R - Merging data of different frequencies - r

I have two dataframes that I am trying to merge. One is daily data with days missing (but at least one observation for each month). The other is monthly data (with no months missing). They both span the same time frame.
I would like to merge the data by month (i.e. the month-year of the daily data corresponding with the month-year of the monthly data), keeping the higher frequency.
df1 = daily data (unequal frequency ... i.e. missing days)
df2 = monthly data (equal frequency)
merge(df1, df2) ???
df1.date df1.x df2.y
1/1/2005 5.5 10
1/2/2005 5.9 10
1/5/2005 6.5 10
...
11/2/2005 2.5 12
11/4/2005 3.9 12
11/6/2005 1.3 12
...
Is there anyway to do this in R? (I have been struggling with zoo and ts and haven't found anything even close ... hence this post).

Thank you #user1945827 & #Gregor
I was making a mountain out of a molehill.
As you suggested, all that I needed to do was to create a common index for both datasets to merge on:
lo$monthyear <- format(lo$ListingCreationDate, format='%B-%Y')
ue$monthyear <- format(ue$Month, format='%B-%Y')
lonew <- data.frame(merge(lo, ue, by="monthyear"))
I am posting this as an answer because I literally spent hours using different packages trying to accomplish something that a one sentence answer resolved. Hopefully it will be useful to someone else.

Related

creating columns of monthly averages in R

I have a dataframe in R where each row corresponds to a household. One column describes a date in 2010 when that household planted crops. The remainder of the dataset contains over 1000 columns describing the temperature on every day between 2007-2010 for those households.
This is the basic form:
Date 2007-01-01 2007-01-02 2007-01-03
1 2010-05-01 70 72 61
2 2010-02-10 63 59 73
3 2010-03-06 60 59 81
I need to create columns for each household that describe the monthly mean temperatures of the two months following their planting date in each of the three years prior to 2010.
For instance: if a household planted on 2010-05-01, I would need the following columns:
mean temp of 2007-05-01 through 2007-06-01
mean temp of 2007-06-02 through 2007-07-01
mean temp of 2008-05-01 through 2008-06-01
...
mean temp of 2009-06-02 through 2009-07-01
I skipped two columns, but you get the idea. Specific code would be most helpful, but in general, I am just looking for a way to pull data from specific columns based upon a date that is described by another column.
Hi #bricevk you could use the apply function. It allows you to use a function over a data either column-wise or row-wise.
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/apply
Say your data is in a object df. It applies the mean function over the columns of df . Giving you the column-wise mean. The 2 indicates the columns. This wpuld the daily average, assuming each column, is a day.
Averages <- apply(df,2,mean)
If I didn't answer this the way you would like perhaps I have not really understood your dataset. Could you try explain it more clearly?
I suggest you to use tidyverse. However, in order to be compatible with this universe, you firstly have to make your data standard, ie tidy. In your example, the things would be easier if you transformed your data in order to have your observations ordrered by rows, and columns being variables. If I correctly understood your data, you have households planting trees (the row names are dates of plantation ?), and then controls with temperature. I'd do something like :
-----------------------------------------------------------------------------
| Household ID | planting date | Date of control | Temperature controlled |
-----------------------------------------------------------------------------
firstly, have your planting date stored as another thing than a rowname, by example :
library(dplyr)
df <- tibble::rownames_to_column(data, "PlantingDate")
You also have to get your household id var you haven't specified to us.
Then you can manage to have the tidy data with tidyr, using
library(tidyr)
df <- gather(df,"DateOfControl","Temperature",-c(PlantingDate,ID))
When you'll have that, you'll be able to use the package lubridate, something like
library(lubridate)
df %>%
group_by(ID,PlantingDate,year(ControlDate),month(ControlDate)) %>%
summarise(MeanT=mean(Temperature))
could work

Time series analysis applicability?

I have a sample data frame like this (date column format is mm-dd-YYYY):
date count grp
01-09-2009 54 1
01-09-2009 100 2
01-09-2009 546 3
01-10-2009 67 4
01-11-2009 80 5
01-11-2009 45 6
I want to convert this data frame into time series using ts(), but the problem is: the current data frame has multiple values for the same date. Can we apply time series in this case?
Can I convert data frame into time series, and build a model (ARIMA) which can forecast count value on a daily basis?
OR should I forecast count value based on grp, but in that case, I have to select only grp and count column of a data frame. So in that case, I have to skip date column, and daily forecast for count value is not possible?
Suppose if I want to aggregate count value on per day basis. I tried with aggregate function, but there we have to specify date value, but I have a very large data set? Any other option available in r?
Can somebody, please, suggest if there is a better approach to follow? My assumption is that the time series forcast works only for bivariate data? Is this assumption right?
It seems like there are two aspects of your problem:
i want to convert this data frame into time series using ts(), but the
problem is- current data frame having multiple values for the same
date. can we apply time series in this case?
If you are happy making use of the xts package you could attempt:
dta2$date <- as.Date(dta2$date, "%d-%m-%Y")
dtaXTS <- xts::as.xts(dta2[,2:3], dta2$date)
which would result in:
>> head(dtaXTS)
count grp
2009-09-01 54 1
2009-09-01 100 2
2009-09-01 546 3
2009-10-01 67 4
2009-11-01 80 5
2009-11-01 45 6
of the following classes:
>> class(dtaXTS)
[1] "xts" "zoo"
You could then use your time series object as univariate time series and refer to the selected variable or as a multivariate time series, example using PerformanceAnalytics packages:
PerformanceAnalytics::chart.TimeSeries(dtaXTS)
Side points
Concerning your second question:
can somebody plz suggest me what is the better approach to follow, my
assumption is time series forcast is works only for bivariate data? is
this assumption also right?
IMHO, this is rather broad. I would suggest that you use created xts object and elaborate on the model you want to utilise and why, if it's a conceptual question about nature of time series analysis you may prefer to post your follow-up question on CrossValidated.
Data sourced via: dta2 <- read.delim(pipe("pbpaste"), sep = "") using the provided example.
Since daily forecasts are wanted we need to aggregate to daily. Using DF from the Note at the end, read the first two columns of data into a zoo series z using read.zoo and argument aggregate=sum. We could optionally convert that to a "ts" series (tser <- as.ts(z)) although this is unnecessary for many forecasting functions. In particular, checking out the source code of auto.arima we see that it runs x <- as.ts(x) on its input before further processing. Finally run auto.arima, forecast or other forecasting function.
library(forecast)
library(zoo)
z <- read.zoo(DF[1:2], format = "%m-%d-%Y", aggregate = sum)
auto.arima(z)
forecast(z)
Note: DF is given reproducibly here:
Lines <- "date count grp
01-09-2009 54 1
01-09-2009 100 2
01-09-2009 546 3
01-10-2009 67 4
01-11-2009 80 5
01-11-2009 45 6"
DF <- read.table(text = Lines, header = TRUE)
Updated: Revised after re-reading question.

How to match dates in 2 data frames in R, then sum specific range of values up to that date?

I have two data frames: rainfall data collected daily and nitrate concentrations of water samples collected irregularly, approximately once a month. I would like to create a vector of values for each nitrate concentration that is the sum of the previous 5 days' rainfall. Basically, I need to match the nitrate date with the rain date, sum the previous 5 days' rainfall, then print the sum with the nitrate data.
I think I need to either make a function, a for loop, or use tapply to do this, but I don't know how. I'm not an expert at any of those, though I've used them in simple cases. I've searched for similar posts, but none get at this exactly. This one deals with summing by factor groups. This one deals with summing each possible pair of rows. This one deals with summing by aggregate.
Here are 2 example data frames:
# rainfall df
mm<- c(0,0,0,0,5, 0,0,2,0,0, 10,0,0,0,0)
date<- c(1:15)
rain <- data.frame(cbind(mm, date))
# b/c sums of rainfall depend on correct chronological order, make sure the data are in order by date.
rain[ do.call(order, list(rain$date)),]
# nitrate df
nconc <- c(15, 12, 14, 20, 8.5) # nitrate concentration
ndate<- c(6,8,11,13,14)
nitrate <- data.frame(cbind(nconc, ndate))
I would like to have a way of finding the matching rainfall date for each nitrate measurement, such as:
match(nitrate$date[i] %in% rain$date)
(Note: Will match work with as.Date dates?) And then sum the preceding 5 days' rainfall (not including the measurement date), such as:
sum(rain$mm[j-6:j-1]
And prints the sum in a new column in nitrate
print(nitrate$mm_sum[i])
To make sure it's clear what result I'm looking for, here's how to do the calculation 'by hand'. The first nitrate concentration was collected on day 6, so the sum of rainfall on days 1-5 is 5mm.
Many thanks in advance.
You were more or less there!
nitrate$prev_five_rainfall = NA
for (i in 1:length(nitrate$ndate)) {
day = nitrate$ndate[i]
nitrate$prev_five_rainfall[i] = sum(rain$mm[(day-6):(day-1)])
}
Step by step explanation:
Initialize empty result column:
nitrate$prev_five_rainfall = NA
For each line in the nitrate df: (i = 1,2,3,4,5)
for (i in 1:length(nitrate$ndate)) {
Grab the day we want final result for:
day = nitrate$ndate[i]
Take the rainfull sum and it put in in the results column
nitrate$prev_five_rainfall[i] = sum(rain$mm[(day-6):(day-1)])
Close the for loop :)
}
Disclaimer: This answer is basic in that:
It will break if nitrate's ndate < 6
It will be incorrect if some dates are missing in the rain dataframe
It will be slow on larger data
As you get more experience with R, you might use data manipulation packages like dplyr or data.table for these types of manipulations.
#nelsonauner's answer does all the heavy lifting. But one thing to note, in my actual data my dates are not numerical like they are in the example above, they are dates listed as MM/DD/YYYY with the appropriate as.Date(nitrate$date, "%m/%d/%Y").
I found that the for loop above gave me all zeros for nitrate$prev_five_rainfall and I suspected it was a problem with the dates.
So I changed my dates in both data sets to numerical using the difference in number of days between a common start date and the recorded date, so that the for loop would look for a matching number of days in each data frame rather than a date. First, make a column of the start date using rep_len() and format it:
nitrate$startdate <- rep_len("01/01/1980", nrow(nitrate))
nitrate$startdate <- as.Date(all$startdate, "%m/%d/%Y")
Then, calculate the difference using difftime():
nitrate$diffdays <- as.numeric(difftime(nitrate$date, nitrate$startdate, units="days"))
Do the same for the rain data frame. Finally, the for loop looks like this:
nitrate$prev_five_rainfall = NA
for (i in 1:length(nitrate$diffdays)) {
day = nitrate$diffdays[i]
nitrate$prev_five_rainfall[i] = sum(rain$mm[(day-5):(day-1)]) # 5 days
}

Compute average over sliding time interval (7 days ago/later) in R

I've seen a lot of solutions to working with groups of times or date, like aggregate to sum daily observations into weekly observations, or other solutions to compute a moving average, but I haven't found a way do what I want, which is to pluck relative dates out of data keyed by an additional variable.
I have daily sales data for a bunch of stores. So that is a data.frame with columns
store_id date sales
It's nearly complete, but there are some missing data points, and those missing data points are having a strong effect on our models (I suspect). So I used expand.grid to make sure we have a row for every store and every date, but at this point the sales data for those missing data points are NAs. I've found solutions like
dframe[is.na(dframe)] <- 0
or
dframe$sales[is.na(dframe$sales)] <- mean(dframe$sales, na.rm = TRUE)
but I'm not happy with the RHS of either of those. I want to replace missing sales data with our best estimate, and the best estimate of sales for a given store on a given date is the average of the sales 7 days prior and 7 days later. E.g. for Sunday the 8th, the average of Sunday the 1st and Sunday the 15th, because sales is significantly dependent on day of the week.
So I guess I can use
dframe$sales[is.na(dframe$sales)] <- my_func(dframe)
where my_func(dframe) replaces every stores' sales data with the average of the store's sales 7 days prior and 7 days later (ignoring for the first go around the situation where one of those data points is also missing), but I have no idea how to write my_func in an efficient way.
How do I match up the store_id and the dates 7 days prior and future without using a terribly inefficient for loop? Preferably using only base R packages.
Something like:
with(
dframe,
ave(sales, store_id, FUN=function(x) {
naw <- which(is.na(x))
x[naw] <- rowMeans(cbind(x[naw+7],x[naw-7]))
x
}
)
)

Data aggregation loop in R

I am facing a problem concerning aggregating my data to daily data.
I have a data frame where NAs have been removed (Link of picture of data is given below). Data has been collected 3 times a day, but sometimes due to NAs, there is just 1 or 2 entries per day; some days data is missing completely.
I am now interested in calculating the daily mean of "dist": this means summing up the data of "dist" of one day and dividing it by number of entries per day (so 3 if there is no data missing that day). I would like to do this via a loop.
How can I do this with a loop? The problem is that sometimes I have 3 entries per day and sometimes just 2 or even 1. I would like to tell R that for every day, it should sum up "dist" and divide it by the number of entries that are available for every day.
I just have no idea how to formulate a for loop for this purpose. I would really appreciate if you could give me any advice on that problem. Thanks for your efforts and kind regards,
Jan
Data frame: http://www.pic-upload.de/view-11435581/Data_loop.jpg.html
Edit: I used aggregate and tapply as suggested, however, the mean value of the data was not really calculated:
Group.1 x
1 2006-10-06 12:00:00 636.5395
2 2006-10-06 20:00:00 859.0109
3 2006-10-07 04:00:00 301.8548
4 2006-10-07 12:00:00 649.3357
5 2006-10-07 20:00:00 944.8272
6 2006-10-08 04:00:00 136.7393
7 2006-10-08 12:00:00 360.9560
8 2006-10-08 20:00:00 NaN
The code used was:
dates<-Dis_sub$date
distance<-Dis_sub$dist
aggregate(distance,list(dates),mean,na.rm=TRUE)
tapply(distance,dates,mean,na.rm=TRUE)
Don't use a loop. Use R. Some example data :
dates <- rep(seq(as.Date("2001-01-05"),
as.Date("2001-01-20"),
by="day"),
each=3)
values <- rep(1:16,each=3)
values[c(4,5,6,10,14,15,30)] <- NA
and any of :
aggregate(values,list(dates),mean,na.rm=TRUE)
tapply(values,dates,mean,na.rm=TRUE)
gives you what you want. See also ?aggregate and ?tapply.
If you want a dataframe back, you can look at the package plyr :
Data <- as.data.frame(dates,values)
require(plyr)
ddply(data,"dates",mean,na.rm=TRUE)
Keep in mind that ddply is not fully supporting the date format (yet).
Look at the data.table package especially if your data is huge. Here is some code that calculates the mean of dist by day.
library(data.table)
dt = data.table(Data)
Data[,list(avg_dist = mean(dist, na.rm = T)),'date']
It looks like your main problem is that your date field has times attached. The first thing you need to do is create a column that has just the date using something like
Dis_sub$date_only <- as.Date(Dis_sub$date)
Then using Joris Meys' solution (which is the right way to do it) should work.
However if for some reason you really want to use a loop you could try something like
newFrame <- data.frame()
for d in unique(Dis_sub$date){
meanDist <- mean(Dis_sub$dist[Dis_sub$date==d],na.rm=TRUE)
newFrame <- rbind(newFrame,c(d,meanDist))
}
But keep in mind that this will be slow and memory-inefficient.

Resources