I have created a regression model using ols() from rms package
data_Trans <- ols(Check ~ rcs(data_XVar,6))
Since this is built using restricted cubic spline with 6 knots I get 5 coefficients with one intercept.
Now I could not understand how to apply this model over new sets of coefficient values. Any example to perform this would be really helpful.Further, I am not sure whether we have specify any knot positions or the model saves the previous knot positions saved while building the model.
Related
The documentation for the multinom() function from the nnet package in R says that it "[f]its multinomial log-linear models via neural networks" and that "[t]he response should be a factor or a matrix with K columns, which will be interpreted as counts for each of K classes." Even when I go to add a tag for nnet on this question, the description says that it is software for fitting "multinomial log-linear models."
Granting that statistics has wildly inconsistent jargon that is rarely operationally defined by whoever is using it, the documentation for the function even mentions having a count response and so seems to indicate that this function is designed to model count data. Yet virtually every resource I've seen treats it exclusively as if it were fitting a multinomial logistic regression. In short, everyone interprets the results in terms of logged odds relative to the reference (as in logistic regression), not in terms of logged expected count (as in what is typically referred to as a log-linear model).
Can someone clarify what this function is actually doing and what the fitted coefficients actually mean?
nnet::multinom is fitting a multinomial logistic regression as I understand...
If you check the source code of the package, https://github.com/cran/nnet/blob/master/R/multinom.R and https://github.com/cran/nnet/blob/master/R/nnet.R, you will see that the multinom function is indeed using counts (which is a common thing to use as input for a multinomial regression model, see also the MGLM or mclogit package e.g.), and that it is fitting the multinomial regression model using a softmax transform to go from predictions on the additive log-ratio scale to predicted probabilities. The softmax transform is indeed the inverse link scale of a multinomial regression model. The way the multinom model predictions are obtained, cf.predictions from nnet::multinom, is also exactly as you would expect for a multinomial regression model (using an additive log-ratio scale parameterization, i.e. using one outcome category as a baseline).
That is, the coefficients predict the logged odds relative to the reference baseline category (i.e. it is doing a logistic regression), not the logged expected counts (like a log-linear model).
This is shown by the fact that model predictions are calculated as
fit <- nnet::multinom(...)
X <- model.matrix(fit) # covariate matrix / design matrix
betahat <- t(rbind(0, coef(fit))) # model coefficients, with expicit zero row added for reference category & transposed
preds <- mclustAddons::softmax(X %*% betahat)
Furthermore, I verified that the vcov matrix returned by nnet::multinom matches that when I use the formula for the vcov matrix of a multinomial regression model, Faster way to calculate the Hessian / Fisher Information Matrix of a nnet::multinom multinomial regression in R using Rcpp & Kronecker products.
Is it not the case that a multinomial regression model can always be reformulated as a Poisson loglinear model (i.e. as a Poisson GLM) using the Poisson trick (glmnet e.g. uses the Poisson trick to fit multinomial regression models as a Poisson GLM)?
I have developed a binomial logistic regression using glm function in R. I need three outputs which are
Log likelihood (no coefficients)
Log likelihood (constants only)
Log likelihood (at optimal)
What functions or packages do I need to obtain these outputs?
Say we have a fitted model m.
log-likelihood of full model (i.e., at MLE): logLik(m)
log-likelihood of intercept-only model: logLik(update(m, . ~ 1))
although the latter can probably be retrieved without refitting the model if we think carefully enough about the deviance() and $null.deviance components (these are defined with respect to the saturated model)
I replaced missing data by using MICE package.
I realized the linear equation modelling by using : summary(pool(with(imputed_base_finale,lm(....)))
I tried to obtain standardized coefficients by using the function lm.beta, however it doesn't work.
lm.beta (with(imputed_base_finale,lm(...)))
Error in lm.beta(with(imputed_base_finale, lm(...)))
object has to be of class lm
How can I obtain these standardized coefficients ?
Thank you for you help!!!
lm.scale works on lm objects and adds standardized coefficients. This however was not build to work on mira objects.
Have you considered using scale on the data before you build a model, effectively getting standardized coefficients?
Instead of standardizing the data before imputation, you could also apply it with post processing during imputation.
I am not sure which of these would be the most robust option.
require(mice)
# non-standardized
imp <- mice(nhanes2)
pool(with(imp,lm(chl ~ bmi)))
# standardized
imp_scale <- mice(scale(nhanes2[,c('bmi','chl')]))
pool(with(imp_scale,lm(chl ~ bmi)))
I am trying to use a generalized least square model (gls in R) on my panel data to deal with autocorrelation problem.
I do not want to have any lags for any variables.
I am trying to use Durbin-Watson test (dwtest in R) to check the autocorrelation problem from my generalized least square model (gls).
However, I find that the dwtest is not applicable over gls function while it is applicable to other functions such as lm.
Is there a way to check the autocorrelation problem from my gls model?
Durbin-Watson test is designed to check for presence of autocorrelation in standard least-squares models (such as one fitted by lm). If autocorrelation is detected, one can then capture it explicitly in the model using, for example, generalized least squares (gls in R). My understanding is that Durbin-Watson is not appropriate to then test for "goodness of fit" in the resulting models, as gls residuals may no longer follow the same distribution as residuals from the standard lm model. (Somebody with deeper knowledge of statistics should correct me, if I'm wrong).
With that said, function durbinWatsonTest from the car package will accept arbitrary residuals and return the associated test statistic. You can therefore do something like this:
v <- gls( ... )$residuals
attr(v,"std") <- NULL # get rid of the additional attribute
car::durbinWatsonTest( v )
Note that durbinWatsonTest will compute p-values only for lm models (likely due to the considerations described above), but you can estimate them empirically by permuting your data / residuals.
I'm new to R and statistical modelling, and am looking to use the lmmlasso library in r to fit a mixed effects model, selecting only the best fixed effects out of ~300 possible variables.
For this model I'd like to include both a fixed intercept, a random effect, and a random intercept. Looking at the manual on CRAN, I've come across the following:
x: matrix of dimension ntot x p including the fixed-effects
covariables. An intercept has to be included in the first column as
(1,...,1).
z: random effects matrix of dimension ntot x q. It has to be a matrix,
even if q=1.
While it's obvious what I need to do for the fixed intercept I'm not quite sure how to include both a random intercept and effect. Is it exactly the same as the fixed matrix, where I include (1...1) in my first column?
In addition to this, I'm looking to validate the resulting model I get with another dataset. For lmmlasso is there a function similar to predict in lme4 that can be used to compute new predictions based on the output I get? Alternatively, is it viable/correct to construct a new model using lmer using the variables with non-zero coefficients returned by lmmlasso, and then use predict on the new model?
Thanks in advance.