; analytically solving a set of recursive equations is also possible in R. Since you seem to come from the Mathematica realm, it might be good to discuss this with a local R coding expert.
If you must use those scary varzeta* functions (and I really doubt that), an option may be to rewrite them in C++ and then compile them with Rcpp to turn them into R functions. Perhaps that will avoid the C stack usage limit?

How to speed up writing to a matrix in a reference class in R

Here is a piece of R code that writes to each element of a matrix in a reference class. It runs incredibly slowly, and I’m wondering if I’ve missed a simple trick that will speed this up.
nx = 2000
ny = 10
ref_matrix <- setRefClass(
"ref_matrix",fields = list(data = "matrix"),
)
out <- ref_matrix(data = matrix(0.0,nx,ny))
#tracemem(out$data)
for (iy in 1:ny) {
for (ix in 1:nx) {
out$data[ix,iy] <- ix + iy
}
}
It seems that each write to an element of the matrix triggers a check that involves a copy of the entire matrix. (Uncommenting the tracemen() call shows this.) Now, I’ve found a discussion that seems to confirm this:
https://r-devel.r-project.narkive.com/8KtYICjV/rd-copy-on-assignment-to-large-field-of-reference-class
and this also seems to be covered by Speeding up field access in R reference classes
but in both of these this behaviour can be bypassed by not declaring a class for the field, and this works for the example in the first link which uses a 1D vector, b, which can just be set as b <<- 1:10000. But I’ve not found an equivalent way of creating a 2D array without using a explicit “matrix” instance.
Am I just missing something simple, or is this actually not possible?
Let me add a couple of things. First, I’m very new to R, so could easily have missed something. Second, I’m really just curious about the way reference classes work in this case and whether there’s a simple way to use them efficiently; I’m not looking for a really fast way to set the elements of a matrix - I can do that by not having the matrix in a reference class at all, and if I really care about speed I can write a C routine to do it and call it from R.
Here’s some background that might explain why I’m interested in this, which you’re welcome to ignore.
I got here by wanting to see how different languages, and even different compiler options and different ways of coding the same operation, compared for efficiency when accessing 2D rectangular arrays. I’ve been playing with a test program that creates two 2D arrays of the same size, and calls a subroutine that sets the first to the elements of the second plus their index values. (Almost any operation would do, but this one isn’t completely trivial to optimise.) I have this in a number of languages now, C, C++, Julia, Tcl, Fortran, Swift, etc., even hand-coded assembler (spoiler alert: assembler isn’t worth the effort any more) and thought I’d try R. The obvious implementation in R passes the two arrays to a subroutine that does the work, but because R doesn’t normally pass by reference, that routine has to make a copy of the modified array and return that as the function value. I thought using a reference class would avoid the relatively minor overhead of that copy, so I tried that and was surprised to discover that, far from speeding things up, it slowed them down enormously.
Use outer:
out$data <- outer(1:ny, 1:nx, `+`)
Also, don't use reference classes (or R6 classes) unless you actually need reference semantics. KISS and all that.

what's preventing additions to the current set of R reserved words/symbols?

Is there a historical precedent of internal changes to the R parser, adding new reserved words or symbols?
If I remember correctly data.table uses a serendipitous := that was once defined but left unused in R internals, but I'm not aware of others. However, as the language evolves, it would sometimes seem useful to define new symbols.
An obvious case could be made for magrittr's pipe %>% which has become ubiquitous for many, but remains a pain to type (sure, there are keyboard tricks, but still). Similarly, dplyr/rlang introduce/repurpose notations for "tidy evaluation" (!!, !!!, :=, ~, etc.).
Another case I'm seeing is the verbosity of lambda functions. Would it be possible, theoretically, to define internally something like f = λ(x) x+1 instead of f = function(x) x+1, or are there character restrictions on top of other reasons?
Why add an ergonomics feature if you risk breaking a runtime that hosts a huge ecosystem? Also, once you add one feature, you are on a slippery slope and are staring straight in the face of feature bloat.
And if you say that we can be smart and judicious about what features we add, how do we structure that decision process? R does not have a "benevolent dictator" having a final word in decisions like this so you are left with design by committee with all that it entails.
The big thing with R has always been the package ecosystem, in which if you want a feature you write it yourself -- as in your magrittr example. The language itself has remained close to its S roots and has successfully served as a stable platform for all the development that has been happening.

Coding mathematical algorithms - should I use variables in the book or more descriptive ones?

I'm maintaining code for a mathematical algorithm that came from a book, with references in the comments. Is it better to have variable names that are descriptive of what the variables represent, or should the variables match what is in the book?
For a simple example, I may see this code, which reflects the variable in the book.
A_c = v*v/r
I could rewrite it as
centripetal_acceleration = velocity*velocity/radius
The advantage of the latter is that anyone looking at the code could understand it. However, the advantage of the former is that it is easier to compare the code with what is in the book. I may do this in order to double check the implementation of the algorithms, or I may want to add additional calculations.
Perhaps I am over-thinking this, and should simply use comments to describe what the variables are. I tend to favor self-documenting code however (use descriptive variable names instead of adding comments to describe what they are), but maybe this is a case where comments would be very helpful.
I know this question can be subjective, but I wondered if anyone had any guiding principles in order to make a decision, or had links to guidelines for coding math algorithms.
I would prefer to use the more descriptive variable names. You can't guarantee everyone that is going to look at the code has access to "the book". You may leave and take your copy, it may go out of print, etc. In my opinion it's better to be descriptive.
We use a lot of mathematical reference books in our work, and we reference them in comments, but we rarely use the same mathematically abbreviated variable names.
A common practise is to summarise all your variables, indexes and descriptions in a comment header before starting the code proper. eg.
// A_c = Centripetal Acceleration
// v = Velocity
// r = Radius
A_c = (v^2)/r
I write a lot of mathematical software. IF I can insert in the comments a very specific reference to a book or a paper or (best) web site that explains the algorithm and defines the variable names, then I will use the SHORT names like a = v * v / r because it makes the formulas easier to read and write and verify visually.
IF not, then I will write very verbose code with lots of comments and long descriptive variable names. Essentially, my code becomes a paper that describes the algorithm (anyone remember Knuth's "Literate Programming" efforts, years ago? Though the technology for it never took off, I emulate the spirit of that effort). I use a LOT of ascii art in my comments, with box-and-arrow diagrams and other descriptive graphics. I use Jave.de -- the Java Ascii Vmumble Editor.
I will sometimes write my math with short, angry little variable names, easier to read and write for ME because I know the math, then use REFACTOR to replace the names with longer, more descriptive ones at the end, but only for code that is much more informal.
I think it depends almost entirely upon the audience for whom you're writing -- and don't ever mistake the compiler for the audience either. If your code is likely to be maintained by more or less "general purpose" programmers who may not/probably won't know much about physics so they won't recognize what v and r mean, then it's probably better to expand them to be recognizable for non-physicists. If they're going to be physicists (or, for another example, game programmers) for whom the textbook abbreviations are clear and obvious, then use the abbreviations. If you don't know/can't guess which, it's probably safer to err on the side of the names being longer and more descriptive.
I vote for the "book" version. 'v' and 'r' etc are pretty well understood as acronymns for velocity and radius and is more compact.
How far would you take it?
Most (non-greek :-)) keyboards don't provide easy access to Δ, but it's valid as part of an identifier in some languages (e.g. C#):
int Δv;
int Δx;
Anyone coming afterwards and maintaining the code may curse you every day. Similarly for a lot of other symbols used in maths. So if you're not going to use those actual symbols (and I'd encourage you not to), I'd argue you ought to translate the rest, where it doesn't make for code that's too verbose.
In addition, what if you need to combine algorithms, and those algorithms have conflicting usage of variables?
A compromise could be to code and debug as contained in the book, and then perform a global search and replace for all of your variables towards the end of your development, so that it is easier to read. If you do this I would change the names of the variables slightly so that it is easier to change them later.
e.g A_c# = v#*v#/r#

Smart design of a math parser?

What is the smartest way to design a math parser? What I mean is a function that takes a math string (like: "2 + 3 / 2 + (2 * 5)") and returns the calculated value? I did write one in VB6 ages ago but it ended up being way to bloated and not very portable (or smart for that matter...). General ideas, psuedo code or real code is appreciated.
A pretty good approach would involve two steps. The first step involves converting the expression from infix to postfix (e.g. via Dijkstra's shunting yard) notation. Once that's done, it's pretty trivial to write a postfix evaluator.
I wrote a few blog posts about designing a math parser. There is a general introduction, basic knowledge about grammars, sample implementation written in Ruby and a test suite. Perhaps you will find these materials useful.
You have a couple of approaches. You could generate dynamic code and execute it in order to get the answer without needing to write much code. Just perform a search on runtime generated code in .NET and there are plenty of examples around.
Alternatively you could create an actual parser and generate a little parse tree that is then used to evaluate the expression. Again this is pretty simple for basic expressions. Check out codeplex as I believe they have a math parser on there. Or just look up BNF which will include examples. Any website introducing compiler concepts will include this as a basic example.
Codeplex Expression Evaluator
If you have an "always on" application, just post the math string to google and parse the result. Simple way but not sure if that's what you need - but smart in some way i guess.
I know this is old, but I came across this trying to develop a calculator as part of a larger app and ran across some issues using the accepted answer. The links were IMMENSELY helpful in understanding and solving this problem and should not be discounted. I was writing an Android app in Java and for each item in the expression "string," I actually stored a String in an ArrayList as the user types on the keypad. For the infix-to-postfix conversion, I iterated through each String in the ArrayList, then evaluated the newly arranged postfix ArrayList of Strings. This was fantastic for a small number of operands/operators, but longer calculations were consistently off, especially as the expressions started evaluating to non-integers. In the provided link for Infix to Postfix conversion, it suggests popping the Stack if the scanned item is an operator and the topStack item has a higher precedence. I found that this is almost correct. Popping the topStack item if it's precedence is higher OR EQUAL to the scanned operator finally made my calculations come out correct. Hopefully this will help anyone working on this problem, and thanks to Justin Poliey (and fas?) for providing some invaluable links.
The related question Equation (expression) parser with precedence? has some good information on how to get started with this as well.
-Adam
Assuming your input is an infix expression in string format, you could convert it to postfix and, using a pair of stacks: an operator stack and an operand stack, work the solution from there. You can find general algorithm information at the Wikipedia link.
ANTLR is a very nice LL(*) parser generator. I recommend it highly.
Developers always want to have a clean approach, and try to implement the parsing logic from ground up, usually ending up with the Dijkstra Shunting-Yard Algorithm. Result is neat looking code, but possibly ridden with bugs. I have developed such an API, JMEP, that does all that, but it took me years to have stable code.
Even with all that work, you can see even from that project page that I am seriously considering to switch over to using JavaCC or ANTLR, even after all that work already done.
11 years into the future from when this question was asked: If you don't want to re-invent the wheel, there are many exotic math parsers out there.
There is one that I wrote years ago which supports arithmetic operations, equation solving, differential calculus, integral calculus, basic statistics, function/formula definition, graphing, etc.
Its called ParserNG and its free.
Evaluating an expression is as simple as:
MathExpression expr = new MathExpression("(34+32)-44/(8+9(3+2))-22");
System.out.println("result: " + expr.solve());
result: 43.16981132075472
Or using variables and calculating simple expressions:
MathExpression expr = new MathExpression("r=3;P=2*pi*r;");
System.out.println("result: " + expr.getValue("P"));
Or using functions:
MathExpression expr = new MathExpression("f(x)=39*sin(x^2)+x^3*cos(x);f(3)");
System.out.println("result: " + expr.solve());
result: -10.65717648378352
Or to evaluate the derivative at a given point(Note it does symbolic differentiation(not numerical) behind the scenes, so the accuracy is not limited by the errors of numerical approximations):
MathExpression expr = new MathExpression("f(x)=x^3*ln(x); diff(f,3,1)");
System.out.println("result: " + expr.solve());
result: 38.66253179403897
Which differentiates x^3 * ln(x) once at x=3.
The number of times you can differentiate is 1 for now.
or for Numerical Integration:
MathExpression expr = new MathExpression("f(x)=2*x; intg(f,1,3)");
System.out.println("result: " + expr.solve());
result: 7.999999999998261... approx: 8
This parser is decently fast and has lots of other functionality.
Work has been concluded on porting it to Swift via bindings to Objective C and we have used it in graphing applications amongst other iterative use-cases.
DISCLAIMER: ParserNG is authored by me.

Resources